code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase_ ( _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = math.inf , _UpperCamelCase = -math.inf , _UpperCamelCase = False , _UpperCamelCase = 1_00 , _UpperCamelCase = 0.01 , _UpperCamelCase = 1 , ): '''simple docstring''' __lowercase = False __lowercase = search_prob __lowercase = start_temperate __lowercase = [] __lowercase = 0 __lowercase = None while not search_end: __lowercase = current_state.score() if best_state is None or current_score > best_state.score(): __lowercase = current_state scores.append(__UpperCamelCase ) iterations += 1 __lowercase = None __lowercase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __lowercase = random.randint(0 , len(__UpperCamelCase ) - 1 ) # picking a random neighbor __lowercase = neighbors.pop(__UpperCamelCase ) __lowercase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __lowercase = change * -1 # in case we are finding minimum if change > 0: # improves the solution __lowercase = picked_neighbor else: __lowercase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __lowercase = picked_neighbor __lowercase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __lowercase = True else: __lowercase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__UpperCamelCase ) , __UpperCamelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Tuple = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a : Optional[int] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a : Union[str, Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return (3 * x**2) - (6 * y) a : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Optional[int] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) a : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : int = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
639
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
0
'''simple docstring''' def A ( UpperCamelCase_ : int ) -> Tuple: '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("Input value must be an \'int\' type" ) lowerCAmelCase__ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
0
def __UpperCAmelCase ( UpperCAmelCase = 1000000 )-> List[Any]: """simple docstring""" lowercase = [i - 1 for i in range(limit + 1 )] for i in range(2, limit + 1 ): if phi[i] == i - 1: for j in range(2 * i, limit + 1, __UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
604
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: snake_case__ = [1] snake_case__ = 0, 0, 0 snake_case__ = ugly_nums[ia] * 2 snake_case__ = ugly_nums[ia] * 3 snake_case__ = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): snake_case__ = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 snake_case__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 snake_case__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 snake_case__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_0_0) = }""")
33
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
0
from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : str, *_snake_case : str, **_snake_case : Tuple ) ->Optional[Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : Any, **_snake_case : str ) ->str: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : List[str], *_snake_case : Dict, **_snake_case : Any ) ->List[Any]: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Tuple, *_snake_case : str, **_snake_case : Any ) ->Dict: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[str], *_snake_case : Tuple, **_snake_case : Any ) ->Optional[Any]: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Dict, *_snake_case : Any, **_snake_case : Optional[int] ) ->str: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Union[str, Any], *_snake_case : Optional[int], **_snake_case : Tuple ) ->Any: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[int], *_snake_case : List[Any], **_snake_case : Dict ) ->int: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : str, **_snake_case : Union[str, Any] ) ->int: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : int, *_snake_case : Optional[int], **_snake_case : Union[str, Any] ) ->List[str]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : int, **_snake_case : Tuple ) ->Any: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[int], *_snake_case : Tuple, **_snake_case : Dict ) ->str: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Optional[int], *_snake_case : str, **_snake_case : str ) ->List[Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[Any], *_snake_case : Optional[int], **_snake_case : int ) ->Any: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[int], *_snake_case : Tuple, **_snake_case : str ) ->Optional[int]: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Union[str, Any], *_snake_case : List[Any], **_snake_case : int ) ->Tuple: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[Any], *_snake_case : str, **_snake_case : int ) ->Tuple: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : int, **_snake_case : Optional[int] ) ->Dict: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Union[str, Any], *_snake_case : str, **_snake_case : Tuple ) ->Optional[Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[Any], *_snake_case : str, **_snake_case : Any ) ->Dict: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : str, **_snake_case : Optional[Any] ) ->List[Any]: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Union[str, Any], *_snake_case : Tuple, **_snake_case : Dict ) ->Optional[int]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : int, *_snake_case : Dict, **_snake_case : Optional[Any] ) ->List[str]: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : List[str], **_snake_case : Dict ) ->Tuple: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : List[str], *_snake_case : Tuple, **_snake_case : Optional[int] ) ->Union[str, Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[Any], *_snake_case : Optional[int], **_snake_case : List[str] ) ->Any: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : int, *_snake_case : str, **_snake_case : Optional[Any] ) ->Union[str, Any]: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Any, *_snake_case : Any, **_snake_case : int ) ->List[Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : Union[str, Any], *_snake_case : List[Any], **_snake_case : str ) ->List[str]: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Any, *_snake_case : Union[str, Any], **_snake_case : Optional[int] ) ->Optional[int]: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Tuple, *_snake_case : List[str], **_snake_case : int ) ->Union[str, Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : Tuple, *_snake_case : Optional[int], **_snake_case : Optional[Any] ) ->Dict: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : str, *_snake_case : Tuple, **_snake_case : List[Any] ) ->Optional[Any]: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : Tuple, *_snake_case : Dict, **_snake_case : int ) ->Optional[int]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[Any], *_snake_case : Dict, **_snake_case : Optional[int] ) ->Union[str, Any]: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : List[str], *_snake_case : List[str], **_snake_case : Optional[Any] ) ->Tuple: requires_backends(cls, ['flax'] ) class snake_case__ ( metaclass=lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self : List[str], *_snake_case : List[str], **_snake_case : Optional[Any] ) ->Union[str, Any]: requires_backends(self, ['flax'] ) @classmethod def lowercase_ ( cls : List[Any], *_snake_case : Tuple, **_snake_case : int ) ->str: requires_backends(cls, ['flax'] ) @classmethod def lowercase_ ( cls : Optional[Any], *_snake_case : Optional[Any], **_snake_case : Any ) ->List[Any]: requires_backends(cls, ['flax'] )
478
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
import numpy as np _SCREAMING_SNAKE_CASE = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class SCREAMING_SNAKE_CASE_ : def __init__( self : List[str] ): """simple docstring""" UpperCamelCase = np.array(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = np.where(letter == self.SQUARE ) UpperCamelCase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase_ ( self : int , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = message.lower() UpperCamelCase = message.replace(""" """ , """""" ) UpperCamelCase = message.replace("""j""" , """i""" ) UpperCamelCase = np.empty((2, len(lowerCamelCase_ )) ) for letter_index in range(len(lowerCamelCase_ ) ): UpperCamelCase = self.letter_to_numbers(message[letter_index] ) UpperCamelCase = numbers[0] UpperCamelCase = numbers[1] UpperCamelCase = first_step.reshape(2 * len(lowerCamelCase_ ) ) UpperCamelCase = '' for numbers_index in range(len(lowerCamelCase_ ) ): UpperCamelCase = int(second_step[numbers_index * 2] ) UpperCamelCase = int(second_step[(numbers_index * 2) + 1] ) UpperCamelCase = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = encoded_message + letter return encoded_message def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = message.lower() message.replace(""" """ , """""" ) UpperCamelCase = np.empty(2 * len(lowerCamelCase_ ) ) for letter_index in range(len(lowerCamelCase_ ) ): UpperCamelCase = self.letter_to_numbers(message[letter_index] ) UpperCamelCase = numbers[0] UpperCamelCase = numbers[1] UpperCamelCase = first_step.reshape((2, len(lowerCamelCase_ )) ) UpperCamelCase = '' for numbers_index in range(len(lowerCamelCase_ ) ): UpperCamelCase = int(second_step[0, numbers_index] ) UpperCamelCase = int(second_step[1, numbers_index] ) UpperCamelCase = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = decoded_message + letter return decoded_message
537
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: Union[str, Any] = StableDiffusionXLImgaImgPipeline a__: Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a__: str = PipelineTesterMixin.required_optional_params - {'''latents'''} a__: List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__: Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS a__: int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self ): torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase_ = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) lowerCamelCase_ = CLIPTextModel(UpperCAmelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase ) lowerCamelCase_ = CLIPTextModelWithProjection(UpperCAmelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ): lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCamelCase_ = image / 2 + 0.5 if str(UpperCAmelCase ).startswith('''mps''' ): lowerCamelCase_ = torch.manual_seed(UpperCAmelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.7_5, } return inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase ) lowerCamelCase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase_ = sd_pipe(**UpperCAmelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase ) lowerCamelCase_ = sd_pipe.to(UpperCAmelCase ) lowerCamelCase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) # forward without prompt embeds lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase_ = 3 * ['this is a negative prompt'] lowerCamelCase_ = negative_prompt lowerCamelCase_ = 3 * [inputs['prompt']] lowerCamelCase_ = sd_pipe(**UpperCAmelCase ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase_ = 3 * ['this is a negative prompt'] lowerCamelCase_ = 3 * [inputs.pop('''prompt''' )] ( lowerCamelCase_ ) = sd_pipe.encode_prompt(UpperCAmelCase , negative_prompt=UpperCAmelCase ) lowerCamelCase_ = sd_pipe( **UpperCAmelCase , prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , pooled_prompt_embeds=UpperCAmelCase , negative_pooled_prompt_embeds=UpperCAmelCase , ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase="cpu" , UpperCAmelCase=torch.floataa , UpperCAmelCase=0 ): lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCamelCase_ = np.random.RandomState(UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase_ = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ) lowerCamelCase_ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase_ = self.get_inputs(UpperCAmelCase ) lowerCamelCase_ = pipe(**UpperCAmelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
29
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = "▁" A = {"vocab_file": "sentencepiece.bpe.model"} A = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } A = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= VOCAB_FILES_NAMES A__= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__= PRETRAINED_VOCAB_FILES_MAP A__= ['''input_ids''', '''attention_mask'''] A__= [] A__= [] def __init__( self : List[str] , _lowercase : Any , _lowercase : Tuple="<s>" , _lowercase : List[str]="</s>" , _lowercase : Union[str, Any]="</s>" , _lowercase : int="<s>" , _lowercase : Optional[Any]="<unk>" , _lowercase : List[Any]="<pad>" , _lowercase : int="<mask>" , _lowercase : Optional[int]=None , _lowercase : Dict=None , _lowercase : List[str]=None , _lowercase : Optional[int] = None , _lowercase : Optional[int]=None , **_lowercase : Tuple , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , tokenizer_file=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowercase ) } UpperCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase__ = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase__ = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , _lowercase : Any ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _UpperCAmelCase ( self : int ): """simple docstring""" return self._src_lang @src_lang.setter def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : int ): """simple docstring""" UpperCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self : List[str] , _lowercase : Any , _lowercase : Optional[Any] = None , _lowercase : Dict = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) UpperCAmelCase__ = [1] * len(self.prefix_tokens ) UpperCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def _UpperCAmelCase ( self : str , _lowercase : Optional[int] , _lowercase : Optional[Any] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self : Tuple , _lowercase : Dict , _lowercase : Union[str, Any] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Tuple , **_lowercase : List[str] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase__ = src_lang UpperCAmelCase__ = self(_lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , **_lowercase ) UpperCAmelCase__ = self.convert_tokens_to_ids(_lowercase ) UpperCAmelCase__ = tgt_lang_id return inputs def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[Any] ): """simple docstring""" return self.sp_model.encode(_lowercase , out_type=_lowercase ) def _UpperCAmelCase ( self : Optional[Any] , _lowercase : Union[str, Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(_lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self : List[str] , _lowercase : Optional[Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self : Optional[int] , _lowercase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = ''.join(_lowercase ).replace(_lowercase , " " ).strip() return out_string def _UpperCAmelCase ( self : Tuple , _lowercase : List[str] , _lowercase : Dict = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def _UpperCAmelCase ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any] = "en_XX" , _lowercase : Any = None , _lowercase : str = "ro_RO" , **_lowercase : str , ): """simple docstring""" UpperCAmelCase__ = src_lang UpperCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def _UpperCAmelCase ( self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : int ): """simple docstring""" UpperCAmelCase__ = self.lang_code_to_id[src_lang] UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code] def _UpperCAmelCase ( self : Any , _lowercase : Any ): """simple docstring""" UpperCAmelCase__ = self.lang_code_to_id[lang] UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
475
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
0
from __future__ import annotations def lowercase ( _lowerCAmelCase ): create_state_space_tree(__UpperCamelCase , [] , 0 , [0 for i in range(len(__UpperCamelCase ) )] ) def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if index == len(__UpperCamelCase ): print(__UpperCamelCase ) return for i in range(len(__UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCAmelCase__ = True create_state_space_tree(__UpperCamelCase , __UpperCamelCase , index + 1 , __UpperCamelCase ) current_sequence.pop() UpperCAmelCase__ = False snake_case__ : Optional[int] = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case__ : Optional[int] = ['''A''', '''B''', '''C'''] generate_all_permutations(sequence_a)
392
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a =logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : Tuple ,*SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : Union[str, Any]): super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) requires_backends(self ,'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None): __lowerCamelCase : List[str] = {} if top_k is not None: __lowerCamelCase : Optional[Any] = top_k return {}, {}, postprocess_params def __call__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Any): return super().__call__(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Any = load_image(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors=self.framework) return model_inputs def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : List[str] = self.model(**SCREAMING_SNAKE_CASE__) return model_outputs def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str]=5): if top_k > self.model.config.num_labels: __lowerCamelCase : int = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase : str = model_outputs.logits.softmax(-1)[0] __lowerCamelCase : str = probs.topk(SCREAMING_SNAKE_CASE__) elif self.framework == "tf": __lowerCamelCase : Optional[Any] = stable_softmax(model_outputs.logits ,axis=-1)[0] __lowerCamelCase : int = tf.math.top_k(SCREAMING_SNAKE_CASE__ ,k=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}") __lowerCamelCase : Optional[int] = scores.tolist() __lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)]
652
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
0
import sys import turtle def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : tuple[float, float] , UpperCAmelCase_ : tuple[float, float] ) -> Optional[Any]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : tuple[float, float] , UpperCAmelCase_ : tuple[float, float] , UpperCAmelCase_ : tuple[float, float] , UpperCAmelCase_ : int , ) -> Optional[Any]: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__UpperCamelCase , get_mid(__UpperCamelCase , __UpperCamelCase ) , get_mid(__UpperCamelCase , __UpperCamelCase ) , depth - 1 ) triangle(__UpperCamelCase , get_mid(__UpperCamelCase , __UpperCamelCase ) , get_mid(__UpperCamelCase , __UpperCamelCase ) , depth - 1 ) triangle(__UpperCamelCase , get_mid(__UpperCamelCase , __UpperCamelCase ) , get_mid(__UpperCamelCase , __UpperCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) _lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") _lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
443
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
0
from __future__ import annotations import queue class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_ ) -> Optional[Any]: '''simple docstring''' __lowercase = data __lowercase = None __lowercase = None def lowercase_ ( ): '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) __lowercase = input('''Enter the value of the root node: ''' ).strip().lower() __lowercase = queue.Queue() __lowercase = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): __lowercase = q.get() __lowercase = F'Enter the left node of {node_found.data}: ' __lowercase = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node __lowercase = TreeNode(int(__UpperCamelCase ) ) __lowercase = left_node q.put(__UpperCamelCase ) __lowercase = F'Enter the right node of {node_found.data}: ' __lowercase = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node __lowercase = TreeNode(int(__UpperCamelCase ) ) __lowercase = right_node q.put(__UpperCamelCase ) raise def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return __lowercase = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): __lowercase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return __lowercase = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): __lowercase = [] while not q.empty(): __lowercase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return __lowercase = [] __lowercase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__UpperCamelCase ) __lowercase = n.left # end of while means current node doesn't have left child __lowercase = stack.pop() # start to traverse its right child __lowercase = n.right def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return __lowercase = [] __lowercase = node while n or stack: while n: stack.append(__UpperCamelCase ) __lowercase = n.left __lowercase = stack.pop() print(n.data , end=''',''' ) __lowercase = n.right def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return __lowercase = [], [] __lowercase = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 __lowercase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def lowercase_ ( _UpperCamelCase = "" , _UpperCamelCase=50 , _UpperCamelCase="*" ): '''simple docstring''' if not s: return "\n" + width * char __lowercase = divmod(width - len(__UpperCamelCase ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) a : Optional[Any] = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
639
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
'''simple docstring''' import argparse from collections import defaultdict def A ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCamelCase , "r" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = F"""class {class_name}(""" lowerCAmelCase__ = F"""{4 * " "}def {test_name}(""" lowerCAmelCase__ = F"""{8 * " "}{correct_line.split()[0]}""" lowerCAmelCase__ = F"""{16 * " "}{correct_line.split()[0]}""" lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = [] for line in lines: if line.startswith(__UpperCamelCase ): lowerCAmelCase__ = True elif in_class and line.startswith(__UpperCamelCase ): lowerCAmelCase__ = True elif in_class and in_func and (line.startswith(__UpperCamelCase ) or line.startswith(__UpperCamelCase )): lowerCAmelCase__ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCAmelCase__ = True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCAmelCase__ = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) lowerCAmelCase__ = False else: new_lines.append(__UpperCamelCase ) with open(__UpperCamelCase , "w" ) as f: for line in new_lines: f.write(__UpperCamelCase ) def A ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=None ) -> Dict: '''simple docstring''' if fail is not None: with open(__UpperCamelCase , "r" ) as f: lowerCAmelCase__ = {l.strip() for l in f.readlines()} else: lowerCAmelCase__ = None with open(__UpperCamelCase , "r" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = defaultdict(__UpperCamelCase ) for line in correct_lines: lowerCAmelCase__ = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) UpperCAmelCase__ : List[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
48
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
0
import flax.linen as nn import jax import jax.numpy as jnp class __lowercase ( nn.Module ): lowercase = 42 lowercase = jnp.floataa def __a ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : Tuple ) -> str: '''simple docstring''' lowercase = hidden_states.shape lowercase = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) lowercase = self.conv(__lowerCamelCase ) return hidden_states class __lowercase ( nn.Module ): lowercase = 42 lowercase = jnp.floataa def __a ( self : Any ) -> int: '''simple docstring''' lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , __lowerCamelCase : int ) -> List[Any]: '''simple docstring''' lowercase = self.conv(__lowerCamelCase ) return hidden_states class __lowercase ( nn.Module ): lowercase = 42 lowercase = None lowercase = 0.0 lowercase = None lowercase = jnp.floataa def __a ( self : str ) -> Optional[int]: '''simple docstring''' lowercase = self.in_channels if self.out_channels is None else self.out_channels lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = nn.Dense(__lowerCamelCase , dtype=self.dtype ) lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Dropout(self.dropout_prob ) lowercase = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase = None if use_nin_shortcut: lowercase = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple=True ) -> List[Any]: '''simple docstring''' lowercase = hidden_states lowercase = self.norma(__lowerCamelCase ) lowercase = nn.swish(__lowerCamelCase ) lowercase = self.conva(__lowerCamelCase ) lowercase = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) lowercase = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) lowercase = hidden_states + temb lowercase = self.norma(__lowerCamelCase ) lowercase = nn.swish(__lowerCamelCase ) lowercase = self.dropout(__lowerCamelCase , __lowerCamelCase ) lowercase = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: lowercase = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
604
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCamelCase__ : List[Any] = False class __magic_name__ (unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe.dual_guided( prompt='''first prompt''' , image=_a , text_to_image_strength=0.75 , generator=_a , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) snake_case__ = VersatileDiffusionPipeline.from_pretrained(_a , torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = generator.manual_seed(0 ) snake_case__ = pipe.dual_guided( prompt='''first prompt''' , image=_a , text_to_image_strength=0.75 , generator=_a , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = 'cyberpunk 2077' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe.dual_guided( prompt=_a , image=_a , text_to_image_strength=0.75 , generator=_a , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 snake_case__ = 'A painting of a squirrel eating a burger ' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe.text_to_image( prompt=_a , generator=_a , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 snake_case__ = pipe.image_variation(_a , generator=_a , output_type='''numpy''' ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
33
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def lowercase_ ( self : List[Any] ) ->Union[str, Any]: snake_case__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case, 'num_attention_heads' ) ) class snake_case__ : """simple docstring""" def __init__( self : Optional[Any], _snake_case : Optional[int], _snake_case : Tuple=1_3, _snake_case : Union[str, Any]=6_4, _snake_case : Any=3, _snake_case : Any=3, _snake_case : Tuple=2, _snake_case : Optional[int]=1, _snake_case : Any=1_6, _snake_case : str=[1_2_8, 2_5_6, 3_8_4], _snake_case : str=[4, 6, 8], _snake_case : int=[2, 3, 4], _snake_case : Optional[int]=[1_6, 1_6, 1_6], _snake_case : Optional[Any]=0, _snake_case : Tuple=[2, 2, 2], _snake_case : Optional[Any]=[2, 2, 2], _snake_case : Dict=0.0_2, _snake_case : List[str]=True, _snake_case : Any=True, _snake_case : Optional[Any]=2, ) ->Dict: snake_case__ : List[str] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[int] = image_size snake_case__ : Union[str, Any] = num_channels snake_case__ : List[Any] = kernel_size snake_case__ : Tuple = stride snake_case__ : Optional[int] = padding snake_case__ : Union[str, Any] = hidden_sizes snake_case__ : List[Any] = num_attention_heads snake_case__ : Optional[Any] = depths snake_case__ : Tuple = key_dim snake_case__ : List[Any] = drop_path_rate snake_case__ : Any = patch_size snake_case__ : Any = attention_ratio snake_case__ : List[str] = mlp_ratio snake_case__ : int = initializer_range snake_case__ : Optional[int] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] snake_case__ : str = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[Any] = num_labels snake_case__ : List[Any] = initializer_range def lowercase_ ( self : Optional[Any] ) ->Union[str, Any]: snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Dict = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size], self.num_labels ) snake_case__ : str = self.get_config() return config, pixel_values, labels def lowercase_ ( self : str ) ->List[Any]: return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase_ ( self : int, _snake_case : Union[str, Any], _snake_case : List[Any], _snake_case : int ) ->List[str]: snake_case__ : Tuple = LevitModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = model(_snake_case ) snake_case__ : int = (self.image_size, self.image_size) snake_case__ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): snake_case__ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) snake_case__ : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : int ) ->Union[str, Any]: snake_case__ : int = self.num_labels snake_case__ : Optional[int] = LevitForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : str ) ->Any: snake_case__ : Optional[int] = self.prepare_config_and_inputs() snake_case__ : str = config_and_inputs snake_case__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : str ) ->str: snake_case__ : List[Any] = LevitModelTester(self ) snake_case__ : Dict = ConfigTester(self, config_class=_snake_case, has_text_modality=_snake_case, hidden_size=3_7 ) def lowercase_ ( self : List[str] ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Optional[Any] ) ->int: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def lowercase_ ( self : Dict ) ->List[Any]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def lowercase_ ( self : Tuple ) ->List[str]: pass @unittest.skip(reason='Levit does not output attentions' ) def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: pass def lowercase_ ( self : Tuple ) ->Dict: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(_snake_case ) snake_case__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], _snake_case ) def lowercase_ ( self : Dict ) ->int: def check_hidden_states_output(_snake_case : Tuple, _snake_case : Tuple, _snake_case : List[Any] ): snake_case__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Dict = len(self.model_tester.depths ) + 1 self.assertEqual(len(_snake_case ), _snake_case ) snake_case__ : List[str] = (self.model_tester.image_size, self.model_tester.image_size) snake_case__ : Any = image_size[0], image_size[1] for _ in range(4 ): snake_case__ : List[str] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) snake_case__ : str = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = True check_hidden_states_output(_snake_case, _snake_case, _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Tuple = True check_hidden_states_output(_snake_case, _snake_case, _snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : List[str] ) ->Dict: pass def lowercase_ ( self : List[Any], _snake_case : Dict, _snake_case : str, _snake_case : int=False ) ->str: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase_ ( self : List[str] ) ->Dict: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowercase_ ( self : List[Any] ) ->List[str]: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def lowercase_ ( self : Union[str, Any] ) ->Any: if not self.model_tester.is_training: return snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_snake_case ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue snake_case__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.train() snake_case__ : Optional[int] = self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) snake_case__ : Union[str, Any] = model(**_snake_case ).loss loss.backward() def lowercase_ ( self : Tuple ) ->List[Any]: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case__ : Tuple = False snake_case__ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue snake_case__ : Union[str, Any] = model_class(_snake_case ) model.gradient_checkpointing_enable() model.to(_snake_case ) model.train() snake_case__ : Tuple = self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) snake_case__ : Any = model(**_snake_case ).loss loss.backward() def lowercase_ ( self : Optional[int] ) ->Dict: snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_snake_case ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): snake_case__ : List[str] = problem_type['title'] snake_case__ : Tuple = problem_type['num_labels'] snake_case__ : Tuple = model_class(_snake_case ) model.to(_snake_case ) model.train() snake_case__ : Tuple = self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if problem_type["num_labels"] > 1: snake_case__ : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) snake_case__ : Optional[int] = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_snake_case ) as warning_list: snake_case__ : Optional[Any] = model(**_snake_case ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowercase_ ( self : Union[str, Any] ) ->Any: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = LevitModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowercase_ (): snake_case__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : Any ) ->Dict: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase_ ( self : Optional[int] ) ->Tuple: snake_case__ : str = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _snake_case ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : str = prepare_img() snake_case__ : int = image_processor(images=_snake_case, return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**_snake_case ) # verify the logits snake_case__ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, _snake_case ) snake_case__ : List[str] = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _snake_case, atol=1e-4 ) )
478
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker _SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-1""" _SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-2""" _SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-3""" _SCREAMING_SNAKE_CASE = """CompVis/stable-diffusion-v1-4""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : int = True , ): """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) UpperCamelCase = StableDiffusionPipeline( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith("""_""" )} def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : int = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] = 512 , lowerCamelCase_ : Any = 512 , lowerCamelCase_ : Optional[int] = 50 , lowerCamelCase_ : Dict = 7.5 , lowerCamelCase_ : str = None , lowerCamelCase_ : Any = 1 , lowerCamelCase_ : Optional[int] = 0.0 , lowerCamelCase_ : Union[str, Any] = None , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : Optional[Any] = "pil" , lowerCamelCase_ : Optional[Any] = True , lowerCamelCase_ : int = None , lowerCamelCase_ : Optional[int] = 1 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict = 512 , lowerCamelCase_ : int = 512 , lowerCamelCase_ : Union[str, Any] = 50 , lowerCamelCase_ : Union[str, Any] = 7.5 , lowerCamelCase_ : Union[str, Any] = None , lowerCamelCase_ : str = 1 , lowerCamelCase_ : Optional[int] = 0.0 , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : int = "pil" , lowerCamelCase_ : Dict = True , lowerCamelCase_ : Any = None , lowerCamelCase_ : Any = 1 , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] = 512 , lowerCamelCase_ : List[Any] = 512 , lowerCamelCase_ : Optional[int] = 50 , lowerCamelCase_ : str = 7.5 , lowerCamelCase_ : str = None , lowerCamelCase_ : Dict = 1 , lowerCamelCase_ : int = 0.0 , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Any = "pil" , lowerCamelCase_ : str = True , lowerCamelCase_ : Dict = None , lowerCamelCase_ : List[Any] = 1 , **lowerCamelCase_ : int , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = 512 , lowerCamelCase_ : Dict = 512 , lowerCamelCase_ : Dict = 50 , lowerCamelCase_ : Optional[int] = 7.5 , lowerCamelCase_ : Any = None , lowerCamelCase_ : int = 1 , lowerCamelCase_ : List[Any] = 0.0 , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : int = None , lowerCamelCase_ : str = "pil" , lowerCamelCase_ : str = True , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Union[str, Any] = 1 , **lowerCamelCase_ : str , ): """simple docstring""" return self.pipea( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) @torch.no_grad() def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] = 512 , lowerCamelCase_ : List[Any] = 512 , lowerCamelCase_ : Optional[Any] = 50 , lowerCamelCase_ : List[Any] = 7.5 , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : str = 0.0 , lowerCamelCase_ : int = None , lowerCamelCase_ : Tuple = None , lowerCamelCase_ : Tuple = "pil" , lowerCamelCase_ : str = True , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : List[Any] = 1 , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(lowerCamelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
537
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""OwlViTFeatureExtractor"""] A_ = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
0
import os import sys import unittest A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A = os.path.join(git_repo_path, "src", "diffusers") class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = find_backend(" if not is_torch_available():" ) self.assertEqual(_lowercase , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase__ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(_lowercase , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase__ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(_lowercase , "torch_and_transformers_and_onnx" ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _lowercase ) self.assertIn("torch_and_transformers" , _lowercase ) self.assertIn("flax_and_transformers" , _lowercase ) self.assertIn("torch_and_transformers_and_onnx" , _lowercase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = create_dummy_object("CONSTANT" , "\'torch\'" ) self.assertEqual(_lowercase , "\nCONSTANT = None\n" ) UpperCAmelCase__ = create_dummy_object("function" , "\'torch\'" ) self.assertEqual( _lowercase , "\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n" ) UpperCAmelCase__ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' UpperCAmelCase__ = create_dummy_object("FakeClass" , "\'torch\'" ) self.assertEqual(_lowercase , _lowercase ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' UpperCAmelCase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _lowercase )
475
'''simple docstring''' class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = val SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE : Optional[int] = Node(A ) else: self.left.insert(A ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE : int = Node(A ) else: self.right.insert(A ) else: SCREAMING_SNAKE_CASE : int = val def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" if root: inorder(root.left ,__UpperCamelCase ) res.append(root.val ) inorder(root.right ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[Any] ): """simple docstring""" if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] ) for i in range(1 ,len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE : Dict = [] inorder(__UpperCamelCase ,__UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
28
0
snake_case__ : List[str] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = set() # keep track of all the paths to be checked UpperCAmelCase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase__ = queue.pop(0 ) # get the last node from the path UpperCAmelCase__ = path[-1] if node not in explored: UpperCAmelCase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase__ = [start] UpperCAmelCase__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. UpperCAmelCase__ = {start: 0, target: -1} while queue: UpperCAmelCase__ = queue.pop(0 ) if node == target: UpperCAmelCase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) UpperCAmelCase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
392
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a =logging.get_logger(__name__) a ={"""vocab_file""": """spiece.model"""} a ={ """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } a ={ """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any]=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Tuple = None ,**SCREAMING_SNAKE_CASE__ : Any ,): __lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCamelCase : Optional[Any] = kwargs.get('name_or_path') if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored') __lowerCamelCase : Dict = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __lowerCamelCase : Optional[Any] = '<|endoftext|>' if eos_token is None else eos_token __lowerCamelCase : int = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __lowerCamelCase : Dict = unk_token if pad_token is None else pad_token __lowerCamelCase : List[Any] = eos_token if bos_token is None else bos_token else: __lowerCamelCase : Optional[int] = '<pad>' if pad_token is None else pad_token __lowerCamelCase : int = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ ,remove_space=SCREAMING_SNAKE_CASE__ ,keep_accents=SCREAMING_SNAKE_CASE__ ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Tuple = do_lower_case __lowerCamelCase : Optional[Any] = remove_space __lowerCamelCase : List[Any] = keep_accents __lowerCamelCase : Tuple = vocab_file __lowerCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(SCREAMING_SNAKE_CASE__) # Used for whitespace normalization in input texts # fmt : off __lowerCamelCase : Any = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __lowerCamelCase : str = re.compile( F"[{''.join(map(SCREAMING_SNAKE_CASE__ ,list(range(0 ,9)) + list(range(1_1 ,3_2)) + list(range(1_2_7 ,1_6_0)) + [1_6_0, 1_7_3, 8_2_0_3]))}]") def __getstate__( self : str): __lowerCamelCase : str = self.__dict__.copy() __lowerCamelCase : Optional[int] = None return state def __setstate__( self : List[str] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCAmelCase ( self : Any): return len(self.sp_model) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : List[str] = self.non_printing_characters_re.sub('' ,SCREAMING_SNAKE_CASE__) # Normalize whitespaces __lowerCamelCase : Any = ''.join([char if char not in self.whitespaces else ' ' for char in text]) # NFC Unicode normalization __lowerCamelCase : List[str] = unicodedata.normalize('NFC' ,SCREAMING_SNAKE_CASE__) return text def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[int] ,**SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : List[str] = self.preprocess_text(SCREAMING_SNAKE_CASE__) return self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__) @staticmethod def lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : str): return out_string def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : Tuple = [] __lowerCamelCase : str = '' __lowerCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token __lowerCamelCase : str = True __lowerCamelCase : List[str] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) return out_string def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : Any = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi: __lowerCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__) return (out_vocab_file,) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Any = False): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[int] = self.preprocess_text(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.sp_model.encode(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : List[Any] = [self.preprocess_text(SCREAMING_SNAKE_CASE__) for t in text] __lowerCamelCase : Optional[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE__) if return_tensors is True or return_tensors == "pt": __lowerCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE__) return token_ids def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str): return self.sp_model.decode(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : str = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()] __lowerCamelCase : Any = ( F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(SCREAMING_SNAKE_CASE__) + F"{self.bos_token}Bot:" ) return self.encode(text=SCREAMING_SNAKE_CASE__)
652
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _lowercase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( A ): def __init__( self , *__A , __A=None , __A=None , __A=None , **__A ) -> Optional[int]: super().__init__(*__A , **__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =eval_examples SCREAMING_SNAKE_CASE_ : List[Any] =post_process_function SCREAMING_SNAKE_CASE_ : List[Any] =quant_trainer_args SCREAMING_SNAKE_CASE_ : Tuple =128 # default number of calibration samples def _snake_case ( self , __A=None ) -> str: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) SCREAMING_SNAKE_CASE_ : List[str] =calib_dataset if calib_dataset is not None else self.calib_dataset SCREAMING_SNAKE_CASE_ : Tuple =self._remove_unused_columns(__A , description='''Calibration''' ) return DataLoader( __A , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__A , ) def _snake_case ( self , __A=None ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[int] =self.train_dataset if calib_dataset is None else calib_dataset SCREAMING_SNAKE_CASE_ : Any =self.get_calib_dataloader(__A ) SCREAMING_SNAKE_CASE_ : List[Any] =self.model quant_trainer.configure_model(__A , self.quant_trainer_args , calib=__A ) model.eval() quant_trainer.enable_calibration(__A ) logger.info('''***** Running calibration *****''' ) logger.info(F' Num examples = {self.calib_num}' ) logger.info(F' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(__A ): # Prediction step SCREAMING_SNAKE_CASE_ : List[str] =self.prediction_step(__A , __A , prediction_loss_only=__A ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__A , self.quant_trainer_args ) SCREAMING_SNAKE_CASE_ : List[Any] =model def _snake_case ( self , __A=None , __A=None , __A=None , __A = "eval" ) -> str: SCREAMING_SNAKE_CASE_ : Optional[int] =self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_eval_dataloader(__A ) SCREAMING_SNAKE_CASE_ : Dict =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ : int =self.compute_metrics SCREAMING_SNAKE_CASE_ : Optional[int] =None SCREAMING_SNAKE_CASE_ : List[Any] =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ : List[str] =eval_loop( __A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__A , ) finally: SCREAMING_SNAKE_CASE_ : List[str] =compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: SCREAMING_SNAKE_CASE_ : Tuple =self.post_process_function(__A , __A , output.predictions ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.compute_metrics(__A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): SCREAMING_SNAKE_CASE_ : List[Any] =metrics.pop(__A ) self.log(__A ) else: SCREAMING_SNAKE_CASE_ : Optional[int] ={} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE_ : Dict =self.callback_handler.on_evaluate(self.args , self.state , self.control , __A ) return metrics def _snake_case ( self , __A , __A , __A=None , __A = "test" ) -> int: SCREAMING_SNAKE_CASE_ : str =self.get_test_dataloader(__A ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ : List[str] =self.compute_metrics SCREAMING_SNAKE_CASE_ : str =None SCREAMING_SNAKE_CASE_ : Dict =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ : int =eval_loop( __A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__A , ) finally: SCREAMING_SNAKE_CASE_ : Tuple =compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE_ : int =self.post_process_function(__A , __A , output.predictions , '''predict''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.compute_metrics(__A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): SCREAMING_SNAKE_CASE_ : Optional[int] =metrics.pop(__A ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__A ) def _snake_case ( self , __A="./" ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Tuple =self.eval_dataset SCREAMING_SNAKE_CASE_ : int =self.get_eval_dataloader(__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =next(iter(__A ) ) # saving device - to make it consistent SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple SCREAMING_SNAKE_CASE_ : Optional[int] =tuple(v.to(__A ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer SCREAMING_SNAKE_CASE_ : List[str] =True SCREAMING_SNAKE_CASE_ : Dict =self.model.to(__A ) model.eval() model.float() SCREAMING_SNAKE_CASE_ : int =model.module if hasattr(__A , '''module''' ) else model quant_trainer.configure_model(__A , self.quant_trainer_args ) SCREAMING_SNAKE_CASE_ : Any =os.path.join(__A , '''model.onnx''' ) logger.info(F'exporting model to {output_model_file}' ) SCREAMING_SNAKE_CASE_ : List[str] ={0: 'batch_size', 1: 'seq_len'} torch.onnx.export( __A , __A , __A , export_params=__A , opset_version=13 , do_constant_folding=__A , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__A , ) logger.info('''onnx export finished''' )
443
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
0
from __future__ import annotations def lowercase_ ( _UpperCamelCase ): '''simple docstring''' return [ord(__UpperCamelCase ) - 96 for elem in plain] def lowercase_ ( _UpperCamelCase ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase_ ( ): '''simple docstring''' __lowercase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __UpperCamelCase ) print('''Decoded:''' , decode(__UpperCamelCase ) ) if __name__ == "__main__": main()
639
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
0
'''simple docstring''' def A ( UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ) or number < 0: raise ValueError("Input must be a non-negative integer" ) lowerCAmelCase__ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __lowercase ( yaml.SafeLoader ): def __a ( self : Dict , __lowerCamelCase : Tuple ) -> str: '''simple docstring''' lowercase = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase = [tuple(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else key for key in keys] lowercase = Counter(__lowerCamelCase ) lowercase = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' ) def __a ( self : str , __lowerCamelCase : int , __lowerCamelCase : Dict=False ) -> Optional[Any]: '''simple docstring''' lowercase = super().construct_mapping(__lowerCamelCase , deep=__lowerCamelCase ) self._check_no_duplicates_on_constructed_node(__lowerCamelCase ) return mapping def __UpperCAmelCase ( UpperCAmelCase )-> Union[str, Any]: """simple docstring""" lowercase = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase = full_content[1:].index('''---''' ) + 1 lowercase = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__UpperCamelCase ) class __lowercase ( _A ): lowercase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __a ( cls : Dict , __lowerCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: lowercase = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__lowerCamelCase ) else: return cls() def __a ( self : str , __lowerCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' if path.exists(): with open(__lowerCamelCase , encoding='''utf-8''' ) as readme_file: lowercase = readme_file.read() else: lowercase = None lowercase = self._to_readme(__lowerCamelCase ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(__lowerCamelCase ) def __a ( self : str , __lowerCamelCase : List[Any] = None ) -> List[Any]: '''simple docstring''' if readme_content is not None: lowercase = _split_yaml_from_readme(__lowerCamelCase ) lowercase = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __a ( cls : int , __lowerCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = yaml.load(__lowerCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__lowerCamelCase ) def __a ( self : str ) -> Dict: '''simple docstring''' return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__lowerCamelCase , allow_unicode=__lowerCamelCase , encoding='''utf-8''' , ).decode('''utf-8''' ) A_ = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser A_ = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") A_ = ap.parse_args() A_ = Path(args.readme_filepath) A_ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
604
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase__ : str = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCamelCase__ : int = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: snake_case__ = SavedModel() snake_case__ = [] with open(os.path.join(__UpperCamelCase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: snake_case__ = json.load(__UpperCamelCase )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__UpperCamelCase )] ) with open(__UpperCamelCase , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) snake_case__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case__ = sorted(__UpperCamelCase ) snake_case__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__UpperCamelCase ) if strict and len(__UpperCamelCase ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__UpperCamelCase ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*__UpperCamelCase , sep='''\n''' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=1_2, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowerCamelCase__ : Any = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
33
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a_ :Optional[Any] = get_tests_dir("fixtures") class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Optional[Any] = mock.Mock() snake_case__ : Tuple = 5_0_0 snake_case__ : int = {} snake_case__ : Union[str, Any] = HTTPError snake_case__ : Tuple = {} # Download this model to make sure it's in the cache. snake_case__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=_snake_case ) as mock_head: snake_case__ : int = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self : str ) ->List[str]: snake_case__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class snake_case__ ( unittest.TestCase ): """simple docstring""" @classmethod def lowercase_ ( cls : List[Any] ) ->Tuple: snake_case__ : int = TOKEN HfFolder.save_token(_snake_case ) @classmethod def lowercase_ ( cls : str ) ->Any: try: delete_repo(token=cls._token, repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def lowercase_ ( self : int ) ->Any: snake_case__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_snake_case ) feature_extractor.push_to_hub('test-feature-extractor', use_auth_token=self._token ) snake_case__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_snake_case, getattr(_snake_case, _snake_case ) ) # Reset repo delete_repo(token=self._token, repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _snake_case, repo_id='test-feature-extractor', push_to_hub=_snake_case, use_auth_token=self._token ) snake_case__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_snake_case, getattr(_snake_case, _snake_case ) ) def lowercase_ ( self : Any ) ->Optional[Any]: snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained(_snake_case ) feature_extractor.push_to_hub('valid_org/test-feature-extractor', use_auth_token=self._token ) snake_case__ : int = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_snake_case, getattr(_snake_case, _snake_case ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _snake_case, repo_id='valid_org/test-feature-extractor-org', push_to_hub=_snake_case, use_auth_token=self._token ) snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_snake_case, getattr(_snake_case, _snake_case ) ) def lowercase_ ( self : Any ) ->Optional[int]: CustomFeatureExtractor.register_for_auto_class() snake_case__ : str = CustomFeatureExtractor.from_pretrained(_snake_case ) feature_extractor.push_to_hub('test-dynamic-feature-extractor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'}, ) snake_case__ : Any = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''', trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, 'CustomFeatureExtractor' )
478
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int]=13 , lowerCamelCase_ : List[str]=7 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : int=32 , lowerCamelCase_ : Union[str, Any]=5 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : List[Any]=512 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : str=2 , lowerCamelCase_ : Union[str, Any]=0.0_2 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : int=4 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = self.vocab_size - 1 def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , *lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = OpenAIGPTModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , *lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = OpenAIGPTLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , *lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = OpenAIGPTDoubleHeadsModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , *lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = OpenAIGPTForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any]=False ): """simple docstring""" UpperCamelCase = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) UpperCamelCase = inputs_dict['labels'] UpperCamelCase = inputs_dict['labels'] UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCamelCase_ , ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = OpenAIGPTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , n_embd=37 ) def lowerCamelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = OpenAIGPTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(lowerCamelCase_ ) UpperCamelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowerCamelCase_ ) # the president is UpperCamelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCamelCase = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCamelCase_ )
537
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.0_2 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_stages lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = out_features lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = num_stages def UpperCAmelCase__ ( self ): lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCAmelCase__ ( self ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.prepare_config_and_inputs() ( lowerCamelCase_ ) = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: str = (UperNetForSemanticSegmentation,) if is_torch_available() else () a__: Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} a__: List[Any] = False a__: Tuple = False a__: Optional[Any] = False a__: str = False a__: List[str] = False a__: int = False def UpperCAmelCase__ ( self ): lowerCamelCase_ = UperNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ): return def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCAmelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def UpperCAmelCase__ ( self ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def UpperCAmelCase__ ( self ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def UpperCAmelCase__ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCAmelCase__ ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(UpperCAmelCase ) lowerCamelCase_ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def UpperCAmelCase__ ( self ): pass @slow def UpperCAmelCase__ ( self ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase ( ): lowerCamelCase_ = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' ,repo_type='''dataset''' ,filename='''ADE_val_00000001.jpg''' ) lowerCamelCase_ = Image.open(__UpperCamelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) lowerCamelCase_ = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(UpperCAmelCase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCAmelCase ) lowerCamelCase_ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase_ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) lowerCamelCase_ = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(UpperCAmelCase ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCAmelCase ) lowerCamelCase_ = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase_ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
29
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __UpperCAmelCase ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__UpperCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__UpperCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__UpperCamelCase ) return parser.parse_args() def __UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = parse_args() # Import training_script as a module. UpperCAmelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase__ = script_fpath.stem UpperCAmelCase__ = importlib.import_module(__UpperCamelCase ) # Patch sys.argv UpperCAmelCase__ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
475
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase ( _lowerCAmelCase , _lowerCAmelCase=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def lowercase ( _lowerCAmelCase , _lowerCAmelCase=0 ): UpperCAmelCase__ = [] for old_item in old_list: UpperCAmelCase__ = old_item.replace("""in_layers.0""" , """norm1""" ) UpperCAmelCase__ = new_item.replace("""in_layers.2""" , """conv1""" ) UpperCAmelCase__ = new_item.replace("""out_layers.0""" , """norm2""" ) UpperCAmelCase__ = new_item.replace("""out_layers.3""" , """conv2""" ) UpperCAmelCase__ = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) UpperCAmelCase__ = new_item.replace("""skip_connection""" , """conv_shortcut""" ) UpperCAmelCase__ = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase ( _lowerCAmelCase , _lowerCAmelCase=0 ): UpperCAmelCase__ = [] for old_item in old_list: UpperCAmelCase__ = old_item UpperCAmelCase__ = new_item.replace("""norm.weight""" , """group_norm.weight""" ) UpperCAmelCase__ = new_item.replace("""norm.bias""" , """group_norm.bias""" ) UpperCAmelCase__ = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) UpperCAmelCase__ = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) UpperCAmelCase__ = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ): assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase__ = old_checkpoint[path] UpperCAmelCase__ = old_tensor.shape[0] // 3 UpperCAmelCase__ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase__ = old_tensor.shape[0] // config['num_head_channels'] // 3 UpperCAmelCase__ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase__ = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase__ = query.reshape(__UpperCamelCase ) UpperCAmelCase__ = key.reshape(__UpperCamelCase ) UpperCAmelCase__ = value.reshape(__UpperCamelCase ) for path in paths: UpperCAmelCase__ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase__ = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) UpperCAmelCase__ = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) UpperCAmelCase__ = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase__ = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase__ = old_checkpoint[path['old']][:, :, 0] else: UpperCAmelCase__ = old_checkpoint[path['old']] def lowercase ( _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = {} UpperCAmelCase__ = checkpoint['time_embed.0.weight'] UpperCAmelCase__ = checkpoint['time_embed.0.bias'] UpperCAmelCase__ = checkpoint['time_embed.2.weight'] UpperCAmelCase__ = checkpoint['time_embed.2.bias'] UpperCAmelCase__ = checkpoint['input_blocks.0.0.weight'] UpperCAmelCase__ = checkpoint['input_blocks.0.0.bias'] UpperCAmelCase__ = checkpoint['out.0.weight'] UpperCAmelCase__ = checkpoint['out.0.bias'] UpperCAmelCase__ = checkpoint['out.2.weight'] UpperCAmelCase__ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only UpperCAmelCase__ = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only UpperCAmelCase__ = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only UpperCAmelCase__ = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) UpperCAmelCase__ = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): UpperCAmelCase__ = (i - 1) // (config['num_res_blocks'] + 1) UpperCAmelCase__ = (i - 1) % (config['num_res_blocks'] + 1) UpperCAmelCase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] UpperCAmelCase__ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: UpperCAmelCase__ = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] UpperCAmelCase__ = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue UpperCAmelCase__ = renew_resnet_paths(__UpperCamelCase ) UpperCAmelCase__ = {'old': F'''input_blocks.{i}.0''', 'new': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} UpperCAmelCase__ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): UpperCAmelCase__ = renew_attention_paths(__UpperCamelCase ) UpperCAmelCase__ = { 'old': F'''input_blocks.{i}.1''', 'new': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase__ = { F'''input_blocks.{i}.1.qkv.bias''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) UpperCAmelCase__ = middle_blocks[0] UpperCAmelCase__ = middle_blocks[1] UpperCAmelCase__ = middle_blocks[2] UpperCAmelCase__ = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCAmelCase__ = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCAmelCase__ = renew_attention_paths(__UpperCamelCase ) UpperCAmelCase__ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): UpperCAmelCase__ = i // (config['num_res_blocks'] + 1) UpperCAmelCase__ = i % (config['num_res_blocks'] + 1) UpperCAmelCase__ = [shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] UpperCAmelCase__ = {} for layer in output_block_layers: UpperCAmelCase__ = layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: UpperCAmelCase__ = [layer_name] if len(__UpperCamelCase ) > 1: UpperCAmelCase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] UpperCAmelCase__ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] UpperCAmelCase__ = renew_resnet_paths(__UpperCamelCase ) UpperCAmelCase__ = renew_resnet_paths(__UpperCamelCase ) UpperCAmelCase__ = {'old': F'''output_blocks.{i}.0''', 'new': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase__ = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) UpperCAmelCase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] UpperCAmelCase__ = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: UpperCAmelCase__ = [] if len(__UpperCamelCase ): UpperCAmelCase__ = renew_attention_paths(__UpperCamelCase ) UpperCAmelCase__ = { 'old': F'''output_blocks.{i}.1''', 'new': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase__ = { F'''output_blocks.{i}.1.qkv.bias''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: UpperCAmelCase__ = renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase__ = '.'.join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) UpperCAmelCase__ = '.'.join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) UpperCAmelCase__ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') snake_case__ : Dict = parser.parse_args() snake_case__ : Any = torch.load(args.checkpoint_path) with open(args.config_file) as f: snake_case__ : str = json.loads(f.read()) snake_case__ : Dict = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] snake_case__ : Tuple = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: snake_case__ : Union[str, Any] = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) snake_case__ : Union[str, Any] = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) snake_case__ : List[str] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
392
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
652
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowercase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowercase = [ord(letter) for letter in string.ascii_lowercase] _lowercase = {ord(char) for char in VALID_CHARS} _lowercase = ["""the""", """be""", """to""", """of""", """and""", """in""", """that""", """have"""] def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, ...] ) -> str: SCREAMING_SNAKE_CASE_ : str ="" SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int for keychar, cipherchar in zip(cycle(__UpperCamelCase ) , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ : list[str] =[] for key in product(__UpperCamelCase , repeat=3 ): SCREAMING_SNAKE_CASE_ : List[str] =try_key(__UpperCamelCase , __UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list[str] , UpperCAmelCase_ : str ) -> Optional[Any]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str = "p059_cipher.txt" ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : list[int] SCREAMING_SNAKE_CASE_ : list[str] SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : str =Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding='''utf-8''' ) SCREAMING_SNAKE_CASE_ : Tuple =[int(__UpperCamelCase ) for number in data.strip().split(''',''' )] SCREAMING_SNAKE_CASE_ : Dict =filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE_ : List[Any] =filter_common_word(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) == 1: break SCREAMING_SNAKE_CASE_ : Optional[int] =possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
443
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
0
import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def A ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowercase = [2, 4, 6, 8, 1_0, 1_2] __lowercase = 1_0_0 self.assertEqual(kp.calc_profit(snake_case_ , snake_case_ , snake_case_ ) , 2_1_0 ) def A ( self ) -> int: '''simple docstring''' self.assertRaisesRegex(snake_case_ , '''max_weight must greater than zero.''' ) def A ( self ) -> Union[str, Any]: '''simple docstring''' self.assertRaisesRegex(snake_case_ , '''Weight can not be negative.''' ) def A ( self ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(snake_case_ , '''Profit can not be negative.''' ) def A ( self ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex(snake_case_ , '''max_weight must greater than zero.''' ) def A ( self ) -> str: '''simple docstring''' self.assertRaisesRegex( snake_case_ , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
639
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
'''simple docstring''' import logging import os from .state import PartialState class A ( logging.LoggerAdapter ): @staticmethod def __SCREAMING_SNAKE_CASE ( __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , *__magic_name__ : int , **__magic_name__ : int ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) lowerCAmelCase__ = kwargs.pop("main_process_only" , __magic_name__ ) lowerCAmelCase__ = kwargs.pop("in_order" , __magic_name__ ) if self.isEnabledFor(__magic_name__ ): if self._should_log(__magic_name__ ): lowerCAmelCase__ = self.process(__magic_name__ , __magic_name__ ) self.logger.log(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ ) elif in_order: lowerCAmelCase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowerCAmelCase__ = self.process(__magic_name__ , __magic_name__ ) self.logger.log(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ ) state.wait_for_everyone() def A ( UpperCamelCase_ : str , UpperCamelCase_ : str = None ) -> Tuple: '''simple docstring''' if log_level is None: lowerCAmelCase__ = os.environ.get("ACCELERATE_LOG_LEVEL" , __UpperCamelCase ) lowerCAmelCase__ = logging.getLogger(__UpperCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__UpperCamelCase , {} )
48
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
0
def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> str: """simple docstring""" if height >= 1: move_tower(height - 1, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) move_disk(__UpperCamelCase, __UpperCamelCase ) move_tower(height - 1, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Tuple: """simple docstring""" print('''moving disk from''', __UpperCamelCase, '''to''', __UpperCamelCase ) def __UpperCAmelCase ( )-> Optional[Any]: """simple docstring""" lowercase = int(input('''Height of hanoi: ''' ).strip() ) move_tower(__UpperCamelCase, '''A''', '''B''', '''C''' ) if __name__ == "__main__": main()
604
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Any: if rng is None: snake_case__ = global_rng snake_case__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def __init__( self:str , _a:str , _a:Optional[Any]=7 , _a:List[Any]=4_00 , _a:Any=20_00 , _a:Any=1 , _a:Tuple=0.0 , _a:str=1_60_00 , _a:Union[str, Any]=True , _a:Any=80 , _a:List[str]=16 , _a:Tuple=64 , _a:List[str]="hann_window" , _a:Union[str, Any]=80 , _a:str=76_00 , _a:int=1e-10 , _a:Union[str, Any]=True , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = min_seq_length snake_case__ = max_seq_length snake_case__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ = feature_size snake_case__ = padding_value snake_case__ = sampling_rate snake_case__ = do_normalize snake_case__ = num_mel_bins snake_case__ = hop_length snake_case__ = win_length snake_case__ = win_function snake_case__ = fmin snake_case__ = fmax snake_case__ = mel_floor snake_case__ = return_attention_mask def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[Any]=False , _a:str=False ): def _flatten(_a:Union[str, Any] ): return list(itertools.chain(*_a ) ) if equal_length: snake_case__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ = [np.asarray(_a ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Any=False , _a:Optional[Any]=False ): if equal_length: snake_case__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[int] ): self.assertTrue(np.all(np.mean(_a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input snake_case__ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case__ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched snake_case__ = feat_extract(_a , return_tensors='''np''' ).input_values snake_case__ = feat_extract(_a , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = ['longest', 'max_length', 'do_not_pad'] snake_case__ = [None, 16_00, None] for max_length, padding in zip(_a , _a ): snake_case__ = feat_extract(_a , padding=_a , max_length=_a , return_tensors='''np''' ) snake_case__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = range(8_00 , 14_00 , 2_00 ) snake_case__ = [floats_list((1, x) )[0] for x in lengths] snake_case__ = ['longest', 'max_length', 'do_not_pad'] snake_case__ = [None, 16_00, None] for max_length, padding in zip(_a , _a ): snake_case__ = feat_extract(_a , max_length=_a , padding=_a ) snake_case__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = feat_extract( _a , truncation=_a , max_length=10_00 , padding='''max_length''' , return_tensors='''np''' ) snake_case__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = feat_extract( _a , truncation=_a , max_length=10_00 , padding='''longest''' , return_tensors='''np''' ) snake_case__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = feat_extract( _a , truncation=_a , max_length=20_00 , padding='''longest''' , return_tensors='''np''' ) snake_case__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ = np.random.rand(1_00 ).astype(np.floataa ) snake_case__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case__ = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size snake_case__ = feature_extractor(audio_target=_a , padding=_a , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input snake_case__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched snake_case__ = feature_extractor(_a , return_tensors='''np''' ).input_values snake_case__ = feature_extractor(_a , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case__ = np.asarray(_a ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ).input_values snake_case__ = feature_extractor(_a , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ = feat_extract.model_input_names[0] snake_case__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) snake_case__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) snake_case__ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) snake_case__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ = feat_extract.model_input_names[0] snake_case__ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) snake_case__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ = feat_extract.model_input_names[0] snake_case__ = BatchFeature({input_name: speech_inputs} ) snake_case__ = feat_extract.num_mel_bins # hack! snake_case__ = feat_extract.pad(_a , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case__ = feat_extract.pad(_a , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.feat_extract_dict snake_case__ = True snake_case__ = self.feature_extraction_class(**_a ) snake_case__ = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ = [len(_a ) for x in speech_inputs] snake_case__ = feat_extract.model_input_names[0] snake_case__ = BatchFeature({input_name: speech_inputs} ) snake_case__ = feat_extract.num_mel_bins # hack! snake_case__ = feat_extract.pad(_a , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.feat_extract_dict snake_case__ = True snake_case__ = self.feature_extraction_class(**_a ) snake_case__ = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ = [len(_a ) for x in speech_inputs] snake_case__ = feat_extract.model_input_names[0] snake_case__ = BatchFeature({input_name: speech_inputs} ) snake_case__ = min(_a ) snake_case__ = feat_extract.num_mel_bins # hack! snake_case__ = feat_extract.pad( _a , padding='''max_length''' , max_length=_a , truncation=_a , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[str] ): from datasets import load_dataset snake_case__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case__ = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = torch.tensor( [2.3_804e-03, 2.0_752e-03, 1.9_836e-03, 2.1_057e-03, 1.6_174e-03, 3.0_518e-04, 9.1_553e-05, 3.3_569e-04, 9.7_656e-04, 1.8_311e-03, 2.0_142e-03, 2.1_057e-03, 1.7_395e-03, 4.5_776e-04, -3.9_673e-04, 4.5_776e-04, 1.0_071e-03, 9.1_553e-05, 4.8_828e-04, 1.1_597e-03, 7.3_242e-04, 9.4_604e-04, 1.8_005e-03, 1.8_311e-03, 8.8_501e-04, 4.2_725e-04, 4.8_828e-04, 7.3_242e-04, 1.0_986e-03, 2.1_057e-03] ) # fmt: on snake_case__ = self._load_datasamples(1 ) snake_case__ = SpeechTaFeatureExtractor() snake_case__ = feature_extractor(_a , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , _a , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on snake_case__ = self._load_datasamples(1 ) snake_case__ = SpeechTaFeatureExtractor() snake_case__ = feature_extractor(audio_target=_a , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _a , atol=1e-4 ) )
33
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar a_ :Optional[int] = TypeVar("T") class snake_case__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple, _snake_case : Any, _snake_case : int ) ->Optional[int]: snake_case__ : Any | T = None snake_case__ : int = len(_snake_case ) snake_case__ : list[T] = [any_type for _ in range(self.N )] + arr snake_case__ : int = fnc self.build() def lowercase_ ( self : Tuple ) ->List[Any]: for p in range(self.N - 1, 0, -1 ): snake_case__ : Union[str, Any] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def lowercase_ ( self : Dict, _snake_case : int, _snake_case : Dict ) ->Any: p += self.N snake_case__ : str = v while p > 1: snake_case__ : Union[str, Any] = p // 2 snake_case__ : List[str] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def lowercase_ ( self : int, _snake_case : int, _snake_case : Union[str, Any] ) ->List[str]: # noqa: E741 snake_case__ : str = l + self.N, r + self.N snake_case__ : T | None = None while l <= r: if l % 2 == 1: snake_case__ : Any = self.st[l] if res is None else self.fn(_snake_case, self.st[l] ) if r % 2 == 0: snake_case__ : Optional[Any] = self.st[r] if res is None else self.fn(_snake_case, self.st[r] ) snake_case__ : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce a_ :Dict = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] a_ :Optional[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } a_ :Dict = SegmentTree(test_array, min) a_ :int = SegmentTree(test_array, max) a_ :Optional[Any] = SegmentTree(test_array, lambda a, b: a + b) def lowercase_ (): for i in range(len(__UpperCamelCase ) ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): snake_case__ : Dict = reduce(__UpperCamelCase , test_array[i : j + 1] ) snake_case__ : Dict = reduce(__UpperCamelCase , test_array[i : j + 1] ) snake_case__ : Dict = reduce(lambda A , A : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert max_range == max_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert sum_range == sum_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): a_ :Optional[int] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
478
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : int , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" super().__init__() UpperCamelCase = nn.ModuleList(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[str] = None , lowerCamelCase_ : Any = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[Any] = None , lowerCamelCase_ : List[Any] = False , lowerCamelCase_ : int = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): UpperCamelCase = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: UpperCamelCase = down_samples, mid_sample else: UpperCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] = True , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Dict = False , lowerCamelCase_ : Any = None , ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 UpperCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCamelCase = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): UpperCamelCase = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 UpperCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}.""" ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(lowerCamelCase_ )
537
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Union[str, Any] = MvpTokenizer a__: Union[str, Any] = MvpTokenizerFast a__: Tuple = True a__: List[Any] = filter_roberta_detectors def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase_ = {'unk_token': '<unk>'} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ ( self ): return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def UpperCAmelCase__ ( self ): return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCamelCase_ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(UpperCAmelCase , max_length=len(UpperCAmelCase ) , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that special tokens are reset @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertNotIn('''labels''' , UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase ) @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def UpperCAmelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['A long paragraph for summarization.'] lowerCamelCase_ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ = tokenizer(UpperCAmelCase , text_target=UpperCAmelCase , return_tensors='''pt''' ) lowerCamelCase_ = inputs['input_ids'] lowerCamelCase_ = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = 'A, <mask> AllenNLP sentence.' lowerCamelCase_ = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
29
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : int , _lowercase : Tuple , _lowercase : List[Any]=13 , _lowercase : Optional[int]=7 , _lowercase : Union[str, Any]=True , _lowercase : str=True , _lowercase : Optional[int]=True , _lowercase : Optional[int]=True , _lowercase : Optional[int]=99 , _lowercase : int=32 , _lowercase : Union[str, Any]=5 , _lowercase : str=4 , _lowercase : Any=37 , _lowercase : Tuple="gelu" , _lowercase : Union[str, Any]=0.1 , _lowercase : List[Any]=0.1 , _lowercase : str=5_12 , _lowercase : Optional[int]=16 , _lowercase : List[Any]=2 , _lowercase : Union[str, Any]=0.0_2 , _lowercase : List[Any]=False , _lowercase : int=True , _lowercase : int="None" , _lowercase : Union[str, Any]=3 , _lowercase : Tuple=4 , _lowercase : Optional[int]=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = relative_attention UpperCAmelCase__ = position_biased_input UpperCAmelCase__ = pos_att_type UpperCAmelCase__ = scope def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : int ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = self.get_config() UpperCAmelCase__ = 3_00 return config def _UpperCAmelCase ( self : int , _lowercase : Optional[int] ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCAmelCase ( self : Any , _lowercase : List[Any] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : List[str] ): """simple docstring""" UpperCAmelCase__ = DebertaModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase )[0] UpperCAmelCase__ = model(_lowercase , token_type_ids=_lowercase )[0] UpperCAmelCase__ = model(_lowercase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCAmelCase ( self : Optional[Any] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = DebertaForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Optional[Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str , _lowercase : str , _lowercase : Any , _lowercase : Tuple , _lowercase : Any ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = DebertaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowercase ) def _UpperCAmelCase ( self : Optional[int] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : Dict , _lowercase : int , _lowercase : int , _lowercase : Dict , _lowercase : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = DebertaForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : List[Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : int , _lowercase : Any , _lowercase : List[str] , _lowercase : Tuple , _lowercase : List[Any] ): """simple docstring""" UpperCAmelCase__ = DebertaForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__= ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A__= ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) A__= True A__= False A__= False A__= False A__= False def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = DebertaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowercase ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowercase ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowercase ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowercase ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowercase ) @slow def _UpperCAmelCase ( self : Any ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = DebertaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" pass @slow def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = DebertaModel.from_pretrained("microsoft/deberta-base" ) UpperCAmelCase__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_lowercase , attention_mask=_lowercase )[0] # compare the actual values for a slice. UpperCAmelCase__ = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
475
'''simple docstring''' class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = val SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: SCREAMING_SNAKE_CASE : Optional[int] = Node(A ) else: self.left.insert(A ) elif val > self.val: if self.right is None: SCREAMING_SNAKE_CASE : int = Node(A ) else: self.right.insert(A ) else: SCREAMING_SNAKE_CASE : int = val def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: List[str] ): """simple docstring""" if root: inorder(root.left ,__UpperCamelCase ) res.append(root.val ) inorder(root.right ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[Any] ): """simple docstring""" if len(__UpperCamelCase ) == 0: return arr SCREAMING_SNAKE_CASE : Optional[int] = Node(arr[0] ) for i in range(1 ,len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. SCREAMING_SNAKE_CASE : Dict = [] inorder(__UpperCamelCase ,__UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
28
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor snake_case__ : Tuple = logging.get_logger(__name__) class snake_case ( _snake_case ): '''simple docstring''' def __init__( self : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ) ->Any: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
392
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase__( *__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Union[Dict, Any]] = None ,__UpperCamelCase: Dict=True ,__UpperCamelCase: List[Any]=2 ): """simple docstring""" from .. import __version__ SCREAMING_SNAKE_CASE : int = take_from SCREAMING_SNAKE_CASE : Optional[int] = () if not isinstance(args[0] ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) SCREAMING_SNAKE_CASE : Tuple = None if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(__UpperCamelCase ,__UpperCamelCase ): values += (getattr(__UpperCamelCase ,__UpperCamelCase ),) SCREAMING_SNAKE_CASE : Optional[int] = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE : Dict = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: SCREAMING_SNAKE_CASE : Dict = warning + ' ' if standard_warn else '' warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE : Any = call_frame.filename SCREAMING_SNAKE_CASE : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(__UpperCamelCase ) == 0: return elif len(__UpperCamelCase ) == 1: return values[0] return values
28
0
import datasets from .evaluate import evaluate a ="""\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n""" a ="""\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n""" a ="""\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : str): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': { 'id': datasets.Value('string'), 'prediction_text': datasets.features.Sequence(datasets.Value('string')), }, 'references': { 'id': datasets.Value('string'), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), }, }) ,codebase_urls=['https://www.atticusprojectai.org/cuad'] ,reference_urls=['https://www.atticusprojectai.org/cuad'] ,) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : Tuple = {prediction['id']: prediction['prediction_text'] for prediction in predictions} __lowerCamelCase : List[Any] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] __lowerCamelCase : Dict = evaluate(dataset=SCREAMING_SNAKE_CASE__ ,predictions=SCREAMING_SNAKE_CASE__) return score
652
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( A , unittest.TestCase ): __lowerCamelCase = GPTSanJapaneseTokenizer __lowerCamelCase = False __lowerCamelCase = {'''do_clean_text''': False, '''add_prefix_space''': False} def _snake_case ( self ) -> Optional[Any]: super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : Union[str, Any] =['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Optional[Any] ={'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 SCREAMING_SNAKE_CASE_ : Tuple ={'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(__A ) ) def _snake_case ( self , **__A ) -> str: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self , __A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : List[Any] ='こんにちは、世界。 \nこんばんは、㔺界。😀' SCREAMING_SNAKE_CASE_ : Union[str, Any] ='こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def _snake_case ( self , __A ) -> int: SCREAMING_SNAKE_CASE_ : str =self.get_input_output_texts(__A ) SCREAMING_SNAKE_CASE_ : str =tokenizer.encode(__A , add_special_tokens=__A ) SCREAMING_SNAKE_CASE_ : Tuple =tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) return text, ids def _snake_case ( self ) -> Union[str, Any]: pass # TODO add if relevant def _snake_case ( self ) -> Union[str, Any]: pass # TODO add if relevant def _snake_case ( self ) -> Optional[Any]: pass # TODO add if relevant def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ : int ='こんにちは、世界。 こんばんは、㔺界。' SCREAMING_SNAKE_CASE_ : str =['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] SCREAMING_SNAKE_CASE_ : Optional[Any] =tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ : Union[str, Any] =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] SCREAMING_SNAKE_CASE_ : List[Any] =tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ : Union[str, Any] =tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[int] =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] SCREAMING_SNAKE_CASE_ : List[Any] =tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : int =self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ : int ='こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' SCREAMING_SNAKE_CASE_ : List[str] ='こんにちは、、、、世界。こんばんは、、、、世界。' SCREAMING_SNAKE_CASE_ : str =tokenizer.encode(__A ) SCREAMING_SNAKE_CASE_ : str =tokenizer.decode(__A ) self.assertEqual(__A , __A ) @slow def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : List[str] =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization SCREAMING_SNAKE_CASE_ : List[Any] ='こんにちは、世界。' SCREAMING_SNAKE_CASE_ : Dict ='こんばんは、㔺界。😀' SCREAMING_SNAKE_CASE_ : List[Any] ='こんにちは、世界。こんばんは、世界。😀' SCREAMING_SNAKE_CASE_ : Tuple =tokenizer.encode(prefix_text + input_text ) SCREAMING_SNAKE_CASE_ : Optional[Any] =tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) SCREAMING_SNAKE_CASE_ : int =tokenizer.encode(__A , prefix_text=__A ) SCREAMING_SNAKE_CASE_ : List[str] =tokenizer.decode(__A ) SCREAMING_SNAKE_CASE_ : Any =tokenizer.decode(__A ) SCREAMING_SNAKE_CASE_ : Any =tokenizer.decode(__A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) @slow def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : Optional[int] =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization SCREAMING_SNAKE_CASE_ : Optional[Any] ='こんにちは、世界。' SCREAMING_SNAKE_CASE_ : Dict ='こんばんは、㔺界。😀' SCREAMING_SNAKE_CASE_ : str =len(tokenizer.encode(__A ) ) - 2 SCREAMING_SNAKE_CASE_ : Optional[Any] =len(tokenizer.encode(__A ) ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] =[1] + [0] * (len_prefix + len_text + 1) SCREAMING_SNAKE_CASE_ : Optional[Any] =[1] * (len_prefix + len_text + 1) + [0] SCREAMING_SNAKE_CASE_ : List[str] =[1] + [1] * (len_prefix) + [0] * (len_text + 1) SCREAMING_SNAKE_CASE_ : List[Any] =tokenizer(prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ : Tuple =tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ : List[str] =tokenizer(__A , prefix_text=__A ).token_type_ids self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) @slow def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : List[str] =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) SCREAMING_SNAKE_CASE_ : str =tokenizer.encode('''あンいワ''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =tokenizer.encode('''''' , prefix_text='''あンいワ''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertNotEqual(__A , __A ) self.assertNotEqual(__A , __A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) SCREAMING_SNAKE_CASE_ : Any =[['武田信玄', 'は、'], ['織田信長', 'の配下の、']] SCREAMING_SNAKE_CASE_ : Any =tokenizer(__A , padding=__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =tokenizer.batch_encode_plus(__A , padding=__A ) # fmt: off SCREAMING_SNAKE_CASE_ : int =[[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] SCREAMING_SNAKE_CASE_ : str =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] SCREAMING_SNAKE_CASE_ : List[Any] =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __A ) self.assertListEqual(x_token.token_type_ids , __A ) self.assertListEqual(x_token.attention_mask , __A ) self.assertListEqual(x_token_a.input_ids , __A ) self.assertListEqual(x_token_a.token_type_ids , __A ) self.assertListEqual(x_token_a.attention_mask , __A ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> Optional[int]: pass
443
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
0
import pprint import requests a : Union[str, Any] = '''https://zenquotes.io/api''' def lowercase_ ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase_ ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": a : Optional[int] = random_quotes() pprint.pprint(response)
639
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def __SCREAMING_SNAKE_CASE ( *__magic_name__ : List[Any] , **__magic_name__ : Dict ): """simple docstring""" pass @is_pipeline_test @require_vision class A ( unittest.TestCase ): @require_torch def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCAmelCase__ = image_classifier(__magic_name__ , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__magic_name__ ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) lowerCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], ] , ) @require_tf def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCAmelCase__ = image_classifier(__magic_name__ , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) lowerCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], [ {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, {"score": 0.333, "label": ANY(__magic_name__ )}, ], ] , ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCAmelCase__ = image_classifier(__magic_name__ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) lowerCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCAmelCase__ = image_classifier(__magic_name__ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) lowerCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
48
'''simple docstring''' from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[str] = None def lowercase__( ): """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE : str = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() SCREAMING_SNAKE_CASE : Optional[int] = f"Enter the left node of {node_found.data}: " SCREAMING_SNAKE_CASE : Any = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : str = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = left_node q.put(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = f"Enter the right node of {node_found.data}: " SCREAMING_SNAKE_CASE : Dict = input(__UpperCamelCase ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE : Optional[int] = TreeNode(int(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Any = right_node q.put(__UpperCamelCase ) raise def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : List[Any] = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : Any = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : int = node while n or stack: while n: stack.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = n.left SCREAMING_SNAKE_CASE : Tuple = stack.pop() print(n.data ,end=',' ) SCREAMING_SNAKE_CASE : str = n.right def lowercase__( __UpperCamelCase: TreeNode ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowercase__( __UpperCamelCase: str = "" ,__UpperCamelCase: Dict=50 ,__UpperCamelCase: Optional[int]="*" ): """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = divmod(width - len(__UpperCamelCase ) - 2 ,2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
28
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( _A , _A , unittest.TestCase ): lowercase = StableDiffusionDiffEditPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def __a ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCamelCase , ) lowercase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) lowercase = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_zero=__lowerCamelCase , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) lowercase = CLIPTextModel(__lowerCamelCase ) lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=0 ) -> Union[str, Any]: '''simple docstring''' lowercase = floats_tensor((1, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowercase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): lowercase = torch.manual_seed(__lowerCamelCase ) else: lowercase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowercase = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any=0 ) -> Any: '''simple docstring''' lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ) if str(__lowerCamelCase ).startswith('''mps''' ): lowercase = torch.manual_seed(__lowerCamelCase ) else: lowercase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowercase = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=0 ) -> Any: '''simple docstring''' lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ) if str(__lowerCamelCase ).startswith('''mps''' ): lowercase = torch.manual_seed(__lowerCamelCase ) else: lowercase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowercase = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __a ( self : str ) -> List[Any]: '''simple docstring''' if not hasattr(self.pipeline_class , '''_optional_components''' ): return lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase = self.get_dummy_inputs(__lowerCamelCase ) lowercase = pipe(**__lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCamelCase ) lowercase = self.pipeline_class.from_pretrained(__lowerCamelCase ) pipe_loaded.to(__lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCamelCase , __lowerCamelCase ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) lowercase = self.get_dummy_inputs(__lowerCamelCase ) lowercase = pipe_loaded(**__lowerCamelCase )[0] lowercase = np.abs(output - output_loaded ).max() self.assertLess(__lowerCamelCase , 1E-4 ) def __a ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase = 'cpu' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase = self.get_dummy_mask_inputs(__lowerCamelCase ) lowercase = pipe.generate_mask(**__lowerCamelCase ) lowercase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase = np.array([0] * 9 ) lowercase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __a ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase = 'cpu' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase = self.get_dummy_inversion_inputs(__lowerCamelCase ) lowercase = pipe.invert(**__lowerCamelCase ).images lowercase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __a ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase = 'cpu' lowercase = self.get_dummy_components() lowercase = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowercase = DPMSolverMultistepScheduler(**__lowerCamelCase ) lowercase = DPMSolverMultistepInverseScheduler(**__lowerCamelCase ) lowercase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase = self.get_dummy_inversion_inputs(__lowerCamelCase ) lowercase = pipe.invert(**__lowerCamelCase ).images lowercase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): def __a ( self : Union[str, Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __a ( cls : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) lowercase = raw_image.convert('''RGB''' ).resize((7_68, 7_68) ) lowercase = raw_image def __a ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase = torch.manual_seed(0 ) lowercase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) lowercase = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase = 'a bowl of fruit' lowercase = 'a bowl of pears' lowercase = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) lowercase = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase ).latents lowercase = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] lowercase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase = torch.manual_seed(0 ) lowercase = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase = 'a bowl of fruit' lowercase = 'a bowl of pears' lowercase = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) lowercase = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase , num_inference_steps=25 , ).latents lowercase = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] lowercase = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
604
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Optional[int] , _a:Dict = 1_01 ): snake_case__ = length def __len__( self:Union[str, Any] ): return self.length def __getitem__( self:List[str] , _a:List[Any] ): return i class __magic_name__ : '''simple docstring''' def __call__( self:Dict , _a:Optional[int] ): return {"input_ids": torch.tensor(_a ), "labels": torch.tensor(_a )} class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:int ): super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case__ = nn.Linear(1_20 , 80 ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple , _a:List[str]=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __magic_name__ (snake_case_ ): '''simple docstring''' @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = F"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() snake_case__ = self.get_auto_remove_tmp_dir() snake_case__ = F"""--output_dir {output_dir}""".split() snake_case__ = ['torchrun'] + distributed_args + args execute_subprocess_async(_a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __magic_name__ (snake_case_ ): '''simple docstring''' @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = F"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() snake_case__ = self.get_auto_remove_tmp_dir() snake_case__ = F"""--output_dir {output_dir}""".split() snake_case__ = ['torchrun'] + distributed_args + args execute_subprocess_async(_a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCamelCase__ : Any = HfArgumentParser((TrainingArguments,)) lowerCamelCase__ : str = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: lowerCamelCase__ : List[Any] = DummyDataset(dataset_length) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple: snake_case__ = list(range(len(__UpperCamelCase ) ) ) snake_case__ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowerCamelCase__ : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCamelCase__ : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : Optional[int] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase__ : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase__ : Any = None
33
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(A ) def UpperCamelCase_ ( self, A, A, A, A, A, A = None, A = None, A = None, A = None, A = False, A = True, ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(A, A, self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = controlnet( A, A, A, A, A, A, A, A, A, A, A, ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A, A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCamelCase_ ( self, A, A = True, A = None, A = False, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( A, is_main_process=A, save_function=A, safe_serialization=A, variant=A, ) idx += 1 SCREAMING_SNAKE_CASE : List[Any] = model_path_to_save + F"_{idx}" @classmethod def UpperCamelCase_ ( cls, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(A ): SCREAMING_SNAKE_CASE : Optional[int] = ControlNetModel.from_pretrained(A, **A ) controlnets.append(A ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"_{idx}" logger.info(F"{len(A )} controlnets loaded from {pretrained_model_path}." ) if len(A ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(A )
28
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ :Dict = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self : Tuple, _snake_case : Any = True, _snake_case : Tuple = None, _snake_case : Optional[Any] = PILImageResampling.BICUBIC, _snake_case : Optional[Any] = True, _snake_case : Union[str, Any] = None, _snake_case : Optional[int] = True, _snake_case : Union[str, Any] = 1 / 2_5_5, _snake_case : Optional[Any] = True, _snake_case : int = IMAGENET_DEFAULT_MEAN, _snake_case : Union[str, Any] = IMAGENET_DEFAULT_STD, **_snake_case : List[Any], ) ->Optional[int]: super().__init__(**_snake_case ) snake_case__ : Any = size if size is not None else {'shortest_edge': 2_2_4} snake_case__ : List[str] = get_size_dict(_snake_case, default_to_square=_snake_case ) snake_case__ : Tuple = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} snake_case__ : List[str] = get_size_dict(_snake_case, param_name='crop_size' ) snake_case__ : Any = do_resize snake_case__ : List[str] = size snake_case__ : Any = resample snake_case__ : Optional[Any] = do_center_crop snake_case__ : Any = crop_size snake_case__ : Tuple = do_rescale snake_case__ : Optional[Any] = rescale_factor snake_case__ : List[Any] = do_normalize snake_case__ : int = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case__ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ ( self : Any, _snake_case : List[Any], _snake_case : List[Any], _snake_case : Any = PILImageResampling.BICUBIC, _snake_case : int = None, **_snake_case : List[str], ) ->Dict: snake_case__ : int = get_size_dict(_snake_case, default_to_square=_snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case__ : str = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) snake_case__ : str = get_resize_output_image_size(_snake_case, size=_snake_case, default_to_square=_snake_case ) snake_case__ : Dict = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _snake_case, size=(size_dict['height'], size_dict['width']), resample=_snake_case, data_format=_snake_case, **_snake_case ) def lowercase_ ( self : Optional[int], _snake_case : Tuple, _snake_case : Any, _snake_case : Any = None, **_snake_case : Any, ) ->Optional[Any]: snake_case__ : Optional[int] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_snake_case, size=(size['height'], size['width']), data_format=_snake_case, **_snake_case ) def lowercase_ ( self : List[Any], _snake_case : List[Any], _snake_case : Optional[Any], _snake_case : List[Any] = None, **_snake_case : int, ) ->Any: return rescale(_snake_case, scale=_snake_case, data_format=_snake_case, **_snake_case ) def lowercase_ ( self : Optional[int], _snake_case : Dict, _snake_case : Union[str, Any], _snake_case : Union[str, Any], _snake_case : Optional[Any] = None, **_snake_case : Any, ) ->int: return normalize(_snake_case, mean=_snake_case, std=_snake_case, data_format=_snake_case, **_snake_case ) def lowercase_ ( self : Tuple, _snake_case : Optional[Any], _snake_case : List[Any] = None, _snake_case : Tuple = None, _snake_case : List[str] = None, _snake_case : List[str] = None, _snake_case : List[str] = None, _snake_case : Dict = None, _snake_case : Any = None, _snake_case : Optional[Any] = None, _snake_case : List[Any] = None, _snake_case : Optional[Any] = None, _snake_case : List[str] = None, _snake_case : List[str] = ChannelDimension.FIRST, **_snake_case : int, ) ->Union[str, Any]: snake_case__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case__ : Optional[Any] = resample if resample is not None else self.resample snake_case__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case__ : Optional[Any] = image_std if image_std is not None else self.image_std snake_case__ : Dict = size if size is not None else self.size snake_case__ : List[str] = get_size_dict(_snake_case, default_to_square=_snake_case ) snake_case__ : Tuple = crop_size if crop_size is not None else self.crop_size snake_case__ : Union[str, Any] = get_size_dict(_snake_case, param_name='crop_size' ) snake_case__ : int = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ : Tuple = [to_numpy_array(_snake_case ) for image in images] if do_resize: snake_case__ : List[str] = [self.resize(_snake_case, _snake_case, _snake_case ) for image in images] if do_center_crop: snake_case__ : int = [self.center_crop(_snake_case, _snake_case ) for image in images] if do_rescale: snake_case__ : int = [self.rescale(_snake_case, _snake_case ) for image in images] if do_normalize: snake_case__ : List[str] = [self.normalize(_snake_case, _snake_case, _snake_case ) for image in images] snake_case__ : Optional[int] = [to_channel_dimension_format(_snake_case, _snake_case ) for image in images] snake_case__ : Tuple = {'pixel_values': images} return BatchFeature(data=_snake_case, tensor_type=_snake_case )
478
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : str = ['''audio_values''', '''audio_mask'''] def __init__( self, A=2_048, A=1, A=[16, 16], A=128, A=44_100, A=86, A=2_048, A=0.0, **A, ): '''simple docstring''' super().__init__( feature_size=A, sampling_rate=A, padding_value=A, **A, ) SCREAMING_SNAKE_CASE : str = spectrogram_length SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1] SCREAMING_SNAKE_CASE : Dict = n_fft SCREAMING_SNAKE_CASE : Tuple = sampling_rate // hop_length_to_sampling_rate SCREAMING_SNAKE_CASE : str = sampling_rate SCREAMING_SNAKE_CASE : int = padding_value SCREAMING_SNAKE_CASE : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=A, min_frequency=0.0, max_frequency=2_20_50.0, sampling_rate=A, norm='slaney', mel_scale='slaney', ).T def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = spectrogram( A, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=80.0, ) SCREAMING_SNAKE_CASE : Union[str, Any] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : List[Any] = log_spec - 20.0 SCREAMING_SNAKE_CASE : Optional[Any] = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, A, A = None, A = True, A = None, A = False, A = False, **A, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE : List[Any] = isinstance(A, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(A, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A, np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(A, dtype=np.floataa ) elif isinstance(A, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis SCREAMING_SNAKE_CASE : int = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(A, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask SCREAMING_SNAKE_CASE : Tuple = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] SCREAMING_SNAKE_CASE : Tuple = np.array(A ).astype(np.floataa ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch SCREAMING_SNAKE_CASE : Optional[Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = padded_audio_features * self.padding_value for i in range(len(A ) ): SCREAMING_SNAKE_CASE : Optional[int] = audio_features[i] SCREAMING_SNAKE_CASE : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: SCREAMING_SNAKE_CASE : Any = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: SCREAMING_SNAKE_CASE : Dict = {'audio_values': padded_audio_features} SCREAMING_SNAKE_CASE : str = BatchFeature(data=A, tensor_type=A ) return encoded_inputs
28
0
class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = val UpperCamelCase = None UpperCamelCase = None def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : int ): """simple docstring""" if self.val: if val < self.val: if self.left is None: UpperCamelCase = Node(lowerCamelCase_ ) else: self.left.insert(lowerCamelCase_ ) elif val > self.val: if self.right is None: UpperCamelCase = Node(lowerCamelCase_ ) else: self.right.insert(lowerCamelCase_ ) else: UpperCamelCase = val def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if root: inorder(root.left , __UpperCamelCase ) res.append(root.val ) inorder(root.right , __UpperCamelCase ) def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' if len(__UpperCamelCase ) == 0: return arr UpperCamelCase = Node(arr[0] ) for i in range(1 , len(__UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCamelCase = [] inorder(__UpperCamelCase , __UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
537
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 9, 14 # noqa: F841 SCREAMING_SNAKE_CASE : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(__UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) SCREAMING_SNAKE_CASE : Dict = mst(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: SCREAMING_SNAKE_CASE : Any = tuple(answer[:2] ) SCREAMING_SNAKE_CASE : List[Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
28
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva A_ = """""" A_ = """""" A_ = """""" A_ = 1 # (0 is vertical, 1 is horizontal) def lowercase ( ): lowerCamelCase_ = get_dataset(__UpperCamelCase ,__UpperCamelCase ) print('''Processing...''' ) lowerCamelCase_ = update_image_and_anno(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for index, image in enumerate(__UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase_ = random_chars(32 ) lowerCamelCase_ = paths[index].split(os.sep )[-1].rsplit('''.''' ,1 )[0] lowerCamelCase_ = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" ,__UpperCamelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(__UpperCamelCase )} with {file_name}" ) lowerCamelCase_ = [] for anno in new_annos[index]: lowerCamelCase_ = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__UpperCamelCase ) with open(f"/{file_root}.txt" ,'''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase ,'''*.txt''' ) ): lowerCamelCase_ = label_file.split(os.sep )[-1].rsplit('''.''' ,1 )[0] with open(__UpperCamelCase ) as in_file: lowerCamelCase_ = in_file.readlines() lowerCamelCase_ = os.path.join(__UpperCamelCase ,f"{label_name}.jpg" ) lowerCamelCase_ = [] for obj_list in obj_lists: lowerCamelCase_ = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = 1 ): lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for idx in range(len(__UpperCamelCase ) ): lowerCamelCase_ = [] lowerCamelCase_ = img_list[idx] path_list.append(__UpperCamelCase ) lowerCamelCase_ = anno_list[idx] lowerCamelCase_ = cva.imread(__UpperCamelCase ) if flip_type == 1: lowerCamelCase_ = cva.flip(__UpperCamelCase ,__UpperCamelCase ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCamelCase_ = cva.flip(__UpperCamelCase ,__UpperCamelCase ) for bbox in img_annos: lowerCamelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCamelCase ) new_imgs_list.append(__UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def lowercase ( lowerCAmelCase__ = 32 ): assert number_char > 1, "The number of character should greater than 1" lowerCamelCase_ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
29
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : int = StableDiffusionDiffEditPipeline A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : Union[str, Any] = frozenset([] ) def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=A, ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_one=A, ) SCREAMING_SNAKE_CASE : str = DDIMInverseScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule='scaled_linear', clip_sample=A, set_alpha_to_zero=A, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=512, ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE : int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 16, 16), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(A ) ).to(A ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0, 2, 3, 1 )[0] SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(A ) ).convert('RGB' ) if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Any = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' if not hasattr(self.pipeline_class, '_optional_components' ): return SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A, A, A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Dict = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A, A ) is None, F"`{optional_component}` did not stay set to None after loading.", ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Tuple = pipe_loaded(**A )[0] SCREAMING_SNAKE_CASE : List[str] = np.abs(output - output_loaded ).max() self.assertLess(A, 1E-4 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'cpu' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = self.get_dummy_mask_inputs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.generate_mask(**A ) SCREAMING_SNAKE_CASE : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) SCREAMING_SNAKE_CASE : Any = np.array([0] * 9 ) SCREAMING_SNAKE_CASE : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler(**A ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverMultistepInverseScheduler(**A ) SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inversion_inputs(A ) SCREAMING_SNAKE_CASE : List[str] = pipe.invert(**A ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99], ) SCREAMING_SNAKE_CASE : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A, 1E-3 ) @require_torch_gpu @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE : Optional[int] = raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE : List[str] = raw_image def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : int = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[Any] = 'a bowl of fruit' SCREAMING_SNAKE_CASE : List[str] = 'a bowl of pears' SCREAMING_SNAKE_CASE : Dict = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A ).latents SCREAMING_SNAKE_CASE : List[str] = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : List[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=A, torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[str] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : str = 'a bowl of fruit' SCREAMING_SNAKE_CASE : Tuple = 'a bowl of pears' SCREAMING_SNAKE_CASE : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=A, target_prompt=A, generator=A, ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.invert( prompt=A, image=self.raw_image, inpaint_strength=0.7, generator=A, num_inference_steps=25, ).latents SCREAMING_SNAKE_CASE : str = pipe( prompt=A, mask_image=A, image_latents=A, generator=A, negative_prompt=A, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] SCREAMING_SNAKE_CASE : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
28
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= 42 class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Any , _lowercase : List[Any] = 16 , _lowercase : Optional[Any] = 88 , _lowercase : str = None , _lowercase : Union[str, Any] = None , _lowercase : Tuple = 1 , _lowercase : Optional[int] = 0.0 , _lowercase : int = 32 , _lowercase : List[str] = None , _lowercase : List[str] = False , _lowercase : Optional[Any] = None , _lowercase : int = "geglu" , _lowercase : Dict = True , _lowercase : List[str] = True , ): """simple docstring""" super().__init__() UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = attention_head_dim UpperCAmelCase__ = num_attention_heads * attention_head_dim UpperCAmelCase__ = in_channels UpperCAmelCase__ = torch.nn.GroupNorm(num_groups=_lowercase , num_channels=_lowercase , eps=1E-6 , affine=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase ) # 3. Define transformers blocks UpperCAmelCase__ = nn.ModuleList( [ BasicTransformerBlock( _lowercase , _lowercase , _lowercase , dropout=_lowercase , cross_attention_dim=_lowercase , activation_fn=_lowercase , attention_bias=_lowercase , double_self_attention=_lowercase , norm_elementwise_affine=_lowercase , ) for d in range(_lowercase ) ] ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase ) def _UpperCAmelCase ( self : Any , _lowercase : List[Any] , _lowercase : Dict=None , _lowercase : Union[str, Any]=None , _lowercase : int=None , _lowercase : Dict=1 , _lowercase : List[Any]=None , _lowercase : str = True , ): """simple docstring""" UpperCAmelCase__ = hidden_states.shape UpperCAmelCase__ = batch_frames // num_frames UpperCAmelCase__ = hidden_states UpperCAmelCase__ = hidden_states[None, :].reshape(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) UpperCAmelCase__ = self.norm(_lowercase ) UpperCAmelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowercase , _lowercase ) UpperCAmelCase__ = self.proj_in(_lowercase ) # 2. Blocks for block in self.transformer_blocks: UpperCAmelCase__ = block( _lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase , cross_attention_kwargs=_lowercase , class_labels=_lowercase , ) # 3. Output UpperCAmelCase__ = self.proj_out(_lowercase ) UpperCAmelCase__ = ( hidden_states[None, None, :] .reshape(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) UpperCAmelCase__ = hidden_states.reshape(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowercase )
475
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,__UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
28
0
import inspect import unittest class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) ->Tuple: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self : int ) ->List[Any]: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps UpperCAmelCase__ = inspect.getmembers(lowerCamelCase_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCAmelCase__ = 'k-diffusion' elif backend == "invisible_watermark": UpperCAmelCase__ = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
392
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = LongformerTokenizer A : List[str] = True A : Optional[int] = LongformerTokenizerFast A : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE : Any = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'lower newer' SCREAMING_SNAKE_CASE : Union[str, Any] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('sequence builders', add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) SCREAMING_SNAKE_CASE : int = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = 'Encode this sequence.' SCREAMING_SNAKE_CASE : List[str] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) SCREAMING_SNAKE_CASE : str = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE : Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE : List[str] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Tuple = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoded.index(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE : Any = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Tuple = F"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
28
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Dict): __lowerCamelCase : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] __lowerCamelCase : List[Any] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__) self.assertTrue(isinstance(dc.token_ids ,SCREAMING_SNAKE_CASE__)) with self.assertRaises(SCREAMING_SNAKE_CASE__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(SCREAMING_SNAKE_CASE__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def lowerCAmelCase ( self : int): __lowerCamelCase : str = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(SCREAMING_SNAKE_CASE__): DisjunctiveConstraint(SCREAMING_SNAKE_CASE__) # fails here def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = [[1, 2, 3], [1, 2, 4]] __lowerCamelCase : List[str] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = dc.update(1) __lowerCamelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) __lowerCamelCase : Tuple = dc.update(2) __lowerCamelCase : int = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) __lowerCamelCase : List[Any] = dc.update(3) __lowerCamelCase : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCamelCase : Optional[Any] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) __lowerCamelCase : Optional[Any] = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) __lowerCamelCase : Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) __lowerCamelCase : Dict = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() __lowerCamelCase : str = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) __lowerCamelCase : List[str] = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) __lowerCamelCase : Dict = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
652
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionXLImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A : str = PipelineTesterMixin.required_optional_params - {'''latents'''} A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS A : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), attention_head_dim=(2, 4), use_linear_projection=A, addition_embed_type='text_time', addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_00_85, beta_end=0.0_12, steps_offset=1, beta_schedule='scaled_linear', timestep_spacing='leading', ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, hidden_act='gelu', projection_dim=32, ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(A ) SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModelWithProjection(A ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip', local_files_only=A ) SCREAMING_SNAKE_CASE : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32), rng=random.Random(A ) ).to(A ) SCREAMING_SNAKE_CASE : str = image / 2 + 0.5 if str(A ).startswith('mps' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(A ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**A ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = StableDiffusionXLImgaImgPipeline(**A ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) # forward without prompt embeds SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : Optional[int] = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = 3 * [inputs['prompt']] SCREAMING_SNAKE_CASE : int = sd_pipe(**A ) SCREAMING_SNAKE_CASE : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(A ) SCREAMING_SNAKE_CASE : str = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop('prompt' )] ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = sd_pipe.encode_prompt(A, negative_prompt=A ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( **A, prompt_embeds=A, negative_prompt_embeds=A, pooled_prompt_embeds=A, negative_pooled_prompt_embeds=A, ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self, A, A="cpu", A=torch.floataa, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=A ).manual_seed(A ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(A ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : str = torch.from_numpy(A ).to(device=A, dtype=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(A ) SCREAMING_SNAKE_CASE : str = pipe(**A ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
443
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
0
from datetime import datetime as dt import os from github import Github a : List[Any] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def lowercase_ ( ): '''simple docstring''' __lowercase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowercase = g.get_repo('''huggingface/transformers''' ) __lowercase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowercase = sorted([comment for comment in issue.get_comments()] , key=lambda _UpperCamelCase : i.created_at , reverse=__UpperCamelCase ) __lowercase = comments[0] if len(__UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
639
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger("transformers.models.speecht5") def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v'] SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float() SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = input("Enter image url: ").strip() print(F"Downloading image from {url} ...") UpperCAmelCase__ : Tuple = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image UpperCAmelCase__ : Dict = soup.find("meta", {"property": "og:image"})["content"] UpperCAmelCase__ : Tuple = requests.get(image_url).content UpperCAmelCase__ : int = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, "wb") as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
48
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None def __repr__( self ): '''simple docstring''' return F"Node({self.data})" class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = None def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node: yield node.data SCREAMING_SNAKE_CASE : List[str] = node.next def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join([str(A ) for item in self] ) def __getitem__( self, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, A, A ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.head for _ in range(A ): SCREAMING_SNAKE_CASE : Union[str, Any] = current.next SCREAMING_SNAKE_CASE : Any = data def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(len(self ), A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' self.insert_nth(0, A ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(A ) if self.head is None: SCREAMING_SNAKE_CASE : Optional[int] = new_node elif index == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # link new_node to head SCREAMING_SNAKE_CASE : Tuple = new_node else: SCREAMING_SNAKE_CASE : Optional[int] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : str = temp.next SCREAMING_SNAKE_CASE : Union[str, Any] = temp.next SCREAMING_SNAKE_CASE : List[str] = new_node def UpperCamelCase_ ( self ): # print every node data '''simple docstring''' print(self ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def UpperCamelCase_ ( self ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self, A = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE : List[str] = self.head.next else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE : Any = temp.next SCREAMING_SNAKE_CASE : List[str] = temp.next SCREAMING_SNAKE_CASE : Optional[int] = temp.next.next return delete_node.data def UpperCamelCase_ ( self ): '''simple docstring''' return self.head is None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE : Optional[int] = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE : int = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE : int = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE : List[Any] = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE : List[Any] = prev def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase ,i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): SCREAMING_SNAKE_CASE : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 ,1 ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE : str = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE : Dict = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE : str = linked_list.delete_nth(10 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(f"Element at Position 1: {linked_list[1]}" ) SCREAMING_SNAKE_CASE : str = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(f"length of linked_list is : {len(__UpperCamelCase )}" ) if __name__ == "__main__": main()
28
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ = logging.getLogger(__name__) class __lowercase ( _A ): lowercase = '''sequence-classification''' def __init__( self : Union[str, Any] , __lowerCamelCase : List[Any] ) -> Any: '''simple docstring''' if type(__lowerCamelCase ) == dict: lowercase = Namespace(**__lowerCamelCase ) lowercase = glue_output_modes[hparams.task] lowercase = glue_tasks_num_labels[hparams.task] super().__init__(__lowerCamelCase , __lowerCamelCase , self.mode ) def __a ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> Any: '''simple docstring''' return self.model(**__lowerCamelCase ) def __a ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None lowercase = self(**__lowerCamelCase ) lowercase = outputs[0] lowercase = self.trainer.lr_schedulers[0]['scheduler'] lowercase = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __a ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase = self.hparams lowercase = processors[args.task]() lowercase = processor.get_labels() for mode in ["train", "dev"]: lowercase = self._feature_file(__lowerCamelCase ) if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowerCamelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) lowercase = convert_examples_to_features( __lowerCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __lowerCamelCase ) torch.save(__lowerCamelCase , __lowerCamelCase ) def __a ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] = False ) -> Tuple: '''simple docstring''' lowercase = 'dev' if mode == 'test' else mode lowercase = self._feature_file(__lowerCamelCase ) logger.info('''Loading features from cached file %s''' , __lowerCamelCase ) lowercase = torch.load(__lowerCamelCase ) lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , batch_size=__lowerCamelCase , shuffle=__lowerCamelCase , ) def __a ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None lowercase = self(**__lowerCamelCase ) lowercase = outputs[:2] lowercase = logits.detach().cpu().numpy() lowercase = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __a ( self : Any , __lowerCamelCase : List[str] ) -> List[Any]: '''simple docstring''' lowercase = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase = np.argmax(__lowerCamelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase = np.squeeze(__lowerCamelCase ) lowercase = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase = [[] for _ in range(out_label_ids.shape[0] )] lowercase = [[] for _ in range(out_label_ids.shape[0] )] lowercase = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __lowerCamelCase , __lowerCamelCase )} lowercase = dict(results.items() ) lowercase = results return ret, preds_list, out_label_list def __a ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase = self._eval_end(__lowerCamelCase ) lowercase = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __a ( self : List[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' lowercase = self._eval_end(__lowerCamelCase ) lowercase = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __a ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' BaseTransformer.add_model_specific_args(__lowerCamelCase , __lowerCamelCase ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=__lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__lowerCamelCase , required=__lowerCamelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowerCamelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __UpperCAmelCase ( )-> str: """simple docstring""" lowercase = argparse.ArgumentParser() add_generic_args(__UpperCamelCase, os.getcwd() ) lowercase = GLUETransformer.add_model_specific_args(__UpperCamelCase, os.getcwd() ) lowercase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase = os.path.join( '''./results''', f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}', ) os.makedirs(args.output_dir ) lowercase = GLUETransformer(__UpperCamelCase ) lowercase = generic_train(__UpperCamelCase, __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt''' ), recursive=__UpperCamelCase ) ) lowercase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
604
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self, A, A=7, A=3, A=30, A=400, A=True, A=None, A=True, A=[0.5, 0.5, 0.5], A=[0.5, 0.5, 0.5], A=True, A=1 / 255, A=True, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Tuple = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Tuple = size SCREAMING_SNAKE_CASE : Any = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Union[str, Any] = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_pad def UpperCamelCase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(A, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : int = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE : int = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(A, key=lambda A : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(A, key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = YolosImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A, 'image_mean' ) ) self.assertTrue(hasattr(A, 'image_std' ) ) self.assertTrue(hasattr(A, 'do_normalize' ) ) self.assertTrue(hasattr(A, 'do_resize' ) ) self.assertTrue(hasattr(A, 'size' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad, A ) SCREAMING_SNAKE_CASE : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, A ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(A, batched=A ) SCREAMING_SNAKE_CASE : Tuple = image_processing(A, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, numpify=A ) for image in image_inputs: self.assertIsInstance(A, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(A, return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(A, batched=A ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(do_resize=A, do_normalize=A, do_rescale=A ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=A, torchify=A ) for image in image_inputs: self.assertIsInstance(A, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE : List[str] = image_processing_a.pad(A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : Dict = image_processing_a(A, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Any = {'image_id': 39_769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) SCREAMING_SNAKE_CASE : int = image_processing(images=A, annotations=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify orig_size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: SCREAMING_SNAKE_CASE : int = json.loads(f.read() ) SCREAMING_SNAKE_CASE : List[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE : str = image_processing(images=A, annotations=A, masks_path=A, return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], A, atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE : Tuple = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], A ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], A, atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], A ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], A ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], A ) ) # verify masks SCREAMING_SNAKE_CASE : Optional[int] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), A ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], A ) ) # verify size SCREAMING_SNAKE_CASE : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], A ) )
28
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCamelCase__ : Optional[int] = """\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n""" class __magic_name__ (snake_case_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): snake_case__ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_a , required=_a , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_a , required=_a , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_a , required=_a , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_a , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_a , default=_a , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_a ) def __init__( self:int , _a:Optional[int] , _a:Dict , _a:Tuple , _a:List[str] , _a:List[Any] , *_a:Optional[int] , ): snake_case__ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"""Loading model {model_type}""" ) snake_case__ = model_type snake_case__ = tf_checkpoint snake_case__ = pytorch_dump_output snake_case__ = config snake_case__ = finetuning_task_name def SCREAMING_SNAKE_CASE__ ( self:str ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) if "ckpt" in self._tf_checkpoint.lower(): snake_case__ = self._tf_checkpoint snake_case__ = '' else: snake_case__ = self._tf_checkpoint snake_case__ = '' convert_transfo_xl_checkpoint_to_pytorch( _a , self._config , self._pytorch_dump_output , _a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
33
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("DatasetType", Dataset, IterableDataset) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[List[float]] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,stopping_strategy=__UpperCamelCase ) def lowercase__( __UpperCamelCase: List[DatasetType] ,__UpperCamelCase: Optional[DatasetInfo] = None ,__UpperCamelCase: Optional[NamedSplit] = None ,__UpperCamelCase: int = 0 ,): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase ,(Dataset, IterableDataset) ): if isinstance(__UpperCamelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " 'is an empty dataset dictionary.' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCamelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}." ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase ,info=__UpperCamelCase ,split=__UpperCamelCase ,axis=__UpperCamelCase )
28
0
from math import ceil, sqrt def lowercase_ (A : int = 1_0_0_0_0_0_0 ): snake_case__ : Union[str, Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: snake_case__ : Tuple = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: snake_case__ : Union[str, Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
478
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=32, A=2, A=3, A=640, A=4, A="silu", A=3, A=32, A=0.1, A=0.1, A=0.1, A=0.02, A=True, A=True, A=10, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = conv_kernel_size SCREAMING_SNAKE_CASE : Optional[Any] = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : str = model(A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) SCREAMING_SNAKE_CASE : int = model(A, labels=A ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A : Optional[int] = False A : Dict = False A : List[Any] = False A : Optional[int] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : str = MobileViTConfigTester(self, config_class=A, has_text_modality=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = 5 self.assertEqual(len(A ), A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : int = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(A, A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(A ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**A ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, A ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ], device=A, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], A, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[str] = model.to(A ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=A, target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, A ) SCREAMING_SNAKE_CASE : Tuple = image_processor.post_process_semantic_segmentation(outputs=A ) SCREAMING_SNAKE_CASE : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, A )
28
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class __lowerCamelCase ( lowerCAmelCase ): a__: Dict = 'xlm' a__: str = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self , UpperCAmelCase=3_0145 , UpperCAmelCase=2048 , UpperCAmelCase=12 , UpperCAmelCase=16 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=True , UpperCAmelCase=512 , UpperCAmelCase=2048**-0.5 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=5 , UpperCAmelCase=True , UpperCAmelCase="first" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=0.1 , UpperCAmelCase=5 , UpperCAmelCase=5 , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=0 , **UpperCAmelCase , ): lowerCamelCase_ = vocab_size lowerCamelCase_ = emb_dim lowerCamelCase_ = n_layers lowerCamelCase_ = n_heads lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = gelu_activation lowerCamelCase_ = sinusoidal_embeddings lowerCamelCase_ = causal lowerCamelCase_ = asm lowerCamelCase_ = n_langs lowerCamelCase_ = use_lang_emb lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = bos_index lowerCamelCase_ = eos_index lowerCamelCase_ = pad_index lowerCamelCase_ = unk_index lowerCamelCase_ = mask_index lowerCamelCase_ = is_encoder lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = embed_init_std lowerCamelCase_ = init_std lowerCamelCase_ = summary_type lowerCamelCase_ = summary_use_proj lowerCamelCase_ = summary_activation lowerCamelCase_ = summary_proj_to_labels lowerCamelCase_ = summary_first_dropout lowerCamelCase_ = start_n_top lowerCamelCase_ = end_n_top lowerCamelCase_ = mask_token_id lowerCamelCase_ = lang_id if "n_words" in kwargs: lowerCamelCase_ = kwargs['''n_words'''] super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , **UpperCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
29
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
1
"""simple docstring""" from math import ceil def lowercase ( lowerCAmelCase__ = 1_001 ): lowerCamelCase_ = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): lowerCamelCase_ = 2 * i + 1 lowerCamelCase_ = 2 * i lowerCamelCase_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
29
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
1
"""simple docstring""" import numpy # List of input, output pairs A_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ = [2, 4, 1, 5] A_ = len(train_data) A_ = 0.009 def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="train" ): return calculate_hypothesis_value(lowerCAmelCase__ ,lowerCAmelCase__ ) - output( lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = 0 for i in range(len(lowerCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=m ): lowerCamelCase_ = 0 for i in range(lowerCAmelCase__ ): if index == -1: summation_value += _error(lowerCAmelCase__ ) else: summation_value += _error(lowerCAmelCase__ ) * train_data[i][0][index] return summation_value def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = summation_of_cost_derivative(lowerCAmelCase__ ,lowerCAmelCase__ ) / m return cost_derivative_value def lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase_ = 0.000_002 lowerCamelCase_ = 0 lowerCamelCase_ = 0 while True: j += 1 lowerCamelCase_ = [0, 0, 0, 0] for i in range(0 ,len(lowerCAmelCase__ ) ): lowerCamelCase_ = get_cost_derivative(i - 1 ) lowerCamelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase__ ,lowerCAmelCase__ ,atol=lowerCAmelCase__ ,rtol=lowerCAmelCase__ ,): break lowerCamelCase_ = temp_parameter_vector print(('''Number of iterations:''', j) ) def lowercase ( ): for i in range(len(lowerCAmelCase__ ) ): print(('''Actual output value:''', output(lowerCAmelCase__ ,'''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(lowerCAmelCase__ ,'''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ = 50_000_000 ): lowerCamelCase_ = set() lowerCamelCase_ = int((limit - 24) ** (1 / 2) ) lowerCamelCase_ = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,lowerCAmelCase__ ) ) ) for primea in primes: lowerCamelCase_ = primea * primea for primea in primes: lowerCamelCase_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase_ = primea * primea * primea * primea lowerCamelCase_ = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(f"{solution() = }")
29
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node A_ = 4 A_ = 3 class __lowerCamelCase ( lowerCAmelCase ): pass def lowercase ( lowerCAmelCase__ ): for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def lowercase ( ): lowerCamelCase_ = int(os.environ['''RANK'''] ) lowerCamelCase_ = int(os.environ['''WORLD_SIZE'''] ) lowerCamelCase_ = ArgumentParser() parser.add_argument('''--streaming''' ,type=lowerCAmelCase__ ) parser.add_argument('''--local_rank''' ,type=lowerCAmelCase__ ) parser.add_argument('''--num_workers''' ,type=lowerCAmelCase__ ,default=0 ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = args.streaming lowerCamelCase_ = args.num_workers lowerCamelCase_ = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(lowerCAmelCase__ )]} lowerCamelCase_ = IterableDataset.from_generator(lowerCAmelCase__ ,gen_kwargs=lowerCAmelCase__ ) if not streaming: lowerCamelCase_ = Dataset.from_list(list(lowerCAmelCase__ ) ) lowerCamelCase_ = split_dataset_by_node(lowerCAmelCase__ ,rank=lowerCAmelCase__ ,world_size=lowerCAmelCase__ ) lowerCamelCase_ = torch.utils.data.DataLoader(lowerCAmelCase__ ,num_workers=lowerCAmelCase__ ) lowerCamelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCamelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCamelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
29
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
1
"""simple docstring""" from manim import * class __lowerCamelCase ( lowerCAmelCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase_ = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase_ = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase_ = Text('''CPU''' , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase_ = Text('''GPU''' , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase_ = Text('''Model''' , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase ) lowerCamelCase_ = [] for i, rect in enumerate(UpperCAmelCase ): rect.set_stroke(UpperCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCamelCase_ = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCAmelCase , buff=0.0 ) self.add(UpperCAmelCase ) cpu_targs.append(UpperCAmelCase ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase_ = Text('''Loaded Checkpoint''' , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , aligned_edge=UpperCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCamelCase_ = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase ) , Write(UpperCAmelCase ) ) self.play(Write(UpperCAmelCase , run_time=1 ) , Create(UpperCAmelCase , run_time=1 ) ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(UpperCAmelCase ): lowerCamelCase_ = fill.copy().set_fill(UpperCAmelCase , opacity=0.7 ) target.move_to(UpperCAmelCase ) first_animations.append(GrowFromCenter(UpperCAmelCase , run_time=1 ) ) lowerCamelCase_ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCAmelCase , run_time=1.5 ) ) self.play(*UpperCAmelCase ) self.play(*UpperCAmelCase ) self.wait()
29
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
1
"""simple docstring""" from PIL import Image def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): def brightness(lowerCAmelCase__ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(lowerCAmelCase__ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 A_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
29
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor A_ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
29
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[int] = 'blip_2_vision_model' def __init__( self , UpperCAmelCase=1408 , UpperCAmelCase=6144 , UpperCAmelCase=39 , UpperCAmelCase=16 , UpperCAmelCase=224 , UpperCAmelCase=14 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0_0_0_0_1 , UpperCAmelCase=0.0 , UpperCAmelCase=1e-1_0 , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = patch_size lowerCamelCase_ = image_size lowerCamelCase_ = initializer_range lowerCamelCase_ = attention_dropout lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = hidden_act lowerCamelCase_ = qkv_bias @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): cls._set_token_in_kwargs(UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[int] = 'blip_2_qformer' def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=2 , UpperCAmelCase=1408 , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = cross_attention_frequency lowerCamelCase_ = encoder_hidden_size @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): cls._set_token_in_kwargs(UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase_ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): a__: Union[str, Any] = 'blip-2' a__: str = True def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=32 , **UpperCAmelCase ): super().__init__(**UpperCAmelCase ) if vision_config is None: lowerCamelCase_ = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowerCamelCase_ = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowerCamelCase_ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowerCamelCase_ = BlipaVisionConfig(**UpperCAmelCase ) lowerCamelCase_ = BlipaQFormerConfig(**UpperCAmelCase ) lowerCamelCase_ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowerCamelCase_ = CONFIG_MAPPING[text_model_type](**UpperCAmelCase ) lowerCamelCase_ = self.text_config.tie_word_embeddings lowerCamelCase_ = self.text_config.is_encoder_decoder lowerCamelCase_ = num_query_tokens lowerCamelCase_ = self.vision_config.hidden_size lowerCamelCase_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_ = 1.0 lowerCamelCase_ = 0.0_2 @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.vision_config.to_dict() lowerCamelCase_ = self.qformer_config.to_dict() lowerCamelCase_ = self.text_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
1
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A_ = re.compile(R"""\s+""") def lowercase ( lowerCAmelCase__ ): return {"hash": hashlib.mda(re.sub(lowerCAmelCase__ ,'''''' ,example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [len(lowerCAmelCase__ ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(lowerCAmelCase__ ), "line_max": max(lowerCAmelCase__ )} def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=5 ): lowerCamelCase_ = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] lowerCamelCase_ = example['''content'''].splitlines() for _, line in zip(range(lowerCAmelCase__ ) ,lowerCAmelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=5 ,lowerCAmelCase__=0.05 ): lowerCamelCase_ = ['''unit tests''', '''test file''', '''configuration file'''] lowerCamelCase_ = example['''content'''].splitlines() lowerCamelCase_ = 0 lowerCamelCase_ = 0 # first test for _, line in zip(range(lowerCAmelCase__ ) ,lowerCAmelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase_ = example['''content'''].count('''\n''' ) lowerCamelCase_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = ['''def ''', '''class ''', '''for ''', '''while '''] lowerCamelCase_ = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=4 ): lowerCamelCase_ = example['''content'''].splitlines() lowerCamelCase_ = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = tokenizer(example['''content'''] ,truncation=lowerCAmelCase__ )['''input_ids'''] lowerCamelCase_ = len(example['''content'''] ) / len(lowerCAmelCase__ ) return {"ratio": ratio} def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = {} results.update(get_hash(lowerCAmelCase__ ) ) results.update(line_stats(lowerCAmelCase__ ) ) results.update(alpha_stats(lowerCAmelCase__ ) ) results.update(char_token_ratio(lowerCAmelCase__ ) ) results.update(is_autogenerated(lowerCAmelCase__ ) ) results.update(is_config_or_test(lowerCAmelCase__ ) ) results.update(has_no_keywords(lowerCAmelCase__ ) ) results.update(has_few_assignments(lowerCAmelCase__ ) ) return results def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): if not check_uniques(lowerCAmelCase__ ,lowerCAmelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowercase ( lowerCAmelCase__ ): with open(lowerCAmelCase__ ,'''rb''' ) as f_in: with gzip.open(str(lowerCAmelCase__ ) + '''.gz''' ,'''wb''' ,compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCAmelCase__ ,lowerCAmelCase__ ) os.unlink(lowerCAmelCase__ ) # Settings A_ = HfArgumentParser(PreprocessingArguments) A_ = parser.parse_args() if args.num_workers is None: A_ = multiprocessing.cpu_count() A_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A_ = time.time() A_ = load_dataset(args.dataset_name, split="""train""") print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing A_ = time.time() A_ = ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes A_ = set(ds.unique("""hash""")) A_ = len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics A_ = time.time() A_ = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A_ = time.time() A_ , A_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file A_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) A_ = output_dir / """data""" data_dir.mkdir(exist_ok=True) A_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A_ = str(data_dir / f"file-{file_number+1:012}.json") A_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Union[str, Any] = RobertaTokenizer a__: Any = RobertaTokenizerFast a__: int = True a__: List[str] = {'cls_token': '<s>'} def UpperCAmelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowerCamelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase_ = {'''unk_token''': '''<unk>'''} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCAmelCase ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCAmelCase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class.from_pretrained('''roberta-base''' ) lowerCamelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = '''Encode this sequence.''' lowerCamelCase_ = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # Testing spaces after special tokens lowerCamelCase_ = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase )} ) # mask token has a left space lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = '''Encode <mask> sequence''' lowerCamelCase_ = '''Encode <mask>sequence''' lowerCamelCase_ = tokenizer.encode(UpperCAmelCase ) lowerCamelCase_ = encoded.index(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase ) lowerCamelCase_ = encoded.index(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = '''A, <mask> AllenNLP sentence.''' lowerCamelCase_ = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCAmelCase__ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCAmelCase ) def UpperCAmelCase__ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase_ = f"{text_of_1_token} {text_of_1_token}" lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase_ = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ) + 1, 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
29
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A_ = tuple[int, int] class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = vertices lowerCamelCase_ = { (min(UpperCAmelCase ), max(UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCamelCase_ = weight def UpperCAmelCase__ ( self ): lowerCamelCase_ = Graph({min(self.vertices )} , {} ) lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCamelCase_ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCamelCase_ = edge lowerCamelCase_ = weight subgraph.add_edge(UpperCAmelCase , UpperCAmelCase ) return subgraph def lowercase ( lowerCAmelCase__ = "p107_network.txt" ): lowerCamelCase_ = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = f.read().strip().split('''\n''' ) lowerCamelCase_ = [line.split(''',''' ) for line in data] for edgea in range(1 ,len(lowerCAmelCase__ ) ): for edgea in range(lowerCAmelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCamelCase_ = int(adjaceny_matrix[edgea][edgea] ) lowerCamelCase_ = Graph(set(range(len(lowerCAmelCase__ ) ) ) ,lowerCAmelCase__ ) lowerCamelCase_ = graph.prims_algorithm() lowerCamelCase_ = sum(graph.edges.values() ) lowerCamelCase_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
"""simple docstring""" A_ = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ A_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] A_ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
29
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ = 1_000_000 ): lowerCamelCase_ = set(range(3 ,lowerCAmelCase__ ,2 ) ) primes.add(2 ) for p in range(3 ,lowerCAmelCase__ ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) ) lowerCamelCase_ = [float(lowerCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase__ ,limit + 1 ,lowerCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
29
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class __lowerCamelCase ( lowerCAmelCase ): a__: Any = 'roberta-prelayernorm' def __init__( self , UpperCAmelCase=5_0265 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout class __lowerCamelCase ( lowerCAmelCase ): @property def UpperCAmelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
29
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ = concatenate_datasets A_ = DownloadConfig A_ = DownloadManager A_ = DownloadMode A_ = DownloadConfig A_ = DownloadMode A_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A_ = logging.getLogger(__name__) class __lowerCamelCase : def __init__( self ): lowerCamelCase_ = False def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if not self.initialized: lowerCamelCase_ = RagRetriever( UpperCAmelCase , question_encoder_tokenizer=UpperCAmelCase , generator_tokenizer=UpperCAmelCase , index=UpperCAmelCase , init_retrieval=UpperCAmelCase , ) lowerCamelCase_ = True def UpperCAmelCase__ ( self ): self.retriever.index.init_index() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = self.retriever._main_retrieve(UpperCAmelCase , UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ): if index is not None and index.is_initialized() and len(UpperCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( UpperCAmelCase , question_encoder_tokenizer=UpperCAmelCase , generator_tokenizer=UpperCAmelCase , index=UpperCAmelCase , init_retrieval=UpperCAmelCase , ) lowerCamelCase_ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for worker in self.retrieval_workers ] ) def UpperCAmelCase__ ( self ): logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase_ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase_ , lowerCamelCase_ = ray.get(random_worker.retrieve.remote(UpperCAmelCase , UpperCAmelCase ) ) else: lowerCamelCase_ , lowerCamelCase_ = self._main_retrieve(UpperCAmelCase , UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return super(UpperCAmelCase , cls ).get_tokenizers(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''config''' , UpperCAmelCase ) or RagConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = RagTokenizer.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) lowerCamelCase_ = rag_tokenizer.question_encoder lowerCamelCase_ = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase_ = '''custom''' lowerCamelCase_ = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase ) else: lowerCamelCase_ = cls._build_index(UpperCAmelCase ) return cls( UpperCAmelCase , question_encoder_tokenizer=UpperCAmelCase , generator_tokenizer=UpperCAmelCase , retrieval_workers=UpperCAmelCase , index=UpperCAmelCase , )
29
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A_ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCAmelCase ): a__: Union[str, Any] = ['input_features', 'attention_mask'] def __init__( self , UpperCAmelCase=80 , UpperCAmelCase=1_6000 , UpperCAmelCase=80 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = num_mel_bins lowerCamelCase_ = do_ceptral_normalize lowerCamelCase_ = normalize_means lowerCamelCase_ = normalize_vars lowerCamelCase_ = True def UpperCAmelCase__ ( self , UpperCAmelCase , ): lowerCamelCase_ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase_ = torch.from_numpy(UpperCAmelCase ).unsqueeze(0 ) lowerCamelCase_ = ta_kaldi.fbank(UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: lowerCamelCase_ = x[:input_length].mean(axis=0 ) lowerCamelCase_ = np.subtract(UpperCAmelCase , UpperCAmelCase ) if normalize_vars: lowerCamelCase_ = x[:input_length].std(axis=0 ) lowerCamelCase_ = np.divide(UpperCAmelCase , UpperCAmelCase ) if input_length < x.shape[0]: lowerCamelCase_ = padding_value # make sure array is in float32 lowerCamelCase_ = x.astype(np.floataa ) return x def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase , UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCAmelCase , UpperCAmelCase ) ] def __call__( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCamelCase_ = isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [raw_speech] # extract fbank features lowerCamelCase_ = [self._extract_fbank_features(UpperCAmelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase_ = BatchFeature({'''input_features''': features} ) lowerCamelCase_ = self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCAmelCase ): lowerCamelCase_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase_ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase_ = ( np.array(UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCAmelCase ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs
29
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
1
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase_ = cst_fwd.get(lowerCAmelCase__ ,np.inf ) lowerCamelCase_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase_ = new_cost_f lowerCamelCase_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = -1 lowerCamelCase_ = set() lowerCamelCase_ = set() lowerCamelCase_ = {source: 0} lowerCamelCase_ = {destination: 0} lowerCamelCase_ = {source: None} lowerCamelCase_ = {destination: None} lowerCamelCase_ = PriorityQueue() lowerCamelCase_ = PriorityQueue() lowerCamelCase_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase_ , lowerCamelCase_ = queue_forward.get() visited_forward.add(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = queue_backward.get() visited_backward.add(lowerCAmelCase__ ) lowerCamelCase_ = pass_and_relaxation( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,) lowerCamelCase_ = pass_and_relaxation( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase_ = shortest_distance return shortest_path_distance A_ = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } A_ = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
29
1
"""simple docstring""" import torch from transformers import AutoModel class __lowerCamelCase ( torch.nn.Module ): def __init__( self , UpperCAmelCase="sayef/fsner-bert-base-uncased" ): super(UpperCAmelCase , self ).__init__() lowerCamelCase_ = AutoModel.from_pretrained(UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCamelCase_ = torch.nn.CosineSimilarity(3 , 1e-0_8 ) lowerCamelCase_ = torch.nn.Softmax(dim=1 ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return self.bert(**UpperCAmelCase ).last_hidden_state def UpperCAmelCase__ ( self , UpperCAmelCase ): return token_embeddings.sum(2 , keepdim=UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 ): return self.softmax(T * self.cos(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = W_supports['''sizes'''].tolist() lowerCamelCase_ = W_supports['''start_token_id'''].item() lowerCamelCase_ = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCamelCase_ = self.BERT(**UpperCAmelCase ) lowerCamelCase_ = self.BERT(**UpperCAmelCase ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = W_supports['''input_ids'''] == start_token_id lowerCamelCase_ = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(UpperCAmelCase ): if i == 0: lowerCamelCase_ = 0 else: lowerCamelCase_ = support_sizes[i - 1] lowerCamelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCamelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCamelCase_ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCamelCase_ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCamelCase_ = torch.vstack((p_starts, p_start) ) lowerCamelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCamelCase_ = p_start lowerCamelCase_ = p_end return p_starts, p_ends
29
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
1
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase ( lowerCAmelCase__ ): if "model" in orig_key: lowerCamelCase_ = orig_key.replace('''model.''' ,'''''' ) if "norm1" in orig_key: lowerCamelCase_ = orig_key.replace('''norm1''' ,'''attention.output.LayerNorm''' ) if "norm2" in orig_key: lowerCamelCase_ = orig_key.replace('''norm2''' ,'''output.LayerNorm''' ) if "norm" in orig_key: lowerCamelCase_ = orig_key.replace('''norm''' ,'''LayerNorm''' ) if "transformer" in orig_key: lowerCamelCase_ = orig_key.split('''.''' )[0].split('''_''' )[-1] lowerCamelCase_ = orig_key.replace(f"transformer_{layer_num}" ,f"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: lowerCamelCase_ = orig_key.replace('''mha.attn''' ,'''attention.self''' ) if "mha" in orig_key: lowerCamelCase_ = orig_key.replace('''mha''' ,'''attention''' ) if "W_q" in orig_key: lowerCamelCase_ = orig_key.replace('''W_q''' ,'''self.query''' ) if "W_k" in orig_key: lowerCamelCase_ = orig_key.replace('''W_k''' ,'''self.key''' ) if "W_v" in orig_key: lowerCamelCase_ = orig_key.replace('''W_v''' ,'''self.value''' ) if "ff1" in orig_key: lowerCamelCase_ = orig_key.replace('''ff1''' ,'''intermediate.dense''' ) if "ff2" in orig_key: lowerCamelCase_ = orig_key.replace('''ff2''' ,'''output.dense''' ) if "ff" in orig_key: lowerCamelCase_ = orig_key.replace('''ff''' ,'''output.dense''' ) if "mlm_class" in orig_key: lowerCamelCase_ = orig_key.replace('''mlm.mlm_class''' ,'''cls.predictions.decoder''' ) if "mlm" in orig_key: lowerCamelCase_ = orig_key.replace('''mlm''' ,'''cls.predictions.transform''' ) if "cls" not in orig_key: lowerCamelCase_ = '''yoso.''' + orig_key return orig_key def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase_ = val lowerCamelCase_ = orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase_ = torch.arange(lowerCAmelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model_state_dict'''] lowerCamelCase_ = YosoConfig.from_json_file(lowerCAmelCase__ ) lowerCamelCase_ = YosoForMaskedLM(lowerCAmelCase__ ) lowerCamelCase_ = convert_checkpoint_helper(config.max_position_embeddings ,lowerCAmelCase__ ) print(model.load_state_dict(lowerCAmelCase__ ) ) model.eval() model.save_pretrained(lowerCAmelCase__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
29
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants A_ = 300 # TEMPERATURE (unit = K) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
29
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging A_ = logging.get_logger(__name__) # TODO: upload to AWS A_ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[int] = 'retribert' def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=768 , UpperCAmelCase=8 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=True , UpperCAmelCase=128 , UpperCAmelCase=0 , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = share_encoders lowerCamelCase_ = projection_dim
29
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="facebook/mbart-large-en-ro" ,lowerCAmelCase__=False ,lowerCAmelCase__=False ): lowerCamelCase_ = torch.load(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] remove_ignore_keys_(lowerCAmelCase__ ) lowerCamelCase_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowerCamelCase_ = MBartConfig.from_pretrained(lowerCAmelCase__ ,vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: lowerCamelCase_ = '''relu''' lowerCamelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase_ = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") A_ = parser.parse_args() A_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
29
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): # Initialise PyTorch model lowerCamelCase_ = BertConfig.from_json_file(lowerCAmelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) lowerCamelCase_ = BertForPreTraining(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() ,lowerCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = CanineTokenizer a__: Tuple = False def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self ): return CanineTokenizer.from_pretrained('''google/canine-s''' ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) lowerCamelCase_ = 1024 return tokenizer @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.canine_tokenizer lowerCamelCase_ = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off lowerCamelCase_ = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.canine_tokenizer lowerCamelCase_ = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] lowerCamelCase_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertIn('''token_type_ids''' , UpperCAmelCase ) @require_torch def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.canine_tokenizer lowerCamelCase_ = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] lowerCamelCase_ = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , truncation=UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCAmelCase__ ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) lowerCamelCase_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) lowerCamelCase_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase_ = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ = chr(0Xe_007 ) additional_special_tokens.append(UpperCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) lowerCamelCase_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn(UpperCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ , lowerCamelCase_ = self.get_clean_sequence(UpperCAmelCase ) # a special token for Canine can be defined as follows: lowerCamelCase_ = 0Xe_005 lowerCamelCase_ = chr(UpperCAmelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 1 ) lowerCamelCase_ = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , input_encoded + special_token_id ) lowerCamelCase_ = tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = chr(0Xe_005 ) lowerCamelCase_ = chr(0Xe_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=UpperCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , 1 ) self.assertEqual(len(UpperCAmelCase ) , 1 ) self.assertEqual(token_a[0] , UpperCAmelCase ) self.assertEqual(token_a[0] , UpperCAmelCase ) @require_tokenizers def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: lowerCamelCase_ = 0Xe_006 lowerCamelCase_ = chr(UpperCAmelCase ) lowerCamelCase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(UpperCAmelCase ) tokenizer.from_pretrained(UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase_ = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase_ = json.load(UpperCAmelCase ) # a special token for Canine can be defined as follows: lowerCamelCase_ = 0Xe_006 lowerCamelCase_ = chr(UpperCAmelCase ) lowerCamelCase_ = [new_token_a] lowerCamelCase_ = [new_token_a] with open(os.path.join(UpperCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ = tokenizer_class.from_pretrained(UpperCAmelCase , extra_ids=0 ) self.assertIn(UpperCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ = 0Xe_007 lowerCamelCase_ = chr(UpperCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ = [AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase )] lowerCamelCase_ = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , extra_ids=0 ) self.assertIn(UpperCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''hello world''' if self.space_between_special_tokens: lowerCamelCase_ = '''[CLS] hello world [SEP]''' else: lowerCamelCase_ = input lowerCamelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.decode(UpperCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(UpperCAmelCase , [output, output.lower()] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase_ = '''a''' lowerCamelCase_ = ord(UpperCAmelCase ) for attr in attributes_list: setattr(UpperCAmelCase , attr + '''_id''' , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , attr + '''_id''' ) , UpperCAmelCase ) setattr(UpperCAmelCase , attr + '''_id''' , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(getattr(UpperCAmelCase , attr + '''_id''' ) , UpperCAmelCase ) setattr(UpperCAmelCase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens_ids''' ) , [] ) lowerCamelCase_ = 0Xe_006 lowerCamelCase_ = chr(UpperCAmelCase ) setattr(UpperCAmelCase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(UpperCAmelCase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass
29
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( lowerCAmelCase ): a__: Any = (DDPMScheduler,) def UpperCAmelCase__ ( self , **UpperCAmelCase ): lowerCamelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase ) return config def UpperCAmelCase__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase ) def UpperCAmelCase__ ( self ): self.check_over_configs(thresholding=UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase , prediction_type=UpperCAmelCase , sample_max_value=UpperCAmelCase , ) def UpperCAmelCase__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def UpperCAmelCase__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = len(UpperCAmelCase ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter lowerCamelCase_ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase ) ): # 1. predict noise residual lowerCamelCase_ = model(UpperCAmelCase , UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase_ = pred_prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCAmelCase ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase ) lowerCamelCase_ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase ): if i == len(UpperCAmelCase ) - 1: lowerCamelCase_ = -1 else: lowerCamelCase_ = timesteps[i + 1] lowerCamelCase_ = scheduler.previous_timestep(UpperCAmelCase ) lowerCamelCase_ = prev_t.item() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [100, 87, 50, 1, 0] lowerCamelCase_ = len(UpperCAmelCase ) with self.assertRaises(UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase , timesteps=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCAmelCase ) lowerCamelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase )
29
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( lowerCAmelCase__ ): def wrapper(*lowerCAmelCase__ ,**lowerCAmelCase__ ): lowerCamelCase_ = timeit.default_timer() lowerCamelCase_ = func(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCamelCase_ = timeit.default_timer() - starttime return delta lowerCamelCase_ = func.__name__ return wrapper def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = [] lowerCamelCase_ = seq_shapes or {} for i in range(lowerCAmelCase__ ): lowerCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase__ ,_ArrayXD ): lowerCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase__ ,datasets.Value ): if v.dtype == "string": lowerCamelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase_ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase__ ,datasets.Sequence ): while isinstance(lowerCAmelCase__ ,datasets.Sequence ): lowerCamelCase_ = v.feature lowerCamelCase_ = seq_shapes[k] lowerCamelCase_ = np.random.rand(*lowerCAmelCase__ ).astype(v.dtype ) lowerCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=100 ,lowerCAmelCase__=None ): lowerCamelCase_ = generate_examples(lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes=lowerCAmelCase__ ) with ArrowWriter(features=lowerCAmelCase__ ,path=lowerCAmelCase__ ) as writer: for key, record in dummy_data: lowerCamelCase_ = features.encode_example(lowerCAmelCase__ ) writer.write(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCamelCase_ = datasets.Dataset.from_file(filename=lowerCAmelCase__ ,info=datasets.DatasetInfo(features=lowerCAmelCase__ ) ) return dataset
29
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCamelCase ( lowerCAmelCase ): a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) a__: Optional[Union[str, Path, GenerationConfig]] = field( default=lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = v.to_dict() return d
29
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[int] = 'decision_transformer' a__: str = ['past_key_values'] a__: Dict = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCAmelCase=17 , UpperCAmelCase=4 , UpperCAmelCase=128 , UpperCAmelCase=4096 , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=1024 , UpperCAmelCase=3 , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase="relu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0_2 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=5_0256 , UpperCAmelCase=5_0256 , UpperCAmelCase=False , UpperCAmelCase=False , **UpperCAmelCase , ): lowerCamelCase_ = state_dim lowerCamelCase_ = act_dim lowerCamelCase_ = hidden_size lowerCamelCase_ = max_ep_len lowerCamelCase_ = action_tanh lowerCamelCase_ = vocab_size lowerCamelCase_ = n_positions lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = n_inner lowerCamelCase_ = activation_function lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = scale_attn_weights lowerCamelCase_ = use_cache lowerCamelCase_ = scale_attn_by_inverse_layer_idx lowerCamelCase_ = reorder_and_upcast_attn lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
29
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A_ = True except ImportError: A_ = False try: from torch.hub import _get_torch_home A_ = _get_torch_home() except ImportError: A_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) A_ = os.path.join(torch_cache_home, """transformers""") A_ = """https://cdn.huggingface.co""" A_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" A_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) A_ = os.path.join(PATH, """config.yaml""") A_ = os.path.join(PATH, """attributes.txt""") A_ = os.path.join(PATH, """objects.txt""") A_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) A_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) A_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) A_ = """pytorch_model.bin""" A_ = """config.yaml""" def lowercase ( lowerCAmelCase__=OBJECTS ,lowerCAmelCase__=ATTRIBUTES ): lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) lowerCamelCase_ = [] with open(lowerCAmelCase__ ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = OrderedDict() with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = pkl.load(lowerCAmelCase__ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): lowerCamelCase_ = ckp.pop(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCamelCase_ = torch.tensor(lowerCAmelCase__ ) else: assert isinstance(lowerCAmelCase__ ,torch.tensor ), type(lowerCAmelCase__ ) lowerCamelCase_ = v return r class __lowerCamelCase : a__: Union[str, Any] = {} def __init__( self , UpperCAmelCase , UpperCAmelCase = "root" , UpperCAmelCase=0 ): lowerCamelCase_ = name lowerCamelCase_ = level lowerCamelCase_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = Config(UpperCAmelCase , name=UpperCAmelCase , level=level + 1 ) lowerCamelCase_ = v setattr(self , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = val lowerCamelCase_ = val lowerCamelCase_ = key.split('''.''' ) lowerCamelCase_ = len(UpperCAmelCase ) - 1 lowerCamelCase_ = self._pointer if len(UpperCAmelCase ) > 1: for i, l in enumerate(UpperCAmelCase ): if hasattr(self , UpperCAmelCase ) and isinstance(getattr(self , UpperCAmelCase ) , UpperCAmelCase ): setattr(getattr(self , UpperCAmelCase ) , '''.'''.join(levels[i:] ) , UpperCAmelCase ) if l == last_level: lowerCamelCase_ = val else: lowerCamelCase_ = pointer[l] def UpperCAmelCase__ ( self ): return self._pointer def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): with open(f"{file_name}" , '''w''' ) as stream: json.dump(UpperCAmelCase , UpperCAmelCase ) @staticmethod def UpperCAmelCase__ ( UpperCAmelCase ): with open(UpperCAmelCase ) as stream: lowerCamelCase_ = load(UpperCAmelCase , Loader=UpperCAmelCase ) return data def __str__( self ): lowerCamelCase_ = ''' ''' if self._name != "root": lowerCamelCase_ = f"{t * (self._level-1)}{self._name}:\n" else: lowerCamelCase_ = '''''' lowerCamelCase_ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCAmelCase , UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(UpperCAmelCase ).__name__})\n" lowerCamelCase_ = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ , lowerCamelCase_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) return cls(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''cache_dir''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''force_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''resume_download''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''proxies''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''local_files_only''' , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ): lowerCamelCase_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) elif os.path.isfile(UpperCAmelCase ) or is_remote_url(UpperCAmelCase ): lowerCamelCase_ = pretrained_model_name_or_path else: lowerCamelCase_ = hf_bucket_url(UpperCAmelCase , filename=UpperCAmelCase , use_cdn=UpperCAmelCase ) try: # Load from URL or cache if already cached lowerCamelCase_ = cached_path( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , local_files_only=UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowerCamelCase_ = Config.load_yaml(UpperCAmelCase ) except EnvironmentError: lowerCamelCase_ = '''Can\'t load config for''' raise EnvironmentError(UpperCAmelCase ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(UpperCAmelCase ), kwargs def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = torch.load('''dump.pt''' ,map_location=in_tensor.device ) lowerCamelCase_ = in_tensor.numpy() lowerCamelCase_ = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(lowerCAmelCase__ ,lowerCAmelCase__ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = urlparse(lowerCAmelCase__ ) return parsed.scheme in ("http", "https") def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): lowerCamelCase_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowerCamelCase_ = '''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ,): lowerCamelCase_ = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + "; ".join('''{}/{}'''.format(lowerCAmelCase__ ,lowerCAmelCase__ ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): ua += "; " + user_agent lowerCamelCase_ = {'''user-agent''': ua} if resume_size > 0: lowerCamelCase_ = '''bytes=%d-''' % (resume_size,) lowerCamelCase_ = requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,headers=lowerCAmelCase__ ) if response.status_code == 416: # Range not satisfiable return lowerCamelCase_ = response.headers.get('''Content-Length''' ) lowerCamelCase_ = resume_size + int(lowerCAmelCase__ ) if content_length is not None else None lowerCamelCase_ = tqdm( unit='''B''' ,unit_scale=lowerCAmelCase__ ,total=lowerCAmelCase__ ,initial=lowerCAmelCase__ ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase__ ) ) temp_file.write(lowerCAmelCase__ ) progress.close() def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=10 ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = None if not local_files_only: try: lowerCamelCase_ = requests.head(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,timeout=lowerCAmelCase__ ) if response.status_code == 200: lowerCamelCase_ = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowerCamelCase_ = url_to_filename(lowerCAmelCase__ ,lowerCAmelCase__ ) # get cache path to put the file lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase__ ): return cache_path else: lowerCamelCase_ = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase__ ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(lowerCAmelCase__ ) > 0: return os.path.join(lowerCAmelCase__ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase__ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowerCamelCase_ = cache_path + '''.lock''' with FileLock(lowerCAmelCase__ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase__ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowerCamelCase_ = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase__ ,'''a+b''' ) as f: yield f lowerCamelCase_ = _resumable_file_manager if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ = os.stat(lowerCAmelCase__ ).st_size else: lowerCamelCase_ = 0 else: lowerCamelCase_ = partial(tempfile.NamedTemporaryFile ,dir=lowerCAmelCase__ ,delete=lowerCAmelCase__ ) lowerCamelCase_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,lowerCAmelCase__ ,temp_file.name ,) http_get( lowerCAmelCase__ ,lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_size=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,) os.replace(temp_file.name ,lowerCAmelCase__ ) lowerCamelCase_ = {'''url''': url, '''etag''': etag} lowerCamelCase_ = cache_path + '''.json''' with open(lowerCAmelCase__ ,'''w''' ) as meta_file: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return cache_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ): lowerCamelCase_ = url.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) lowerCamelCase_ = url_hash.hexdigest() if etag: lowerCamelCase_ = etag.encode('''utf-8''' ) lowerCamelCase_ = shaaaa(lowerCAmelCase__ ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=None ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,): if cache_dir is None: lowerCamelCase_ = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) if is_remote_url(lowerCAmelCase__ ): # URL, so get it from the cache (downloading if necessary) lowerCamelCase_ = get_from_cache( lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,force_download=lowerCAmelCase__ ,proxies=lowerCAmelCase__ ,resume_download=lowerCAmelCase__ ,user_agent=lowerCAmelCase__ ,local_files_only=lowerCAmelCase__ ,) elif os.path.exists(lowerCAmelCase__ ): # File, and it exists. lowerCamelCase_ = url_or_filename elif urlparse(lowerCAmelCase__ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(lowerCAmelCase__ ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(lowerCAmelCase__ ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase__ ) and not tarfile.is_tarfile(lowerCAmelCase__ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowerCamelCase_ , lowerCamelCase_ = os.path.split(lowerCAmelCase__ ) lowerCamelCase_ = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowerCamelCase_ = output_path + '''.lock''' with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ ,ignore_errors=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ ) if is_zipfile(lowerCAmelCase__ ): with ZipFile(lowerCAmelCase__ ,'''r''' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase__ ): lowerCamelCase_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(lowerCAmelCase__ ) ) return output_path_extracted return output_path def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="," ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = eval(f.read() ) else: lowerCamelCase_ = requests.get(lowerCAmelCase__ ) try: lowerCamelCase_ = requests.json() except Exception: lowerCamelCase_ = req.content.decode() assert data is not None, "could not connect" try: lowerCamelCase_ = eval(lowerCAmelCase__ ) except Exception: lowerCamelCase_ = data.split('''\n''' ) req.close() return data def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = requests.get(lowerCAmelCase__ ) lowerCamelCase_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'''rb''' ) as stream: lowerCamelCase_ = pkl.load(lowerCAmelCase__ ) lowerCamelCase_ = weights.pop('''model''' ) lowerCamelCase_ = {} for k, v in model.items(): lowerCamelCase_ = torch.from_numpy(lowerCAmelCase__ ) if "running_var" in k: lowerCamelCase_ = torch.tensor([0] ) lowerCamelCase_ = k.replace('''running_var''' ,'''num_batches_tracked''' ) lowerCamelCase_ = zero return new def lowercase ( ): print(f"{os.path.abspath(os.path.join(lowerCAmelCase__ ,os.pardir ) )}/demo.ipynb" ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__="RGB" ): assert isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): lowerCamelCase_ = cva.imread(lowerCAmelCase__ ) else: lowerCamelCase_ = get_image_from_url(lowerCAmelCase__ ) assert img is not None, f"could not connect to: {im}" lowerCamelCase_ = cva.cvtColor(lowerCAmelCase__ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": lowerCamelCase_ = img[:, :, ::-1] return img def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ): return (images[i : i + batch] for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ))
29
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A_ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCAmelCase ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
29
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
1
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A_ = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ A_ = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ A_ = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=False ): if rouge_types is None: lowerCamelCase_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowerCamelCase_ = rouge_scorer.RougeScorer(rouge_types=UpperCAmelCase , use_stemmer=UpperCAmelCase ) if use_aggregator: lowerCamelCase_ = scoring.BootstrapAggregator() else: lowerCamelCase_ = [] for ref, pred in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = scorer.score(UpperCAmelCase , UpperCAmelCase ) if use_aggregator: aggregator.add_scores(UpperCAmelCase ) else: scores.append(UpperCAmelCase ) if use_aggregator: lowerCamelCase_ = aggregator.aggregate() else: lowerCamelCase_ = {} for key in scores[0]: lowerCamelCase_ = [score[key] for score in scores] return result
29
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase_ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase_ = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase_ = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits lowerCamelCase_ = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() lowerCamelCase_ = -(labels.shape[-1] * loss.item()) lowerCamelCase_ = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
29
1
"""simple docstring""" from __future__ import annotations import math def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if len(lowerCAmelCase__ ) != 2 or len(a[0] ) != 2 or len(lowerCAmelCase__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) lowerCamelCase_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCAmelCase__ ) ) ] def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCAmelCase__ ) ) ] def lowercase ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) lowerCamelCase_ = len(lowerCAmelCase__ ) lowerCamelCase_ = matrix_length // 2 lowerCamelCase_ = [[a[i][j] for j in range(lowerCAmelCase__ ,lowerCAmelCase__ )] for i in range(lowerCAmelCase__ )] lowerCamelCase_ = [ [a[i][j] for j in range(lowerCAmelCase__ ,lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ,lowerCAmelCase__ ) ] lowerCamelCase_ = [[a[i][j] for j in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ )] lowerCamelCase_ = [[a[i][j] for j in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ,lowerCAmelCase__ )] return top_left, top_right, bot_left, bot_right def lowercase ( lowerCAmelCase__ ): return len(lowerCAmelCase__ ), len(matrix[0] ) def lowercase ( lowerCAmelCase__ ): print('''\n'''.join(str(lowerCAmelCase__ ) for line in matrix ) ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if matrix_dimensions(lowerCAmelCase__ ) == (2, 2): return default_matrix_multiplication(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = split_matrix(lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = split_matrix(lowerCAmelCase__ ) lowerCamelCase_ = actual_strassen(lowerCAmelCase__ ,matrix_subtraction(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = actual_strassen(matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ) lowerCamelCase_ = actual_strassen(matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ) lowerCamelCase_ = actual_strassen(lowerCAmelCase__ ,matrix_subtraction(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = actual_strassen(matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ,matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = actual_strassen(matrix_subtraction(lowerCAmelCase__ ,lowerCAmelCase__ ) ,matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = actual_strassen(matrix_subtraction(lowerCAmelCase__ ,lowerCAmelCase__ ) ,matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = matrix_addition(matrix_subtraction(matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ) ,lowerCAmelCase__ ) lowerCamelCase_ = matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ) ,lowerCAmelCase__ ) # construct the new matrix from our 4 quadrants lowerCamelCase_ = [] for i in range(len(lowerCAmelCase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCAmelCase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if matrix_dimensions(lowerCAmelCase__ )[1] != matrix_dimensions(lowerCAmelCase__ )[0]: lowerCamelCase_ = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(lowerCAmelCase__ ) lowerCamelCase_ = matrix_dimensions(lowerCAmelCase__ ) lowerCamelCase_ = matrix_dimensions(lowerCAmelCase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowerCamelCase_ = max(*lowerCAmelCase__ ,*lowerCAmelCase__ ) lowerCamelCase_ = int(math.pow(2 ,math.ceil(math.loga(lowerCAmelCase__ ) ) ) ) lowerCamelCase_ = matrixa lowerCamelCase_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowerCAmelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowerCAmelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowerCAmelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowerCamelCase_ = actual_strassen(lowerCAmelCase__ ,lowerCAmelCase__ ) # Removing the additional zeros for i in range(0 ,lowerCAmelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowerCAmelCase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A_ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A_ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
29
"""simple docstring""" def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = generate_pascal_triangle(lowerCAmelCase__ ) for row_idx in range(lowerCAmelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=''' ''' ) else: print(triangle[row_idx][col_idx] ,end='''''' ) print() def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [] for current_row_idx in range(lowerCAmelCase__ ): lowerCamelCase_ = populate_current_row(lowerCAmelCase__ ,lowerCAmelCase__ ) triangle.append(lowerCAmelCase__ ) return triangle def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ , lowerCamelCase_ = 1, 1 for current_col_idx in range(1 ,lowerCAmelCase__ ): calculate_current_element( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return current_row def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def lowercase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCamelCase_ = [[1]] for row_index in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(lowerCAmelCase__ ,2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(lowerCAmelCase__ ) return result def lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) -> None: lowerCamelCase_ = f"{func.__name__}({value})" lowerCamelCase_ = timeit(f"__main__.{call}" ,setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase__ ,lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
29
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.0_2 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , UpperCAmelCase=0 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = projection_dim def UpperCAmelCase__ ( self ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFDPRContextEncoder(config=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFDPRQuestionEncoder(config=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = TFDPRReader(config=UpperCAmelCase ) lowerCamelCase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a__: Optional[int] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} a__: str = False a__: Any = False a__: int = False a__: Dict = False a__: Any = False def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFDPRModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRReader.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class __lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) lowerCamelCase_ = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase_ = model(UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = word.split() def justify(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) -> str: lowerCamelCase_ = max_width - width lowerCamelCase_ = len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase_ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase_ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase_ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCAmelCase__ ): num_spaces_between_words_list[i] += 1 lowerCamelCase_ = [] for i in range(lowerCAmelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCAmelCase__ ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = 0 for word in words: if width + len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCAmelCase__ ) width += len(lowerCAmelCase__ ) else: # justify the line and add it to result answer.append(justify(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) # reset new line and new width lowerCamelCase_ , lowerCamelCase_ = [word], len(lowerCAmelCase__ ) lowerCamelCase_ = max_width - width - len(lowerCAmelCase__ ) answer.append(''' '''.join(lowerCAmelCase__ ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
29
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ = [3, 3, 3, 3] lowerCamelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ = [4, 4, 4, 4] lowerCamelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ = [3, 3, 3, 3] else: lowerCamelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ = 96 elif "small" in model_name: lowerCamelCase_ = 96 elif "base" in model_name: lowerCamelCase_ = 128 elif "large" in model_name: lowerCamelCase_ = 192 elif "xlarge" in model_name: lowerCamelCase_ = 256 elif "huge" in model_name: lowerCamelCase_ = 352 # set label information lowerCamelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ = '''imagenet-22k-id2label.json''' else: lowerCamelCase_ = '''imagenet-1k-id2label.json''' lowerCamelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ ,lowerCAmelCase__ ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = FocalNetConfig( embed_dim=lowerCAmelCase__ ,depths=lowerCAmelCase__ ,focal_levels=lowerCAmelCase__ ,focal_windows=lowerCAmelCase__ ,use_conv_embed=lowerCAmelCase__ ,idalabel=lowerCAmelCase__ ,labelaid=lowerCAmelCase__ ,use_post_layernorm=lowerCAmelCase__ ,use_layerscale=lowerCAmelCase__ ,) return config def lowercase ( lowerCAmelCase__ ): if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('''patch_embed.proj''' ,'''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('''patch_embed.norm''' ,'''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ = name.replace('''encoder.layers''' ,'''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ = name.replace('''downsample.proj''' ,'''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ = name.replace('''blocks''' ,'''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ = name.replace('''modulation.f''' ,'''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ = name.replace('''modulation.h''' ,'''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ = name.replace('''modulation.proj''' ,'''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ = '''layernorm.bias''' if "head" in name: lowerCamelCase_ = name.replace('''head''' ,'''classifier''' ) else: lowerCamelCase_ = '''focalnet.''' + name return name def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): # fmt: off lowerCamelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' ,lowerCAmelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) lowerCamelCase_ = val lowerCamelCase_ = get_focalnet_config(lowerCAmelCase__ ) lowerCamelCase_ = FocalNetForImageClassification(lowerCAmelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCAmelCase__ ) # verify conversion lowerCamelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ ,size={'''shortest_edge''': 256} ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowerCAmelCase__ ,crop_size=224 ,do_normalize=lowerCAmelCase__ ,image_mean=lowerCAmelCase__ ,image_std=lowerCAmelCase__ ,) lowerCamelCase_ = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ = processor(images=lowerCAmelCase__ ,return_tensors='''pt''' ) lowerCamelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase_ = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values ,lowerCAmelCase__ ,atol=1E-4 ) lowerCamelCase_ = model(**lowerCAmelCase__ ) lowerCamelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' ,outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowerCamelCase_ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowerCamelCase_ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ): if start is None: lowerCamelCase_ = 0 if end is None: lowerCamelCase_ = len(lowerCAmelCase__ ) - 1 if start >= end: return lowerCamelCase_ = (start + end) // 2 slowsort(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) slowsort(lowerCAmelCase__ ,mid + 1 ,lowerCAmelCase__ ) if sequence[end] < sequence[mid]: lowerCamelCase_ , lowerCamelCase_ = sequence[mid], sequence[end] slowsort(lowerCAmelCase__ ,lowerCAmelCase__ ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging A_ = logging.get_logger(__name__) class __lowerCamelCase : a__: Tuple = None @experimental def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return _map_with_joblib(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = num_proc if num_proc <= len(lowerCAmelCase__ ) else len(lowerCAmelCase__ ) lowerCamelCase_ = [] # We organize the splits ourselve (contiguous splits) for index in range(lowerCAmelCase__ ): lowerCamelCase_ = len(lowerCAmelCase__ ) // num_proc lowerCamelCase_ = len(lowerCAmelCase__ ) % num_proc lowerCamelCase_ = div * index + min(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowerCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"Error dividing inputs iterable among processes. " f"Total number of objects {len(lowerCAmelCase__ )}, " f"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( f"Spawning {num_proc} processes for {len(lowerCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) lowerCamelCase_ , lowerCamelCase_ = None, None if not disable_tqdm: lowerCamelCase_ , lowerCamelCase_ = (RLock(),), tqdm.set_lock with Pool(lowerCAmelCase__ ,initargs=lowerCAmelCase__ ,initializer=lowerCAmelCase__ ) as pool: lowerCamelCase_ = pool.map(lowerCAmelCase__ ,lowerCAmelCase__ ) logger.info(f"Finished {num_proc} processes" ) lowerCamelCase_ = [obj for proc_res in mapped for obj in proc_res] logger.info(f"Unpacked {len(lowerCAmelCase__ )} objects" ) return mapped def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name ,n_jobs=lowerCAmelCase__ ): return joblib.Parallel()( joblib.delayed(lowerCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase_ = None
29
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ A_ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ A_ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ,lowerCAmelCase__=False ,lowerCAmelCase__=True ,lowerCAmelCase__=False ,lowerCAmelCase__="dummy_doc" ): lowerCamelCase_ = {doc: key_lines} lowerCamelCase_ = {doc: sys_lines} lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ , lowerCamelCase_ = reader.get_doc_mentions(lowerCAmelCase__ ,sys_doc_lines[doc] ,lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCamelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ ,key_doc_lines[doc] ,lowerCAmelCase__ ,lowerCAmelCase__ ) if remove_nested: lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCamelCase_ , lowerCamelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ ,lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = reader.get_mention_assignments(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = get_coref_infos(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 0 lowerCamelCase_ = 0 for name, metric in metrics: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ ,lowerCAmelCase__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) ,f"Recall: {recall * 100:.2f}" ,f" Precision: {precision * 100:.2f}" ,f" F1: {fa * 100:.2f}" ,) if conll_subparts_num == 3: lowerCamelCase_ = (conll / 3) * 100 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: lowerCamelCase_ = line.split()[5] if not parse_col == "-": lowerCamelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ): lowerCamelCase_ = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: lowerCamelCase_ = util.check_gold_parse_annotation(UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCamelCase_ = evaluate( key_lines=UpperCAmelCase , sys_lines=UpperCAmelCase , metrics=UpperCAmelCase , NP_only=UpperCAmelCase , remove_nested=UpperCAmelCase , keep_singletons=UpperCAmelCase , min_span=UpperCAmelCase , ) return score
29
1
"""simple docstring""" import string from math import logaa def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase_ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase_ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCAmelCase__ )) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return round(tf * idf ,3 )
29
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
1
"""simple docstring""" from __future__ import annotations import math def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = u for i in range(1 ,lowerCAmelCase__ ): lowerCamelCase_ = temp * (u - i) return temp def lowercase ( ): lowerCamelCase_ = int(input('''enter the numbers of values: ''' ) ) lowerCamelCase_ = [] for _ in range(lowerCAmelCase__ ): y.append([] ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): y[i].append(lowerCAmelCase__ ) lowerCamelCase_ = 0 print('''enter the values of parameters in a list: ''' ) lowerCamelCase_ = list(map(lowerCAmelCase__ ,input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(lowerCAmelCase__ ): lowerCamelCase_ = float(input() ) lowerCamelCase_ = int(input('''enter the value to interpolate: ''' ) ) lowerCamelCase_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,lowerCAmelCase__ ): for j in range(n - i ): lowerCamelCase_ = y[j + 1][i - 1] - y[j][i - 1] lowerCamelCase_ = y[0][0] for i in range(1 ,lowerCAmelCase__ ): summ += (ucal(lowerCAmelCase__ ,lowerCAmelCase__ ) * y[0][i]) / math.factorial(lowerCAmelCase__ ) print(f"the value at {value} is {summ}" ) if __name__ == "__main__": main()
29
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowerCamelCase : a__: List[str] a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='Translation' , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCAmelCase__ ( self ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class __lowerCamelCase : a__: Optional[List] = None a__: Optional[int] = None a__: Optional[str] = None # Automatically constructed a__: ClassVar[str] = "dict" a__: ClassVar[Any] = None a__: str = field(default='TranslationVariableLanguages' , init=lowerCAmelCase , repr=lowerCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = set(self.languages ) if self.languages and set(UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ , lowerCamelCase_ = zip(*sorted(UpperCAmelCase ) ) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
29
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = [True] * n lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): lowerCamelCase_ = i * 2 while index < n: lowerCamelCase_ = False lowerCamelCase_ = index + i lowerCamelCase_ = [2] for i in range(3 ,lowerCAmelCase__ ,2 ): if is_prime[i]: primes.append(lowerCAmelCase__ ) return primes def lowercase ( lowerCAmelCase__ = 999_966_663_333 ): lowerCamelCase_ = math.floor(math.sqrt(lowerCAmelCase__ ) ) + 100 lowerCamelCase_ = prime_sieve(lowerCAmelCase__ ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = primes[prime_index] while (last_prime**2) <= limit: lowerCamelCase_ = primes[prime_index + 1] lowerCamelCase_ = last_prime**2 lowerCamelCase_ = next_prime**2 # Get numbers divisible by lps(current) lowerCamelCase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCamelCase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCamelCase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCamelCase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def lowercase ( lowerCAmelCase__ ): if hor == 128: lowerCamelCase_ = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') lowerCamelCase_ = (32, 128, 256) lowerCamelCase_ = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: lowerCamelCase_ = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') lowerCamelCase_ = (32, 64, 128, 256) lowerCamelCase_ = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') lowerCamelCase_ = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) lowerCamelCase_ = model.state_dict() lowerCamelCase_ = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 65_536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } lowerCamelCase_ = UNetaDModel(**lowerCAmelCase__ ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) hf_value_function.load_state_dict(lowerCAmelCase__ ) torch.save(hf_value_function.state_dict() ,f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" ,'''w''' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( ): lowerCamelCase_ = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 65_536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } lowerCamelCase_ = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) lowerCamelCase_ = model lowerCamelCase_ = UNetaDModel(**lowerCAmelCase__ ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase_ = state_dict.pop(lowerCAmelCase__ ) hf_value_function.load_state_dict(lowerCAmelCase__ ) torch.save(hf_value_function.state_dict() ,'''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' ,'''w''' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
29
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict A_ = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = _TestCommandArgs(dataset=lowerCAmelCase__ ,all_configs=lowerCAmelCase__ ,save_infos=lowerCAmelCase__ ) lowerCamelCase_ = TestCommand(*lowerCAmelCase__ ) test_command.run() lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowerCamelCase_ = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 2_351_563, '''num_examples''': 10_000, }, { '''name''': '''validation''', '''num_bytes''': 238_418, '''num_examples''': 1_000, }, ] ,download_size=3_940_680 ,dataset_size=2_589_981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCamelCase_ , lowerCamelCase_ = getattr(dataset_infos['''default'''] ,lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] ,lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ ,lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
29
1