code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
_lowerCAmelCase: Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase: int = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase: Any = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def _lowercase( __a : int , __a : int , __a : int ): assert len(str(__a ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a__ =year // 100 a__ =(5 * (century % 4) + 2) % 7 a__ =year % 100 a__ =centurian % 12 a__ =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a__ =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) a__ =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class __A ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCamelCase = Features({"""text""": Value("""string""" )} ) UpperCamelCase = Features({"""labels""": ClassLabel} ) UpperCamelCase = "text" UpperCamelCase = "labels" def A__ ( self :Any , __snake_case :Tuple ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __magic_name__ : Union[str, Any] =copy.deepcopy(self ) __magic_name__ : str =self.label_schema.copy() __magic_name__ : str =features[self.label_column] __magic_name__ : str =label_schema return task_template @property def A__ ( self :Optional[Any] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
21
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : str = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig snake_case__ : int = logging.get_logger(__name__) # General docstring snake_case__ : List[str] = """RegNetConfig""" # Base docstring snake_case__ : Any = """facebook/regnet-y-040""" snake_case__ : Any = [1, 1_0_8_8, 7, 7] # Image classification docstring snake_case__ : List[Any] = """facebook/regnet-y-040""" snake_case__ : Union[str, Any] = """tabby, tabby cat""" snake_case__ : Optional[int] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , **_UpperCAmelCase , ) -> Tuple: super().__init__(**_UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase_ = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=_UpperCAmelCase , strides=_UpperCAmelCase , padding='VALID' , groups=_UpperCAmelCase , use_bias=_UpperCAmelCase , name='convolution' , ) UpperCamelCase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase_ = ACTaFN[activation] if activation is not None else tf.identity def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: UpperCamelCase_ = self.convolution(self.padding(_UpperCAmelCase ) ) UpperCamelCase_ = self.normalization(_UpperCAmelCase ) UpperCamelCase_ = self.activation(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = config.num_channels UpperCamelCase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = shape_list(_UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase_ = tf.transpose(_UpperCAmelCase , perm=(0, 2, 3, 1) ) UpperCamelCase_ = self.embedder(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> Union[str, Any]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=1 , strides=_UpperCAmelCase , use_bias=_UpperCAmelCase , name='convolution' ) UpperCamelCase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False ) -> tf.Tensor: return self.normalization(self.convolution(_UpperCAmelCase ) , training=_UpperCAmelCase ) class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name='pooler' ) UpperCamelCase_ = [ tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCamelCase_ = self.pooler(_UpperCAmelCase ) for layer_module in self.attention: UpperCamelCase_ = layer_module(_UpperCAmelCase ) UpperCamelCase_ = hidden_state * pooled return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> List[str]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = max(1 , out_channels // config.groups_width ) UpperCamelCase_ = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase_ = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name='layer.2' ), ] UpperCamelCase_ = ACTaFN[config.hidden_act] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = hidden_state for layer_module in self.layers: UpperCamelCase_ = layer_module(_UpperCAmelCase ) UpperCamelCase_ = self.shortcut(_UpperCAmelCase ) hidden_state += residual UpperCamelCase_ = self.activation(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = max(1 , out_channels // config.groups_width ) UpperCamelCase_ = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase_ = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name='layer.3' ), ] UpperCamelCase_ = ACTaFN[config.hidden_act] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = hidden_state for layer_module in self.layers: UpperCamelCase_ = layer_module(_UpperCAmelCase ) UpperCamelCase_ = self.shortcut(_UpperCAmelCase ) hidden_state += residual UpperCamelCase_ = self.activation(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> List[Any]: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase_ = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , name='layers.0' ), *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Union[str, Any]: for layer_module in self.layers: UpperCamelCase_ = layer_module(_UpperCAmelCase ) return hidden_state class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> str: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase , name=f"""stages.{i+1}""" ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: UpperCamelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) UpperCamelCase_ = stage_module(_UpperCAmelCase ) if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) @keras_serializable class _a ( tf.keras.layers.Layer ): """simple docstring""" A_ = RegNetConfig def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = config UpperCamelCase_ = TFRegNetEmbeddings(_UpperCAmelCase , name='embedder' ) UpperCamelCase_ = TFRegNetEncoder(_UpperCAmelCase , name='encoder' ) UpperCamelCase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name='pooler' ) @unpack_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.embedder(_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = encoder_outputs[0] UpperCamelCase_ = self.pooler(_UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules UpperCamelCase_ = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) UpperCamelCase_ = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase_ = tuple([tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = RegNetConfig A_ = """regnet""" A_ = """pixel_values""" @property def _UpperCAmelCase ( self ) -> Tuple: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} snake_case__ : Dict = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ snake_case__ : Optional[Any] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , UpperCAmelCase__ , ) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = TFRegNetMainLayer(_UpperCAmelCase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.regnet( pixel_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase__ , ) class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = config.num_labels UpperCamelCase_ = TFRegNetMainLayer(_UpperCAmelCase , name='regnet' ) # classification head UpperCamelCase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.regnet( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCamelCase_ = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase_ = self.classifier[0](_UpperCAmelCase ) UpperCamelCase_ = self.classifier[1](_UpperCAmelCase ) UpperCamelCase_ = None if labels is None else self.hf_compute_loss(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) if not return_dict: UpperCamelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
23
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCamelCase (_lowerCamelCase : Any )-> Any: '''simple docstring''' __snake_case = filter(lambda _lowerCamelCase : p.requires_grad , model.parameters() ) __snake_case = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) def _UpperCamelCase (_lowerCamelCase : Optional[Any] , _lowerCamelCase : int )-> List[str]: '''simple docstring''' if metric == "rouge2": __snake_case = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __snake_case = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __snake_case = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __snake_case = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) __snake_case = ModelCheckpoint( dirpath=_lowerCamelCase , filename=_lowerCamelCase , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : str )-> str: '''simple docstring''' return EarlyStopping( monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_lowerCamelCase , verbose=_lowerCamelCase , ) class lowerCAmelCase ( pl.Callback): def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __snake_case = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) @rank_zero_only def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ) -> None: '''simple docstring''' logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) __snake_case = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __snake_case = Path(pl_module.hparams.output_dir ) if type_path == "test": __snake_case = od / '''test_results.txt''' __snake_case = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __snake_case = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' __snake_case = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''a+''' ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue __snake_case = metrics[key] if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): __snake_case = val.item() __snake_case = F'''{key}: {val:.6f}\n''' writer.write(__SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: __snake_case = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__SCREAMING_SNAKE_CASE ) @rank_zero_only def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' try: __snake_case = pl_module.model.model.num_parameters() except AttributeError: __snake_case = pl_module.model.num_parameters() __snake_case = count_trainable_parameters(__SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''test''' ) @rank_zero_only def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
24
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
import argparse import struct import unittest class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : bytes ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = data # Initialize hash values SCREAMING_SNAKE_CASE : Tuple = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants SCREAMING_SNAKE_CASE : str = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] SCREAMING_SNAKE_CASE : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def __UpperCamelCase ( a : bytes ) -> bytes: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = B"\x80" + (B"\x00" * (63 - (len(a ) + 8) % 64)) SCREAMING_SNAKE_CASE : Optional[int] = struct.pack(">Q" , (len(a ) * 8) ) return data + padding + big_endian_integer def __UpperCamelCase ( self : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE : Any = list(struct.unpack(">16L" , a ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE : str = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression SCREAMING_SNAKE_CASE : List[str] = self.ror(a , 6 ) ^ self.ror(a , 11 ) ^ self.ror(a , 25 ) SCREAMING_SNAKE_CASE : Tuple = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) SCREAMING_SNAKE_CASE : Tuple = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 SCREAMING_SNAKE_CASE : Any = self.ror(a , 2 ) ^ self.ror(a , 13 ) ^ self.ror(a , 22 ) SCREAMING_SNAKE_CASE : List[str] = (a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE : Any = (sa + maj) % 0x100_000_000 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) SCREAMING_SNAKE_CASE : Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE : int = "".join([hex(a )[2:].zfill(8 ) for value in self.hashes] ) def __UpperCamelCase ( self : List[str] , a : int , a : int ) -> int: """simple docstring""" return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Optional[Any] ) -> None: """simple docstring""" import hashlib SCREAMING_SNAKE_CASE : Tuple = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(a ).hash , hashlib.shaaaa(a ).hexdigest() ) def lowerCamelCase__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file") SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb") as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() else: SCREAMING_SNAKE_CASE : List[Any] = bytes(_a , "utf-8") print(SHAaaa(_a).hash) if __name__ == "__main__": main()
25
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
26
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __A : Optional[Any] = logging.get_logger(__name__) __A : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A : List[str] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __A : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __A : Any = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __A : int = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __A : Union[str, Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __A : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __A : List[Any] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = DPRContextEncoderTokenizer class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = DPRQuestionEncoderTokenizer __A : List[str] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A : Optional[int] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A : Union[str, Any] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__snake_case ) class lowerCamelCase: '''simple docstring''' def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: _A = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) _A = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] _A = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] _A = len(snake_case_ ) _A = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages assert len(snake_case_ ) == len( snake_case_ ), F"There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts." _A = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )['input_ids'] _A = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )['input_ids'] _A = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: _A = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = 16 , snake_case_ = 64 , snake_case_ = 4 , ): _A = reader_input['input_ids'] _A, _A, _A = reader_output[:3] _A = len(snake_case_ ) _A = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) _A = [] for doc_id in sorted_docs: _A = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A = sequence_ids.index(self.pad_token_id ) else: _A = len(snake_case_ ) _A = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _A = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) _A = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" _A = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class lowerCamelCase( __snake_case , __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = READER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = READER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = ['input_ids', 'attention_mask'] __magic_name__ = DPRReaderTokenizer
27
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' from math import ceil def lowercase__( __UpperCamelCase: int = 10_01 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE : str = 2 * i + 1 SCREAMING_SNAKE_CASE : Tuple = 2 * i SCREAMING_SNAKE_CASE : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCamelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
28
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=() ,lowerCAmelCase__=None ,lowerCAmelCase__="no" ,lowerCAmelCase__="29500" ): lowerCamelCase_ = False lowerCamelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCamelCase_ = True elif "IPython" in sys.modules: lowerCamelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCamelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' ,lowerCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCamelCase_ = 8 lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*lowerCAmelCase__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase__ ,master_addr='''127.0.01''' ,master_port=lowerCAmelCase__ ,mixed_precision=lowerCAmelCase__ ): lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=() ,lowerCAmelCase__=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase__ ,master_addr='''127.0.01''' ,master_port='''29500''' ,accelerate_mixed_precision='''no''' ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu='''yes''' ,): lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,debug=lowerCAmelCase__ ) start_processes(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' )
29
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
import math def lowerCamelCase__ ( _lowercase ): '''simple docstring''' assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase_ : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( _lowercase , _lowercase=1 , **_lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = factor * value UpperCAmelCase_ : List[str] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
30
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
class lowerCamelCase_ : # Public class to implement a graph '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[list[bool]] ): SCREAMING_SNAKE_CASE_ = row SCREAMING_SNAKE_CASE_ = col SCREAMING_SNAKE_CASE_ = graph def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[list[bool]] ): # Checking all 8 elements surrounding nth element SCREAMING_SNAKE_CASE_ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE_ = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE_ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): # And finally, count all islands. SCREAMING_SNAKE_CASE_ = [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE_ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += 1 return count
31
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __UpperCamelCase ( A__ ): def UpperCamelCase( self , _UpperCamelCase ): with open(_UpperCamelCase , encoding='''utf-8''' ) as input_file: _UpperCAmelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _UpperCAmelCase = input_file.read() _UpperCAmelCase = regexp.search(_UpperCamelCase ) return match def UpperCamelCase( self , _UpperCamelCase ): with open(_UpperCamelCase , encoding='''utf-8''' ) as input_file: _UpperCAmelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCAmelCase = regexp.finditer(_UpperCamelCase ) _UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase( self ): _UpperCAmelCase = Path('''./datasets''' ) _UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCamelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def UpperCamelCase( self ): _UpperCAmelCase = Path('''./datasets''' ) _UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCamelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
32
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : str = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'trajectory_transformer' __lowercase : List[Any] = ['past_key_values'] __lowercase : Dict = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self:List[Any] , _a:Any=1_00 , _a:List[str]=5 , _a:Optional[Any]=1 , _a:List[Any]=1 , _a:Optional[int]=2_49 , _a:Dict=6 , _a:int=17 , _a:Union[str, Any]=25 , _a:Optional[Any]=4 , _a:Union[str, Any]=4 , _a:int=1_28 , _a:Optional[Any]=0.1 , _a:Tuple=0.1 , _a:List[Any]=0.1 , _a:List[str]=0.0006 , _a:List[str]=5_12 , _a:Tuple=0.02 , _a:Optional[Any]=1e-12 , _a:Tuple=1 , _a:Dict=True , _a:str=1 , _a:Union[str, Any]=5_02_56 , _a:List[str]=5_02_56 , **_a:List[str] , ): snake_case__ = vocab_size snake_case__ = action_weight snake_case__ = reward_weight snake_case__ = value_weight snake_case__ = max_position_embeddings snake_case__ = block_size snake_case__ = action_dim snake_case__ = observation_dim snake_case__ = transition_dim snake_case__ = learning_rate snake_case__ = n_layer snake_case__ = n_head snake_case__ = n_embd snake_case__ = embd_pdrop snake_case__ = attn_pdrop snake_case__ = resid_pdrop snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = kaiming_initializer_range snake_case__ = use_cache super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
33
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ :Tuple = logging.get_logger(__name__) a_ :int = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = '''yolos''' def __init__( self : Union[str, Any] , _lowercase : List[Any]=7_68 , _lowercase : Dict=12 , _lowercase : Tuple=12 , _lowercase : Tuple=30_72 , _lowercase : Any="gelu" , _lowercase : Optional[int]=0.0 , _lowercase : Tuple=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=1E-12 , _lowercase : str=[5_12, 8_64] , _lowercase : Tuple=16 , _lowercase : Optional[Any]=3 , _lowercase : List[str]=True , _lowercase : Optional[int]=1_00 , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=False , _lowercase : Optional[int]=1 , _lowercase : Any=5 , _lowercase : Tuple=2 , _lowercase : Optional[int]=5 , _lowercase : List[str]=2 , _lowercase : str=0.1 , **_lowercase : List[str] , ): super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = image_size SCREAMING_SNAKE_CASE__ : str = patch_size SCREAMING_SNAKE_CASE__ : str = num_channels SCREAMING_SNAKE_CASE__ : Dict = qkv_bias SCREAMING_SNAKE_CASE__ : Optional[Any] = num_detection_tokens SCREAMING_SNAKE_CASE__ : Tuple = use_mid_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[int] = class_cost SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_cost SCREAMING_SNAKE_CASE__ : Union[str, Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : Dict = eos_coefficient class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[Any] = version.parse('''1.11''' ) @property def lowercase__ ( self : Union[str, Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Any ): return 1E-4 @property def lowercase__ ( self : Tuple ): return 12
35
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase ( __A : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: '''simple docstring''' snake_case : str = [] snake_case : Optional[int] = [] snake_case : str = [] for rt in rc.restypes: snake_case : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case : List[str] = {name: i for i, name in enumerate(__A )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case : List[Any] = torch.tensor( __A , dtype=torch.intaa , device=protein["""aatype"""].device , ) snake_case : int = torch.tensor( __A , dtype=torch.intaa , device=protein["""aatype"""].device , ) snake_case : Tuple = torch.tensor( __A , dtype=torch.floataa , device=protein["""aatype"""].device , ) snake_case : List[str] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case : Any = restype_atomaa_to_atomaa[protein_aatype] snake_case : Dict = restype_atomaa_mask[protein_aatype] snake_case : str = residx_atomaa_mask snake_case : Optional[int] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case : Tuple = restype_atomaa_to_atomaa[protein_aatype] snake_case : Optional[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case : int = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case : Optional[Any] = rc.restype_atoa[restype_letter] snake_case : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case : int = rc.atom_order[atom_name] snake_case : Union[str, Any] = 1 snake_case : Any = restype_atomaa_mask[protein_aatype] snake_case : Union[str, Any] = residx_atomaa_mask return protein def lowercase ( __A : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: '''simple docstring''' snake_case : Tuple = tree_map(lambda __A : torch.tensor(__A , device=batch["""aatype"""].device ) , __A , np.ndarray ) snake_case : int = tensor_tree_map(lambda __A : np.array(__A ) , make_atomaa_masks(__A ) ) return out
36
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : List[str] = logging.get_logger(__name__) def UpperCamelCase_ ( __a , __a=False ) -> str: a__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCamelCase_ ( __a , __a , __a=False ) -> List[str]: for i in range(config.num_hidden_layers ): if base_model: a__ : Union[str, Any] = "" else: a__ : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) a__ : Any = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : List[str] = in_proj_weight[ : config.hidden_size, : ] a__ : List[Any] = in_proj_bias[: config.hidden_size] a__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : str = in_proj_weight[ -config.hidden_size :, : ] a__ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__a , __a ) def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]: a__ : Optional[int] = dct.pop(__a ) a__ : str = val def UpperCamelCase_ ( ) -> Dict: a__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( __a , __a , __a=True ) -> str: a__ : Tuple = ViTConfig() # patch_size if model_name[-1] == "8": a__ : Any = 8 # set labels if required if not base_model: a__ : str = 1_000 a__ : Tuple = "huggingface/label-files" a__ : int = "imagenet-1k-id2label.json" a__ : Dict = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) a__ : List[Any] = {int(__a ): v for k, v in idalabel.items()} a__ : Tuple = idalabel a__ : Any = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a__ : Dict = 384 a__ : Tuple = 1_536 a__ : str = 12 a__ : Union[str, Any] = 6 # load original model from torch hub a__ : List[Any] = torch.hub.load("facebookresearch/dino:main" , __a ) original_model.eval() # load state_dict of original model, remove and rename some keys a__ : Dict = original_model.state_dict() if base_model: remove_classification_head_(__a ) a__ : Any = create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if base_model: a__ : List[str] = ViTModel(__a , add_pooling_layer=__a ).eval() else: a__ : List[str] = ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor a__ : Optional[int] = ViTImageProcessor() a__ : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) a__ : List[str] = encoding["pixel_values"] a__ : List[Any] = model(__a ) if base_model: a__ : List[Any] = original_model(__a ) assert torch.allclose(__a , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: a__ : List[str] = original_model(__a ) assert logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) UpperCamelCase : int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
37
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A_ : Union[str, Any] = None A_ : Dict = logging.get_logger(__name__) A_ : str = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} A_ : str = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } A_ : Tuple = { "google/rembert": 256, } A_ : List[Any] = "▁" class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RemBertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , **__SCREAMING_SNAKE_CASE , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Tuple = remove_space snake_case__ : List[Any] = keep_accents snake_case__ : List[Any] = vocab_file snake_case__ : str = False if not self.vocab_file else True def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Optional[int] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error("""Vocabulary path ({}) should be a directory""".format(__SCREAMING_SNAKE_CASE ) ) return snake_case__ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
38
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = "biogpt" def __init__( self : Optional[Any] , _UpperCamelCase : List[str]=4_2_3_8_4 , _UpperCamelCase : Tuple=1_0_2_4 , _UpperCamelCase : Dict=2_4 , _UpperCamelCase : List[Any]=1_6 , _UpperCamelCase : str=4_0_9_6 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Dict=1_0_2_4 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : str=1 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : int=2 , **_UpperCamelCase : Tuple , ) ->List[Any]: snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = scale_embedding snake_case_ = use_cache snake_case_ = layerdrop snake_case_ = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
from __future__ import annotations def UpperCamelCase ( snake_case__ : list[int] ) -> int: if not nums: return 0 UpperCamelCase : Any = nums[0] UpperCamelCase : List[Any] = 0 for num in nums[1:]: UpperCamelCase , UpperCamelCase : Any = ( max_excluding + num, max(snake_case__ , snake_case__ ), ) return max(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A ( A__ , A__ ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' ) __lowercase = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository __lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowercase = v else: __lowercase = v __lowercase = chkpt['''params'''] __lowercase = {n: v for n, v in config.items() if not isinstance(A__ , (torch.FloatTensor, numpy.ndarray) )} __lowercase = chkpt['''dico_word2id'''] __lowercase = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model __lowercase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __lowercase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(A__ , A__ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A__ , indent=2 ) + '''\n''' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
41
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 10_00 ) -> int: return sum(e for e in range(3 ,__UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
42
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCAmelCase = 'bart' lowerCAmelCase = True @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" if LOAD_DENSE_INDEX: lowercase__ = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) lowercase__ = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) lowercase__ = qar_model.eval() else: lowercase__ , lowercase__ = (None, None) if MODEL_TYPE == "bart": lowercase__ = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) lowercase__ = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) lowercase__ = sas_model.eval() else: lowercase__ , lowercase__ = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" if LOAD_DENSE_INDEX: lowercase__ = faiss.StandardGpuResources() lowercase__ = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] lowercase__ = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) lowercase__ = faiss.IndexFlatIP(1_28 ) lowercase__ = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE , 1 , SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: lowercase__ , lowercase__ = (None, None) lowercase__ = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) lowercase__ = elia['''train_eli5'''] lowercase__ = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) lowercase__ = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = load_indexes() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = load_models() lowerCAmelCase, lowerCAmelCase = load_train_data() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=10 ): """simple docstring""" lowercase__ = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = eli5_train_q_index.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = [elia_train[int(SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="wiki40b" , SCREAMING_SNAKE_CASE="dense" , SCREAMING_SNAKE_CASE=10 ): """simple docstring""" if source == "none": lowercase__ , lowercase__ = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": lowercase__ , lowercase__ = query_qa_dense_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: lowercase__ , lowercase__ = query_es_index( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index_name='''english_wiki40b_snippets_100w''' , n_results=SCREAMING_SNAKE_CASE , ) lowercase__ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowercase__ = '''question: {} context: {}'''.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE : None), } ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2_56 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.95 , SCREAMING_SNAKE_CASE=0.8 ): """simple docstring""" with torch.no_grad(): lowercase__ = qa_sas_generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE , min_len=SCREAMING_SNAKE_CASE , max_len=SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , temp=SCREAMING_SNAKE_CASE , top_p=SCREAMING_SNAKE_CASE , top_k=SCREAMING_SNAKE_CASE , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar lowerCAmelCase = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' lowerCAmelCase = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCAmelCase = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) lowerCAmelCase = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] lowerCAmelCase = st.sidebar.checkbox('Demo options') if demo_options: lowerCAmelCase = st.sidebar.selectbox( '', action_list, index=3, ) lowerCAmelCase = action_list.index(action_st) lowerCAmelCase = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) lowerCAmelCase = show_type == 'Show full text of passages' else: lowerCAmelCase = 3 lowerCAmelCase = True lowerCAmelCase = st.sidebar.checkbox('Retrieval options') if retrieval_options: lowerCAmelCase = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) lowerCAmelCase = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) lowerCAmelCase = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: lowerCAmelCase = 'wiki40b' lowerCAmelCase = 'dense' lowerCAmelCase = 'beam' lowerCAmelCase = 2 lowerCAmelCase = 64 lowerCAmelCase = 256 lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = st.sidebar.checkbox('Generation options') if generate_options: lowerCAmelCase = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) lowerCAmelCase = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) lowerCAmelCase = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowerCAmelCase = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowerCAmelCase = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCAmelCase = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) lowerCAmelCase = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) lowerCAmelCase = None # start main text lowerCAmelCase = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] lowerCAmelCase = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCAmelCase = st.text_input('Enter your question here:', '') else: lowerCAmelCase = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": lowerCAmelCase, lowerCAmelCase = make_support(question, source=wiki_source, method='dense', n_results=10) lowerCAmelCase, lowerCAmelCase = make_support(question, source=wiki_source, method='sparse', n_results=10) lowerCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCAmelCase = support_list[:10] lowerCAmelCase = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: lowerCAmelCase, lowerCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCAmelCase, lowerCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): lowerCAmelCase = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) lowerCAmelCase = res[1].strip() if sec_titles == "": lowerCAmelCase = '[{}]({})'.format(res[0], wiki_url) else: lowerCAmelCase = sec_titles.split(' & ') lowerCAmelCase = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: lowerCAmelCase = find_nearest_training(question) lowerCAmelCase = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) lowerCAmelCase = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) lowerCAmelCase = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
43
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'char' lowerCAmelCase_ = 'bpe' lowerCAmelCase_ = 'wp' UpperCAmelCase_ : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'char_tokenizer'] lowerCAmelCase_ = 'ViTImageProcessor' lowerCAmelCase_ = 'MgpstrTokenizer' def __init__( self : List[str],__A : Union[str, Any]=None,__A : Optional[Any]=None,**__A : int ): _lowerCamelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",__A,) _lowerCamelCase : Dict = kwargs.pop("feature_extractor" ) _lowerCamelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _lowerCamelCase : str = tokenizer _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("gpt2" ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__A,__A ) def __call__( self : Union[str, Any],__A : List[str]=None,__A : Optional[Any]=None,__A : str=None,**__A : Optional[int] ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _lowerCamelCase : List[Any] = self.image_processor(__A,return_tensors=__A,**__A ) if text is not None: _lowerCamelCase : int = self.char_tokenizer(__A,return_tensors=__A,**__A ) if text is None: return inputs elif images is None: return encodings else: _lowerCamelCase : List[str] = encodings["input_ids"] return inputs def lowerCamelCase_ ( self : Tuple,__A : str ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = sequences _lowerCamelCase : List[str] = char_preds.size(0 ) _lowerCamelCase , _lowerCamelCase : Any = self._decode_helper(__A,"char" ) _lowerCamelCase , _lowerCamelCase : Any = self._decode_helper(__A,"bpe" ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self._decode_helper(__A,"wp" ) _lowerCamelCase : Tuple = [] _lowerCamelCase : str = [] for i in range(__A ): _lowerCamelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCamelCase : Any = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCamelCase : Dict = scores.index(max(__A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCamelCase : str = {} _lowerCamelCase : str = final_strs _lowerCamelCase : Any = final_scores _lowerCamelCase : int = char_strs _lowerCamelCase : Any = bpe_strs _lowerCamelCase : Union[str, Any] = wp_strs return out def lowerCamelCase_ ( self : int,__A : Tuple,__A : Optional[Any] ): if format == DecodeType.CHARACTER: _lowerCamelCase : Tuple = self.char_decode _lowerCamelCase : Tuple = 1 _lowerCamelCase : Optional[int] = "[s]" elif format == DecodeType.BPE: _lowerCamelCase : Dict = self.bpe_decode _lowerCamelCase : Dict = 2 _lowerCamelCase : int = "#" elif format == DecodeType.WORDPIECE: _lowerCamelCase : str = self.wp_decode _lowerCamelCase : str = 1_0_2 _lowerCamelCase : Optional[int] = "[SEP]" else: raise ValueError(f'Format {format} is not supported.' ) _lowerCamelCase , _lowerCamelCase : Dict = [], [] _lowerCamelCase : str = pred_logits.size(0 ) _lowerCamelCase : str = pred_logits.size(1 ) _lowerCamelCase , _lowerCamelCase : int = pred_logits.topk(1,dim=-1,largest=__A,sorted=__A ) _lowerCamelCase : str = preds_index.view(-1,__A )[:, 1:] _lowerCamelCase : int = decoder(__A ) _lowerCamelCase , _lowerCamelCase : str = torch.nn.functional.softmax(__A,dim=2 ).max(dim=2 ) _lowerCamelCase : Dict = preds_max_prob[:, 1:] for index in range(__A ): _lowerCamelCase : List[Any] = preds_str[index].find(__A ) _lowerCamelCase : Union[str, Any] = preds_str[index][:pred_eos] _lowerCamelCase : Optional[Any] = preds_index[index].cpu().tolist() _lowerCamelCase : List[str] = pred_index.index(__A ) if eos_token in pred_index else -1 _lowerCamelCase : Tuple = preds_max_prob[index][: pred_eos_index + 1] _lowerCamelCase : str = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__A ) conf_scores.append(__A ) return dec_strs, conf_scores def lowerCamelCase_ ( self : List[str],__A : List[Any] ): _lowerCamelCase : str = [seq.replace(" ","" ) for seq in self.char_tokenizer.batch_decode(__A )] return decode_strs def lowerCamelCase_ ( self : Optional[Any],__A : str ): return self.bpe_tokenizer.batch_decode(__A ) def lowerCamelCase_ ( self : Dict,__A : List[str] ): _lowerCamelCase : List[Any] = [seq.replace(" ","" ) for seq in self.wp_tokenizer.batch_decode(__A )] return decode_strs
44
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
def A ( lowercase__ : int ) -> bool: if num < 0: return False UpperCamelCase__ :int = num UpperCamelCase__ :int = 0 while num > 0: UpperCamelCase__ :Optional[int] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
45
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=5 ) -> Tuple: '''simple docstring''' assert masked_input.count("<mask>" ) == 1 _lowerCamelCase : str = torch.tensor(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ).unsqueeze(0 ) # Batch size 1 _lowerCamelCase : Tuple = model(_lowerCamelCase )[0] # The last hidden-state is the first element of the output tuple _lowerCamelCase : str = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCamelCase : Union[str, Any] = logits[0, masked_index, :] _lowerCamelCase : int = logits.softmax(dim=0 ) _lowerCamelCase, _lowerCamelCase : int = prob.topk(k=_lowerCamelCase , dim=0 ) _lowerCamelCase : Any = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCamelCase ) )] ) _lowerCamelCase : Optional[Any] = tokenizer.mask_token _lowerCamelCase : Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): _lowerCamelCase : int = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowerCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowerCamelCase ) , _lowerCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCamelCase , _lowerCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowerCAmelCase : Tuple = CamembertTokenizer.from_pretrained('''camembert-base''') _lowerCAmelCase : Optional[Any] = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() _lowerCAmelCase : Any = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
46
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off SCREAMING_SNAKE_CASE__ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = NllbTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Any="<s>" , SCREAMING_SNAKE_CASE__ : Dict="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): '''simple docstring''' __a : Tuple = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token __a : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __a : Any = vocab_file __a : List[str] = False if not self.vocab_file else True __a : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __a : List[Any] = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a : Any = src_lang if src_lang is not None else 'eng_Latn' __a : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) __a : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Dict = [self.sep_token_id] __a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __a : List[Any] = src_lang __a : Tuple = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : int = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = tgt_lang_id return inputs def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' __a : Optional[Any] = src_lang __a : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: __a : List[Any] = [] __a : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __a : Dict = [self.cur_lang_code] __a : Optional[int] = [self.eos_token_id] __a : str = self.convert_ids_to_tokens(self.prefix_tokens ) __a : int = self.convert_ids_to_tokens(self.suffix_tokens ) __a : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Union[str, Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: __a : Optional[Any] = [] __a : int = [self.eos_token_id, self.cur_lang_code] else: __a : Optional[int] = [self.cur_lang_code] __a : List[str] = [self.eos_token_id] __a : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) __a : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __a : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __a : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class A : def __init__( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = cva.imread(__magic_name__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) lowerCAmelCase__ = np.sum(__magic_name__ ) for i in range(len(__magic_name__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__magic_name__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase__ : Any = os.path.join(os.path.basename(__file__), "image_data/input.jpg") UpperCAmelCase__ : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
48
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[Any] = (EulerDiscreteScheduler,) a__ : Dict = 10 def a ( self : List[Any] , **_lowercase : str ): __UpperCAmelCase = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase ) return config def a ( self : Union[str, Any] ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowercase ) def a ( self : Optional[Any] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def a ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowercase ) def a ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) __UpperCAmelCase = model(_lowercase , _lowercase ) __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase = sample.to(_lowercase ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) __UpperCAmelCase = model(_lowercase , _lowercase ) __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def a ( self : int ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __UpperCAmelCase = sample.to(_lowercase ) for t in scheduler.timesteps: __UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) __UpperCAmelCase = model(_lowercase , _lowercase ) __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def a ( self : Dict ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowercase , use_karras_sigmas=_lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowercase ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __UpperCAmelCase = sample.to(_lowercase ) for t in scheduler.timesteps: __UpperCAmelCase = scheduler.scale_model_input(_lowercase , _lowercase ) __UpperCAmelCase = model(_lowercase , _lowercase ) __UpperCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ) __UpperCAmelCase = output.prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowercase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
49
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'bart' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self ,_lowerCAmelCase=5_02_65 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=3 ,_lowerCAmelCase=1 ,_lowerCAmelCase=0 ,_lowerCAmelCase=2 ,_lowerCAmelCase=True ,_lowerCAmelCase=2 ,_lowerCAmelCase=2 ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = d_model lowerCamelCase__ = encoder_ffn_dim lowerCamelCase__ = encoder_layers lowerCamelCase__ = encoder_attention_heads lowerCamelCase__ = decoder_ffn_dim lowerCamelCase__ = decoder_layers lowerCamelCase__ = decoder_attention_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = activation_function lowerCamelCase__ = init_std lowerCamelCase__ = encoder_layerdrop lowerCamelCase__ = decoder_layerdrop lowerCamelCase__ = classifier_dropout lowerCamelCase__ = use_cache lowerCamelCase__ = encoder_layers lowerCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase ,pad_token_id=_lowerCAmelCase ,bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" ,_lowerCAmelCase ): lowerCamelCase__ = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" ) class UpperCamelCase__ (a ): '''simple docstring''' @property def UpperCamelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ = {0: """batch"""} lowerCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCamelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = super().outputs else: lowerCamelCase__ = super(_lowerCAmelCase ,self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Generate decoder inputs lowerCamelCase__ = seq_length if not self.use_past else 1 lowerCamelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ = dict(**_lowerCAmelCase ,**_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape lowerCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1] lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads lowerCamelCase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ = decoder_seq_length + 3 lowerCamelCase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase )] ,dim=1 ) lowerCamelCase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ = self.num_layers lowerCamelCase__ = min(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ) - min_num_layers lowerCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. lowerCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCAmelCase ,_lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ = self.num_layers lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads lowerCamelCase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ = common_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ = compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) lowerCamelCase__ = compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ = dict(tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) elif self.task == "causal-lm": lowerCamelCase__ = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) else: lowerCamelCase__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = super()._flatten_past_key_values_(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: lowerCamelCase__ = super(_lowerCAmelCase ,self )._flatten_past_key_values_( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
50
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a__ : Optional[int] = logging.get_logger(__name__) a__ : int = ['model.decoder.embed_positions.weights'] def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: """simple docstring""" if "emb" in name: UpperCAmelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: UpperCAmelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: UpperCAmelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: UpperCAmelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: UpperCAmelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: UpperCAmelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: UpperCAmelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: UpperCAmelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def __snake_case ( SCREAMING_SNAKE_CASE_ : OrderedDict , SCREAMING_SNAKE_CASE_ : int ) -> Tuple[Dict, Dict]: """simple docstring""" UpperCAmelCase = list(state_dict.keys() ) UpperCAmelCase = {} for key in keys: UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = rename_keys(SCREAMING_SNAKE_CASE_ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase = val[:hidden_size, :] UpperCAmelCase = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase = val else: UpperCAmelCase = val return state_dict, enc_dec_proj_state_dict def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values UpperCAmelCase = 1_024 UpperCAmelCase = 24 UpperCAmelCase = 16 elif checkpoint == "medium": UpperCAmelCase = 1_536 UpperCAmelCase = 48 UpperCAmelCase = 24 elif checkpoint == "large": UpperCAmelCase = 2_048 UpperCAmelCase = 48 UpperCAmelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCAmelCase = MusicgenDecoderConfig( hidden_size=SCREAMING_SNAKE_CASE_ , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE_ , num_attention_heads=SCREAMING_SNAKE_CASE_ , ) return config @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]="cpu" ) -> List[str]: """simple docstring""" UpperCAmelCase = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = fairseq_model.lm.state_dict() UpperCAmelCase, UpperCAmelCase = rename_state_dict( SCREAMING_SNAKE_CASE_ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase = TaEncoderModel.from_pretrained('''t5-base''' ) UpperCAmelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) UpperCAmelCase = MusicgenForCausalLM(SCREAMING_SNAKE_CASE_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase, UpperCAmelCase = decoder.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCAmelCase = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE_ , audio_encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE_ ) # check we can do a forward pass UpperCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase = model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor UpperCAmelCase = AutoTokenizer.from_pretrained('''t5-base''' ) UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) UpperCAmelCase = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) # set the appropriate bos/pad token ids UpperCAmelCase = 2_048 UpperCAmelCase = 2_048 # set other default generation config params UpperCAmelCase = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase = True UpperCAmelCase = 3.0 if pytorch_dump_folder is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) a__ : List[str] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
51
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __A ( ) -> Dict: __a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=a_ , default=a_ , required=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=a_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=a_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=a_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=a_ , default=0 , help='''cuda_id.''' , ) __a : Any = parser.parse_args() return args def __A ( a_ :List[str] , a_ :Dict , a_ :int) -> List[Any]: if not len(a_) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''') __a , __a : Union[str, Any] = imgs[0].size __a : List[str] = Image.new('''RGB''' , size=(cols * w, rows * h)) __a , __a : Optional[int] = grid.size for i, img in enumerate(a_): grid.paste(a_ , box=(i % cols * w, i // cols * h)) return grid def __A ( a_ :int , a_ :Dict="robotic cat with wings" , a_ :Any=7.5 , a_ :Optional[Any]=50 , a_ :Optional[int]=1 , a_ :int=42 , ) -> List[str]: __a : Any = torch.Generator(pipeline.device).manual_seed(a_) __a : Optional[Any] = pipeline( a_ , guidance_scale=a_ , num_inference_steps=a_ , generator=a_ , num_images_per_prompt=a_ , ).images __a : Dict = int(math.sqrt(a_)) __a : Dict = image_grid(a_ , rows=_rows , cols=num_images_per_prompt // _rows) return grid, images A = parse_args() # Load models and create wrapper for stable diffusion A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: A = unet.to(torch.device('''cuda''', args.cuda_id)) A = pipeline.to(unet.device) A , A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) A = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
52
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
def a_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) __lowerCAmelCase = str(lowerCAmelCase_ ) __lowerCAmelCase = ''.join(sorted(lowerCAmelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def a_ ( lowerCAmelCase_ : float = 99 ): if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) __lowerCAmelCase = 0 __lowerCAmelCase = 1 while True: if check_bouncy(lowerCAmelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
53
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class A ( __lowercase ): _snake_case ='''microsoft/speecht5_tts''' _snake_case =( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _snake_case ='''text_reader''' _snake_case =SpeechTaProcessor _snake_case =SpeechTaForTextToSpeech _snake_case =SpeechTaHifiGan _snake_case =['''text'''] _snake_case =['''audio'''] def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' if self.post_processor is None: UpperCAmelCase_ ="microsoft/speecht5_hifigan" super().setup() def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.pre_processor(text=_lowerCAmelCase , return_tensors="pt" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ =load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ =torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Dict ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
54
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" def run_func(a_ ): @wraps(a_ ) def run_in_eager_mode(*a_ , **a_ ): return func(*a_ , **a_ ) @wraps(a_ ) @tf.function(experimental_compile=a_ ) def run_in_graph_mode(*a_ , **a_ ): return func(*a_ , **a_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase ( a_ , a_ , a_ ) -> ["tf.Tensor"]: """simple docstring""" __A = random.Random() __A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(a_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = "TensorFlow" @property def UpperCamelCase_ ( self : Tuple ): return tf.__version__ def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : int ,A : int ): # initialize GPU on separate process __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_inference_func(A ,A ,A ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self : str ,A : str ,A : int ,A : int ): __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_train_func(A ,A ,A ) return self._measure_speed(_train ) def UpperCamelCase_ ( self : Dict ,A : str ,A : int ,A : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,A ) __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_inference_func(A ,A ,A ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self : int ,A : str ,A : int ,A : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,A ) __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_train_func(A ,A ,A ) return self._measure_memory(_train ) def UpperCamelCase_ ( self : Tuple ,A : str ,A : int ,A : int ): __A = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __A = ( hasattr(A ,"architectures" ) and isinstance(config.architectures ,A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __A = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __A = __import__("transformers" ,fromlist=[model_class] ) __A = getattr(A ,A ) __A = model_cls(A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __A = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently __A = config.vocab_size if hasattr(A ,"vocab_size" ) else config.encoder.vocab_size __A = random_input_ids(A ,A ,A ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(A ,decoder_input_ids=A ,training=A ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(A ,training=A ) __A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : int ,A : int ): __A = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __A = ( hasattr(A ,"architectures" ) and isinstance(config.architectures ,A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __A = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __A = __import__("transformers" ,fromlist=[model_class] ) __A = getattr(A ,A ) __A = model_cls(A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently __A = config.vocab_size if hasattr(A ,"vocab_size" ) else config.encoder.vocab_size __A = random_input_ids(A ,A ,A ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): __A = model(A ,decoder_input_ids=A ,labels=A ,training=A )[0] __A = tf.gradients(A ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): __A = model(A ,labels=A ,training=A )[0] __A = tf.gradients(A ,model.trainable_variables ) return gradients __A = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self : str ,A : List[Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(A ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __A = timeit.repeat( A ,repeat=self.args.repeat ,number=10 ,) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def UpperCamelCase_ ( self : Optional[Any] ,A : Callable[[], None] ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) __A = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) __A = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() __A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __A = nvml.nvmlDeviceGetMemoryInfo(A ) __A = meminfo.used __A = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) __A = None else: __A = measure_peak_memory_cpu(A ) __A = Memory(A ) if isinstance(A ,A ) else memory_bytes if self.args.trace_memory_line_by_line: __A = stop_memory_tracing(A ) if memory is None: __A = summary.total else: __A = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
55
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowercase : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=13 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Tuple=99 , SCREAMING_SNAKE_CASE_ : Dict=32 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : Dict=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=50 , SCREAMING_SNAKE_CASE_ : str=0.0_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=None , ) -> Dict: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = use_labels __snake_case = scope def a ( self : str ) -> Tuple: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = self.get_config() return config, input_ids, input_mask, token_labels def a ( self : List[Any] ) -> Optional[int]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def a ( self : int ) -> Dict: ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = self.prepare_config_and_inputs() __snake_case = True __snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int , ) -> Optional[Any]: __snake_case = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) __snake_case = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Dict , ) -> List[Any]: __snake_case = True __snake_case = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) __snake_case = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Union[str, Any]: __snake_case = True __snake_case = True __snake_case = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() # first forward pass __snake_case = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )['hidden_states'][0] __snake_case = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Any: __snake_case = BertGenerationDecoder(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : str ) -> Union[str, Any]: __snake_case , __snake_case , __snake_case , __snake_case = self.prepare_config_and_inputs() __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowercase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Dict = (BertGenerationDecoder,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : str = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def a ( self : int ) -> Union[str, Any]: __snake_case = BertGenerationEncoderTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def a ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def a ( self : List[Any] ) -> int: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Optional[Any]: __snake_case , __snake_case , __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs() __snake_case = 'bert' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Union[str, Any]: # This regression test was failing with PyTorch < 1.3 ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) def a ( self : Optional[int] ) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE_ ) @slow def a ( self : Optional[Any] ) -> Any: __snake_case = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class _lowercase ( unittest.TestCase ): @slow def a ( self : Optional[int] ) -> Optional[Any]: __snake_case = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) __snake_case = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ )[0] __snake_case = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @require_torch class _lowercase ( unittest.TestCase ): @slow def a ( self : List[Any] ) -> Any: __snake_case = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) __snake_case = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ )[0] __snake_case = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
56
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> None: '''simple docstring''' snake_case_ : List[str] = set_counts snake_case_ : str = max(_lowercase ) snake_case_ : Any = len(_lowercase ) snake_case_ : Any = [1] * num_sets snake_case_ : List[Any] = list(range(_lowercase ) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> bool: '''simple docstring''' snake_case_ : List[str] = self.get_parent(_lowercase ) snake_case_ : Tuple = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] snake_case_ : Tuple = 0 snake_case_ : Any = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 snake_case_ : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] snake_case_ : int = 0 snake_case_ : Optional[Any] = src_parent snake_case_ : Union[str, Any] = self.set_counts[src_parent] snake_case_ : Union[str, Any] = max(self.max_set , _lowercase ) return True def UpperCAmelCase__ ( self , _lowercase ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set snake_case_ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
58
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
import tensorflow as tf from ...tf_utils import shape_list class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=1 , __magic_name__=False , **__magic_name__ ) -> Dict: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : List[Any] = vocab_size snake_case_ : Dict = d_embed snake_case_ : Union[str, Any] = d_proj snake_case_ : str = cutoffs + [vocab_size] snake_case_ : int = [0] + self.cutoffs snake_case_ : Optional[int] = div_val snake_case_ : int = self.cutoffs[0] snake_case_ : Any = len(self.cutoffs ) - 1 snake_case_ : Union[str, Any] = self.shortlist_size + self.n_clusters snake_case_ : str = keep_order snake_case_ : int = [] snake_case_ : Union[str, Any] = [] def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: snake_case_ : Tuple = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=__magic_name__ , name='''cluster_weight''' ) snake_case_ : Optional[Any] = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=__magic_name__ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: snake_case_ : List[str] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_projs_._{i}''' , ) self.out_projs.append(__magic_name__ ) else: self.out_projs.append(__magic_name__ ) snake_case_ : Optional[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._weight''' , ) snake_case_ : List[str] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): snake_case_ , snake_case_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case_ : Optional[Any] = self.d_embed // (self.div_val**i) snake_case_ : int = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_projs_._{i}''' ) self.out_projs.append(__magic_name__ ) snake_case_ : int = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._weight''' , ) snake_case_ : Any = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__magic_name__ ) @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = x if proj is not None: snake_case_ : List[str] = tf.einsum('''ibd,ed->ibe''' , __magic_name__ , __magic_name__ ) return tf.einsum('''ibd,nd->ibn''' , __magic_name__ , __magic_name__ ) + b @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = shape_list(__magic_name__ ) snake_case_ : Tuple = tf.range(lp_size[0] , dtype=target.dtype ) snake_case_ : Dict = tf.stack([r, target] , 1 ) return tf.gather_nd(__magic_name__ , __magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=True , __magic_name__=False ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = 0 if self.n_clusters == 0: snake_case_ : Any = self._logit(__magic_name__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: snake_case_ : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__magic_name__ , logits=__magic_name__ ) snake_case_ : Optional[Any] = tf.nn.log_softmax(__magic_name__ , axis=-1 ) else: snake_case_ : Optional[int] = shape_list(__magic_name__ ) snake_case_ : int = [] snake_case_ : List[Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): snake_case_ , snake_case_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: snake_case_ : str = (target >= l_idx) & (target < r_idx) snake_case_ : Dict = tf.where(__magic_name__ ) snake_case_ : List[str] = tf.boolean_mask(__magic_name__ , __magic_name__ ) - l_idx if self.div_val == 1: snake_case_ : Any = self.out_layers[0][0][l_idx:r_idx] snake_case_ : Dict = self.out_layers[0][1][l_idx:r_idx] else: snake_case_ : Union[str, Any] = self.out_layers[i][0] snake_case_ : int = self.out_layers[i][1] if i == 0: snake_case_ : List[Any] = tf.concat([cur_W, self.cluster_weight] , 0 ) snake_case_ : Tuple = tf.concat([cur_b, self.cluster_bias] , 0 ) snake_case_ : Optional[int] = self._logit(__magic_name__ , __magic_name__ , __magic_name__ , self.out_projs[0] ) snake_case_ : Any = tf.nn.log_softmax(__magic_name__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: snake_case_ : Optional[Any] = tf.boolean_mask(__magic_name__ , __magic_name__ ) snake_case_ : Tuple = self._gather_logprob(__magic_name__ , __magic_name__ ) else: snake_case_ : Optional[int] = self._logit(__magic_name__ , __magic_name__ , __magic_name__ , self.out_projs[i] ) snake_case_ : Union[str, Any] = tf.nn.log_softmax(__magic_name__ ) snake_case_ : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster snake_case_ : Optional[int] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__magic_name__ ) if target is not None: snake_case_ : Any = tf.boolean_mask(__magic_name__ , __magic_name__ ) snake_case_ : Optional[Any] = tf.boolean_mask(__magic_name__ , __magic_name__ ) snake_case_ : str = self._gather_logprob(__magic_name__ , __magic_name__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__magic_name__ , -cur_logprob , shape_list(__magic_name__ ) ) snake_case_ : str = tf.concat(__magic_name__ , axis=-1 ) if target is not None: if return_mean: snake_case_ : int = tf.reduce_mean(__magic_name__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__magic_name__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__magic_name__ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
60
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase__ = F'{src_lang}-{tgt_lang}' lowerCAmelCase__ = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "README.md" ) print(F'Generating {path}' ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase , UpperCamelCase , UpperCamelCase = model_name.split('-') UpperCamelCase = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
61
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version snake_case = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize snake_case = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ snake_case = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ snake_case = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _A ( self : Any , UpperCAmelCase_ : Dict ): import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _A ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=0.9 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=0.5 ): if NLTK_VERSION >= version.Version("3.6.5" ): SCREAMING_SNAKE_CASE : Dict = [ meteor_score.single_meteor_score( word_tokenize(UpperCAmelCase_ ) , word_tokenize(UpperCAmelCase_ ) , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_ ) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] else: SCREAMING_SNAKE_CASE : List[Any] = [ meteor_score.single_meteor_score(UpperCAmelCase_ , UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_ ) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ] return {"meteor": np.mean(UpperCAmelCase_ )}
62
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ : str = logging.get_logger(__name__) lowercase_ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase_ : Any = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } lowercase_ : Optional[Any] = { 'junnyu/roformer_chinese_small': 1_5_3_6, 'junnyu/roformer_chinese_base': 1_5_3_6, 'junnyu/roformer_chinese_char_small': 5_1_2, 'junnyu/roformer_chinese_char_base': 5_1_2, 'junnyu/roformer_small_discriminator': 1_2_8, 'junnyu/roformer_small_generator': 1_2_8, } lowercase_ : str = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _lowerCamelCase ( UpperCamelCase_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PRETRAINED_INIT_CONFIGURATION __a = RoFormerTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> Optional[Any]: super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: Union[str, Any]= json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__: Any= getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= do_lower_case SCREAMING_SNAKE_CASE__: str= strip_accents SCREAMING_SNAKE_CASE__: Union[str, Any]= pre_tok_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= do_lower_case def __getstate__( self ) -> Dict: SCREAMING_SNAKE_CASE__: str= self.__dict__.copy() SCREAMING_SNAKE_CASE__: Tuple= BertPreTokenizer() return state def __setstate__( self , lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= d SCREAMING_SNAKE_CASE__: Tuple= self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__: str= PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase ) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]: SCREAMING_SNAKE_CASE__: Dict= [self.sep_token_id] SCREAMING_SNAKE_CASE__: str= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__: Tuple= self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , **lowerCAmelCase , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Tuple= BertPreTokenizer() return super().save_pretrained(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase )
64
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
"""simple docstring""" class __lowercase : def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = {} def __lowercase ( self : Any ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(A ,""" -> """ ,""" -> """.join([str(A ) for j in self.vertex[i]] ) ) def __lowercase ( self : Tuple ,A : int ,A : int ): '''simple docstring''' # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(A ) else: # else make a new vertex UpperCAmelCase__ : Optional[int] = [to_vertex] def __lowercase ( self : Optional[int] ): '''simple docstring''' # visited array for storing already visited nodes UpperCAmelCase__ : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(A ,A ) def __lowercase ( self : List[Any] ,A : int ,A : list ): '''simple docstring''' # mark start vertex as visited UpperCAmelCase__ : List[Any] = True print(A ,end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(A ,A ) if __name__ == "__main__": __UpperCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
65
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase ): _lowercase : Optional[Any] = data def __iter__( self ): for element in self.data: yield element def __magic_name__ ( SCREAMING_SNAKE_CASE=True ) -> List[Any]: _lowercase : List[str] = Accelerator(even_batches=SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]: if iterable: _lowercase : Optional[int] = DummyIterableDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) else: _lowercase : Union[str, Any] = TensorDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) _lowercase : Any = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE ) return dl def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[int]: _lowercase : Union[str, Any] = create_dataloader(accelerator=SCREAMING_SNAKE_CASE , dataset_size=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) _lowercase : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __magic_name__ ( ) -> Any: _lowercase : Dict = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __magic_name__ ( ) -> List[str]: _lowercase : Dict = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __magic_name__ ( ) -> int: _lowercase : Optional[Any] = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = torch.nn.Linear(1 , 1 ) _lowercase : Optional[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) _lowercase : str = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(SCREAMING_SNAKE_CASE ): _lowercase : Tuple = ddp_model(batch[0].float() ) _lowercase : List[Any] = output.sum() loss.backward() batch_idxs.append(SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def __magic_name__ ( ) -> Optional[int]: _lowercase : Union[str, Any] = True _lowercase : Any = False _lowercase : Tuple = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) _lowercase : List[str] = torch.nn.Linear(1 , 1 ) _lowercase : Optional[int] = accelerator.prepare(SCREAMING_SNAKE_CASE ) _lowercase : Any = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) _lowercase : str = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): _lowercase : str = train_dl.batch_sampler.even_batches _lowercase : Tuple = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __magic_name__ ( ) -> Tuple: _lowercase : Any = True _lowercase : Union[str, Any] = False _lowercase : Tuple = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = torch.nn.Linear(1 , 1 ) _lowercase : str = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) _lowercase : Dict = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): _lowercase : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __magic_name__ ( ) -> Tuple: _lowercase : Optional[Any] = create_accelerator() _lowercase : str = torch.nn.Linear(1 , 1 ) _lowercase : List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def __magic_name__ ( ) -> List[str]: _lowercase : List[str] = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) _lowercase : Tuple = accelerator.state.distributed_type _lowercase : List[str] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(SCREAMING_SNAKE_CASE ) _lowercase : List[str] = original_state if __name__ == "__main__": main()
66
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Union[str, Any] , snake_case__ :int=1024 , snake_case__ :List[str]=1024 , snake_case__ :int=False , **snake_case__ :Tuple ) -> Tuple: _lowercase = AutoTokenizer.from_pretrained(snake_case__ ) _lowercase = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path='train' , **snake_case__ ) _lowercase = tok.pad_token_id def get_lens(snake_case__ :Optional[Any] ): _lowercase = tqdm( DataLoader(snake_case__ , batch_size=512 , num_workers=8 , shuffle=snake_case__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowercase = [] for batch in dl: _lowercase = batch['input_ids'].ne(snake_case__ ).sum(1 ).tolist() _lowercase = batch['labels'].ne(snake_case__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(snake_case__ , snake_case__ ): max_lens.append(max(snake_case__ , snake_case__ ) ) else: max_lens.extend(snake_case__ ) return max_lens _lowercase = get_lens(snake_case__ ) _lowercase = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path='val' , **snake_case__ ) _lowercase = get_lens(snake_case__ ) pickle_save(snake_case__ , train_ds.len_file ) pickle_save(snake_case__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
67
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase__ ( A_: int , A_: Optional[Any] , A_: List[str]=None ) -> List[str]: """simple docstring""" if rng is None: __UpperCAmelCase =random.Random() __UpperCAmelCase =1 for dim in shape: total_dims *= dim __UpperCAmelCase =[] for _ in range(A_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) __UpperCAmelCase =np.array(A_ , dtype=jnp.intaa ).reshape(A_ ) return output def lowercase__ ( A_: List[str] , A_: List[str]=None ) -> Any: """simple docstring""" __UpperCAmelCase =ids_tensor(A_ , vocab_size=2 , rng=A_ ) # make sure that at least one token is attended to for each batch __UpperCAmelCase =1 return attn_mask @require_flax class _A : """simple docstring""" lowerCamelCase : Optional[Any] = None lowerCamelCase : int = () def _a ( self : str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __UpperCAmelCase =2 __UpperCAmelCase =inputs["""input_ids"""].shape[-1] // 2 __UpperCAmelCase =inputs["""input_ids"""][:max_batch_size, :sequence_length] __UpperCAmelCase =jnp.ones_like(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __UpperCAmelCase =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __UpperCAmelCase =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _a ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =0 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =pt_model_class(__SCREAMING_SNAKE_CASE ).eval() __UpperCAmelCase =load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , flax_model.params ) __UpperCAmelCase =flax_model.generate(__SCREAMING_SNAKE_CASE ).sequences __UpperCAmelCase =pt_model.generate(torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __UpperCAmelCase =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _a ( self : Optional[int] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =True __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =2 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Any ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =2 __UpperCAmelCase =2 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _a ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =True __UpperCAmelCase =max_length __UpperCAmelCase =0.8 __UpperCAmelCase =10 __UpperCAmelCase =0.3 __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =max_length __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Optional[int] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =max_length __UpperCAmelCase =2 __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =False __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Dict ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =True __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Dict ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =2 __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : int ) -> Any: __UpperCAmelCase =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) __UpperCAmelCase =FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __UpperCAmelCase ="""Hello world""" __UpperCAmelCase =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , """do_samples""" ): model.generate(__SCREAMING_SNAKE_CASE , do_samples=__SCREAMING_SNAKE_CASE ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , """foo""" ): __UpperCAmelCase ={"""foo""": """bar"""} model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
68
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: return abs(_UpperCAmelCase ) if a == 0 else greatest_common_divisor(b % a , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __snake_case , __snake_case = y, x % y return abs(_UpperCAmelCase ) def __UpperCAmelCase ( ) -> Union[str, Any]: try: __snake_case = input("Enter two integers separated by comma (,): " ).split("," ) __snake_case = int(nums[0] ) __snake_case = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(_UpperCAmelCase , _UpperCAmelCase )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_UpperCAmelCase , _UpperCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
69
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase : Tuple = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase : Optional[Any] = concatenate_datasets lowerCamelCase : int = DownloadConfig lowerCamelCase : str = DownloadManager lowerCamelCase : Dict = DownloadMode lowerCamelCase : int = DownloadConfig lowerCamelCase : Union[str, Any] = DownloadMode lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
70
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : Any ="owlvit_text_model" def __init__( self ,_snake_case=4_94_08 ,_snake_case=5_12 ,_snake_case=20_48 ,_snake_case=12 ,_snake_case=8 ,_snake_case=16 ,_snake_case="quick_gelu" ,_snake_case=1E-5 ,_snake_case=0.0 ,_snake_case=0.02 ,_snake_case=1.0 ,_snake_case=0 ,_snake_case=4_94_06 ,_snake_case=4_94_07 ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[int] = initializer_factor @classmethod def UpperCamelCase__ ( cls ,_snake_case ,**_snake_case ): cls._set_token_in_kwargs(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = cls.get_config_dict(_snake_case ,**_snake_case ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ : Tuple = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case ,**_snake_case ) class _snake_case (__SCREAMING_SNAKE_CASE): __A : Tuple ="owlvit_vision_model" def __init__( self ,_snake_case=7_68 ,_snake_case=30_72 ,_snake_case=12 ,_snake_case=12 ,_snake_case=3 ,_snake_case=7_68 ,_snake_case=32 ,_snake_case="quick_gelu" ,_snake_case=1E-5 ,_snake_case=0.0 ,_snake_case=0.02 ,_snake_case=1.0 ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = initializer_factor @classmethod def UpperCamelCase__ ( cls ,_snake_case ,**_snake_case ): cls._set_token_in_kwargs(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = cls.get_config_dict(_snake_case ,**_snake_case ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case ,**_snake_case ) class _snake_case (__SCREAMING_SNAKE_CASE): __A : Tuple ="owlvit" __A : Optional[int] =True def __init__( self ,_snake_case=None ,_snake_case=None ,_snake_case=5_12 ,_snake_case=2.6592 ,_snake_case=True ,**_snake_case ,): super().__init__(**_snake_case ) if text_config is None: UpperCAmelCase_ : Tuple = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ : Tuple = OwlViTTextConfig(**_snake_case ) UpperCAmelCase_ : Optional[int] = OwlViTVisionConfig(**_snake_case ) UpperCAmelCase_ : List[Any] = projection_dim UpperCAmelCase_ : Union[str, Any] = logit_scale_init_value UpperCAmelCase_ : int = return_dict UpperCAmelCase_ : Optional[Any] = 1.0 @classmethod def UpperCamelCase__ ( cls ,_snake_case ,**_snake_case ): cls._set_token_in_kwargs(_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = cls.get_config_dict(_snake_case ,**_snake_case ) if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case ,**_snake_case ) @classmethod def UpperCamelCase__ ( cls ,_snake_case ,_snake_case ,**_snake_case ): UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : List[Any] = text_config UpperCAmelCase_ : int = vision_config return cls.from_dict(_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Any = self.text_config.to_dict() UpperCAmelCase_ : Tuple = self.vision_config.to_dict() UpperCAmelCase_ : Union[str, Any] = self.__class__.model_type return output class _snake_case (__SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def UpperCamelCase__ ( self ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): return 1E-4 def UpperCamelCase__ ( self ,_snake_case ,_snake_case = -1 ,_snake_case = -1 ,_snake_case = None ,): UpperCAmelCase_ : str = super().generate_dummy_inputs( processor.tokenizer ,batch_size=_snake_case ,seq_length=_snake_case ,framework=_snake_case ) UpperCAmelCase_ : List[Any] = super().generate_dummy_inputs( processor.image_processor ,batch_size=_snake_case ,framework=_snake_case ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase__ ( self ): return 14
71
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'facebook/bart-large-mnli' UpperCamelCase__ = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) UpperCamelCase__ = 'text_classifier' UpperCamelCase__ = AutoTokenizer UpperCamelCase__ = AutoModelForSequenceClassification UpperCamelCase__ = ['text', ['text']] UpperCamelCase__ = ['text'] def _A( self ): super().setup() lowercase =self.model.config lowercase =-1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): lowercase =int(snake_case_ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def _A( self , snake_case_ , snake_case_ ): lowercase =labels return self.pre_processor( [text] * len(snake_case_ ) , [f'This example is {label}' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def _A( self , snake_case_ ): lowercase =outputs.logits lowercase =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
72
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ : Tuple = logging.get_logger(__name__) a_ : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class _snake_case ( A__ ): _lowercase : List[str] = '''conditional_detr''' _lowercase : Optional[Any] = ['''past_key_values'''] _lowercase : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , a=True , a=None , a=3 , a=300 , a=6 , a=2048 , a=8 , a=6 , a=2048 , a=8 , a=0.0 , a=0.0 , a=True , a="relu" , a=256 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=False , a="sine" , a="resnet50" , a=True , a=False , a=2 , a=5 , a=2 , a=1 , a=1 , a=2 , a=5 , a=2 , a=0.25 , **a , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') SCREAMING_SNAKE_CASE = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(a , a): SCREAMING_SNAKE_CASE = backbone_config.get('model_type') SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(a) SCREAMING_SNAKE_CASE = use_timm_backbone SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = auxiliary_loss SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = dilation # Hungarian matcher SCREAMING_SNAKE_CASE = class_cost SCREAMING_SNAKE_CASE = bbox_cost SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE = mask_loss_coefficient SCREAMING_SNAKE_CASE = dice_loss_coefficient SCREAMING_SNAKE_CASE = cls_loss_coefficient SCREAMING_SNAKE_CASE = bbox_loss_coefficient SCREAMING_SNAKE_CASE = giou_loss_coefficient SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=a , **a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return self.d_model def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__) if self.backbone_config is not None: SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output class _snake_case ( A__ ): _lowercase : int = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def SCREAMING_SNAKE_CASE__ ( self) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return 12
73
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
def a__ ( snake_case = 10 , snake_case = 22 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = range(1 , snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
74
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
75
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase_ : UpperCamelCase =42 UpperCamelCase =None # Automatically constructed UpperCamelCase ="dict" UpperCamelCase =None UpperCamelCase =field(default="Translation" , init=snake_case , repr=snake_case ) def __call__( self ) -> Any: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase_ : UpperCamelCase =None UpperCamelCase =None UpperCamelCase =None # Automatically constructed UpperCamelCase ="dict" UpperCamelCase =None UpperCamelCase =field(default="TranslationVariableLanguages" , init=snake_case , repr=snake_case ) def _lowerCamelCase ( self ) -> Any: __lowercase : int = sorted(set(self.languages ) ) if self.languages else None __lowercase : List[str] = len(self.languages ) if self.languages else None def __call__( self ) -> Union[str, Any]: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Any = set(self.languages ) if self.languages and set(UpperCamelCase_ ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(UpperCamelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(UpperCamelCase_ )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __lowercase : Dict = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __lowercase ,__lowercase : Any = zip(*sorted(UpperCamelCase_ ) ) return {"language": languages, "translation": translations} def _lowerCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
76
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase = 0 ) -> list: """simple docstring""" __UpperCAmelCase : List[str] = length or len(UpperCamelCase ) __UpperCAmelCase : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __UpperCAmelCase , __UpperCAmelCase : int = list_data[i + 1], list_data[i] __UpperCAmelCase : List[Any] = True return list_data if not swapped else bubble_sort(UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( unittest.TestCase ): def __init__(self : Tuple , __a : List[str] , __a : Optional[Any]=7 , __a : Union[str, Any]=3 , __a : Union[str, Any]=18 , __a : List[Any]=30 , __a : List[str]=400 , __a : Optional[int]=True , __a : List[str]=None , __a : Any=True , __a : Any=None , __a : Any=True , ): UpperCAmelCase_ = size if size is not None else {"shortest_edge": 20} UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_flip_channel_order def _lowercase (self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = MobileViTImageProcessor if is_vision_available() else None def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = MobileViTImageProcessingTester(self ) @property def _lowercase (self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_center_crop" ) ) self.assertTrue(hasattr(__a , "center_crop" ) ) self.assertTrue(hasattr(__a , "do_flip_channel_order" ) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _lowercase (self : Tuple ): pass def _lowercase (self : int ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Any ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase (self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
78
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
SCREAMING_SNAKE_CASE__ : dict[tuple[int, int, int], int] = {} def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase__ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase__ : str = _calculate(days - 1 , __lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase__ : Optional[int] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase__ : List[Any] = _calculate(days - 1 , __lowerCamelCase , 0 ) UpperCAmelCase__ : Optional[Any] = state_late + state_absent + state_ontime UpperCAmelCase__ : Tuple = prizestrings return prizestrings def _lowerCamelCase ( __lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(__lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
79
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
import operator as op __UpperCamelCase : int = """scaler.pt""" __UpperCamelCase : int = """pytorch_model""" __UpperCamelCase : Union[str, Any] = """random_states""" __UpperCamelCase : Any = """optimizer""" __UpperCamelCase : Tuple = """scheduler""" __UpperCamelCase : List[Any] = """pytorch_model.bin""" __UpperCamelCase : Union[str, Any] = """pytorch_model.bin.index.json""" __UpperCamelCase : List[str] = """model.safetensors""" __UpperCamelCase : str = """model.safetensors.index.json""" __UpperCamelCase : Dict = """1.10.2""" __UpperCamelCase : Any = """py38""" __UpperCamelCase : Union[str, Any] = """4.17.0""" __UpperCamelCase : Optional[Any] = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] __UpperCamelCase : Tuple = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] __UpperCamelCase : List[Any] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] __UpperCamelCase : str = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] __UpperCamelCase : Optional[int] = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] __UpperCamelCase : int = """2.0.1""" __UpperCamelCase : Optional[int] = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] __UpperCamelCase : Union[str, Any] = ["""default""", """reduce-overhead""", """max-autotune"""] __UpperCamelCase : str = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __UpperCamelCase : Dict = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] __UpperCamelCase : List[str] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] __UpperCamelCase : Tuple = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
80
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = StableDiffusionInpaintPipeline __UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : List[Any] = frozenset([] ) def __snake_case ( self : List[Any] ) -> Tuple: torch.manual_seed(0 ) __snake_case : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , ) __snake_case : Any = PNDMScheduler(skip_prk_steps=lowerCamelCase ) torch.manual_seed(0 ) __snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case : Optional[Any] = CLIPTextModel(lowerCamelCase ) __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case : int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __snake_case ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : str=0 ) -> Any: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __snake_case : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Dict = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) __snake_case : str = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(lowerCamelCase ).startswith("mps" ): __snake_case : List[Any] = torch.manual_seed(lowerCamelCase ) else: __snake_case : Dict = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Any = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case : List[Any] = self.get_dummy_components() __snake_case : List[Any] = StableDiffusionInpaintPipeline(**lowerCamelCase ) __snake_case : List[Any] = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : int = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Union[str, Any] = sd_pipe(**lowerCamelCase ).images __snake_case : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Dict = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : Dict ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any] ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any ) -> Tuple: __snake_case : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) __snake_case : int = "stabilityai/stable-diffusion-2-inpainting" __snake_case : Tuple = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase , safety_checker=lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __snake_case : List[Any] = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case : int = torch.manual_seed(0 ) __snake_case : Optional[Any] = pipe( prompt=lowerCamelCase , image=lowerCamelCase , mask_image=lowerCamelCase , generator=lowerCamelCase , output_type="np" , ) __snake_case : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __snake_case ( self : Dict ) -> Any: __snake_case : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) __snake_case : Any = "stabilityai/stable-diffusion-2-inpainting" __snake_case : Dict = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase , torch_dtype=torch.floataa , safety_checker=lowerCamelCase , ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __snake_case : str = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case : str = torch.manual_seed(0 ) __snake_case : Optional[int] = pipe( prompt=lowerCamelCase , image=lowerCamelCase , mask_image=lowerCamelCase , generator=lowerCamelCase , output_type="np" , ) __snake_case : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __snake_case ( self : str ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case : Dict = "stabilityai/stable-diffusion-2-inpainting" __snake_case : Union[str, Any] = PNDMScheduler.from_pretrained(lowerCamelCase , subfolder="scheduler" ) __snake_case : Tuple = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase , safety_checker=lowerCamelCase , scheduler=lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case : str = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : str = pipe( prompt=lowerCamelCase , image=lowerCamelCase , mask_image=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __snake_case : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
81
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCamelCase = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = _str_to_version_tuple(self.version_str ) def __repr__( self : Any ) -> List[str]: '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self.major, self.minor, self.patch def lowercase__ ( self : Any , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return Version(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return other raise TypeError(F"""{other} (type {type(_UpperCAmelCase )}) cannot be compared to version.""" ) def __eq__( self : Any , _UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' try: UpperCAmelCase_ = self._validate_operand(_UpperCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self._validate_operand(_UpperCAmelCase ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Any: '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' return self.version_str def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = _VERSION_REG.match(lowerCAmelCase__ ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(lowerCAmelCase__ ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def a__ ( lowerCAmelCase__ ): return ".".join(str(lowerCAmelCase__ ) for v in version_tuple )
82
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
83
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['a', 'b', 'c'] # Defaults to last layer if both are None lowercase , lowercase = get_aligned_output_features_output_indices(snake_case , snake_case , snake_case ) self.assertEqual(snake_case , ['c'] ) self.assertEqual(snake_case , [2] ) # Out indices set to match out features lowercase , lowercase = get_aligned_output_features_output_indices(['a', 'c'] , snake_case , snake_case ) self.assertEqual(snake_case , ['a', 'c'] ) self.assertEqual(snake_case , [0, 2] ) # Out features set to match out indices lowercase , lowercase = get_aligned_output_features_output_indices(snake_case , [0, 2] , snake_case ) self.assertEqual(snake_case , ['a', 'c'] ) self.assertEqual(snake_case , [0, 2] ) # Out features selected from negative indices lowercase , lowercase = get_aligned_output_features_output_indices(snake_case , [-3, -1] , snake_case ) self.assertEqual(snake_case , ['a', 'c'] ) self.assertEqual(snake_case , [-3, -1] ) def SCREAMING_SNAKE_CASE__ ( self ): # Stage names must be set with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , snake_case ) # Out features must be a list with self.assertRaises(snake_case ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(snake_case ): verify_out_features_out_indices(snake_case , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case ): verify_out_features_out_indices(snake_case , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(snake_case ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = BackboneMixin() lowercase = ['a', 'b', 'c'] lowercase = ['a', 'c'] lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
84
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image SCREAMING_SNAKE_CASE__ : Optional[Any] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class snake_case : lowercase_ = True lowercase_ = None # Automatically constructed lowercase_ = "PIL.Image.Image" lowercase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowercase_ = field(default='Image' , init=UpperCamelCase_ , repr=UpperCamelCase_ ) def __call__( self : str )-> Dict: """simple docstring""" return self.pa_type def __lowercase( self : str , a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] )-> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(a_ , a_ ): SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(a_ ) if isinstance(a_ , a_ ): return {"path": value, "bytes": None} elif isinstance(a_ , a_ ): return {"path": None, "bytes": value} elif isinstance(a_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __lowercase( self : Union[str, Any] , a_ : dict , a_ : str=None )-> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE__ : List[str] = {} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(a_ ): SCREAMING_SNAKE_CASE__ : Any = PIL.Image.open(a_ ) else: SCREAMING_SNAKE_CASE__ : str = path.split('::' )[-1] try: SCREAMING_SNAKE_CASE__ : str = string_to_dict(a_ , config.HUB_DATASETS_URL )['repo_id'] SCREAMING_SNAKE_CASE__ : Tuple = token_per_repo_id.get(a_ ) except ValueError: SCREAMING_SNAKE_CASE__ : Tuple = None with xopen(a_ , 'rb' , use_auth_token=a_ ) as f: SCREAMING_SNAKE_CASE__ : Optional[Any] = BytesIO(f.read() ) SCREAMING_SNAKE_CASE__ : str = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowercase( self : List[str] )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowercase( self : Optional[Any] , a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] )-> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : str = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: SCREAMING_SNAKE_CASE__ : List[Any] = storage.field('bytes' ) else: SCREAMING_SNAKE_CASE__ : Dict = pa.array([None] * len(a_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: SCREAMING_SNAKE_CASE__ : Tuple = storage.field('path' ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE__ : List[Any] = pa.array( [encode_np_array(np.array(a_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pa.array([None] * len(a_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def __lowercase( self : List[Any] , a_ : pa.StructArray )-> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_ , 'rb' ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f.read() return bytes_ SCREAMING_SNAKE_CASE__ : Any = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Dict = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def _a ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE__ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _a ( lowercase__ : "PIL.Image.Image" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE__ : int = image.format else: SCREAMING_SNAKE_CASE__ : Tuple = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowercase__ , format=lowercase__ ) return buffer.getvalue() def _a ( lowercase__ : "PIL.Image.Image" ): '''simple docstring''' if hasattr(lowercase__ , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _a ( lowercase__ : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) SCREAMING_SNAKE_CASE__ : Tuple = array.dtype SCREAMING_SNAKE_CASE__ : List[str] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE__ : Dict = dtype.kind SCREAMING_SNAKE_CASE__ : Dict = dtype.itemsize SCREAMING_SNAKE_CASE__ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE__ : List[str] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE__ : List[str] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = dtype_byteorder + dtype_kind + str(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict = np.dtype(lowercase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = PIL.Image.fromarray(array.astype(lowercase__ ) ) return {"path": None, "bytes": image_to_bytes(lowercase__ )} def _a ( lowercase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = first_non_null_value(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase__ , np.ndarray ): SCREAMING_SNAKE_CASE__ : Tuple = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] elif isinstance(lowercase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : Dict = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] else: return objs else: return objs
85
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Optional[int] = CLIPTokenizerFast _lowerCamelCase : Optional[int] = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Optional[Any] = False def __A ( self : int ): super().setUp() # fmt: off A_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) A_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] A_ = {"unk_token": "<unk>"} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def __A ( self : Union[str, Any] , **UpperCAmelCase : str ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Tuple , **UpperCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ): A_ = "lower newer" A_ = "lower newer" return input_text, output_text def __A ( self : Optional[int] ): A_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = "lower newer" A_ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] A_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokens + [tokenizer.unk_token] A_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) @require_ftfy def __A ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." A_ = tokenizer_s.tokenize(UpperCAmelCase ) A_ = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways A_ = "xa\u0303y" + " " + "x\xe3y" A_ = tokenizer_s.tokenize(UpperCAmelCase ) A_ = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type A_ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: A_ = tokenizer_s.tokenize(UpperCAmelCase ) A_ = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type A_ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: A_ = tokenizer_s.tokenize(UpperCAmelCase ) A_ = tokenizer_r.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` A_ = f'''{text_of_1_token} {text_of_1_token}''' A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = f''' {text}''' A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ) + 1, 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) def __A ( self : List[str] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __A ( self : Dict ): super().test_tokenization_python_rust_equals() def __A ( self : List[Any] ): # CLIP always lower cases letters pass
86
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
import heapq import sys import numpy as np _lowerCamelCase : Any = tuple[int, int] class UpperCamelCase_ : '''simple docstring''' def __init__( self : Any) ->str: '''simple docstring''' A__ = [] A__ = set() def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' return len(self.elements) == 0 def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]) ->List[str]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(UpperCAmelCase__) else: # update # print("update", item) A__ = [] ((A__) , (A__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((A__) , (A__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[Any]) ->Union[str, Any]: '''simple docstring''' if item in self.set: self.set.remove(UpperCAmelCase__) A__ = [] ((A__) , (A__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((A__) , (A__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return self.elements[0][1] def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' ((A__) , (A__)) = heapq.heappop(self.elements) self.set.remove(UpperCAmelCase__) return (priority, item) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = np.array(lowercase_ ) A__ = np.array(lowercase_ ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" return consistent_heuristic(lowercase_ , lowercase_ ) // t def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" A__ = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): A__ = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: A__ = '''#''' A__ = '''-''' A__ = back_pointer[goal] while x != start: ((A__) , (A__)) = x # print(x) A__ = '''-''' A__ = back_pointer[x] A__ = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A__ = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) A__ = back_pointer[x] print(lowercase_ ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Union[str, Any]: """simple docstring""" for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((A__) , (A__)) = s A__ = (x - 1, y) A__ = (x + 1, y) A__ = (x, y + 1) A__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) A__ = -1 A__ = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: A__ = g_function[s] + 1 A__ = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCamelCase : Dict = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _lowerCamelCase : Optional[int] = make_common_ground() _lowerCamelCase : Optional[Any] = blocks_blk # hyper parameters _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : List[Any] = 20 _lowerCamelCase : Any = 3 # one consistent and two other inconsistent # start and end destination _lowerCamelCase : str = (0, 0) _lowerCamelCase : Tuple = (n - 1, n - 1) _lowerCamelCase : int = 1 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = {start: 0, goal: float('''inf''' )} A__ = {start: -1, goal: -1} A__ = [] A__ = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) A__ = [] A__ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: A__ , A__ = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: A__ = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
87
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
"""simple docstring""" class lowercase__ : # Public class to implement a graph def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : str = row _lowerCamelCase : Dict = col _lowerCamelCase : List[str] = graph def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: # Checking all 8 elements surrounding nth element _lowerCamelCase : Optional[int] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _lowerCamelCase : Union[str, Any] = [-1, 0, 1, -1, 1, -1, 0, 1] _lowerCamelCase : Union[str, Any] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> int: # And finally, count all islands. _lowerCamelCase : Tuple = [[False for j in range(self.COL)] for i in range(self.ROW)] _lowerCamelCase : int = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) count += 1 return count
88
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") SCREAMING_SNAKE_CASE : Optional[Any] = F"https://www.google.com/search?q={query}&num=100" SCREAMING_SNAKE_CASE : Tuple = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE : Tuple = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: SCREAMING_SNAKE_CASE : List[Any] = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
89
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=2_24 , lowerCamelCase_=10_00 , lowerCamelCase_=[3, 3, 6, 4] , lowerCamelCase_=[48, 56, 1_12, 2_20] , ) -> Union[str, Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = num_labels lowerCAmelCase__ = image_size lowerCAmelCase__ = layer_depths lowerCAmelCase__ = embed_dims def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCamelCase_ , layer_scale_init_value=1e-5 , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = SwiftFormerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = SwiftFormerForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowerCAmelCase__ = SwiftFormerForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) = self.prepare_config_and_inputs() lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowercase__ : Tuple = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : List[Any] = False lowercase__ : List[str] = False lowercase__ : Tuple = False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = SwiftFormerModelTester(self ) lowerCAmelCase__ = ConfigTester( self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = SwiftFormerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Dict: def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = 8 self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCamelCase_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: def _config_zero_init(lowerCamelCase_ ): lowerCAmelCase__ = copy.deepcopy(lowerCamelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCamelCase_ , lowerCamelCase_ , 1e-10 ) if isinstance(getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ): lowerCAmelCase__ = _config_zero_init(getattr(lowerCamelCase_ , lowerCamelCase_ ) ) setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return configs_no_init lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass def _snake_case ( ) -> List[Any]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Any: return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(lowerCamelCase_ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
90
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Union[str, Any] ,A_ : str=2 ,A_ : Union[str, Any]=3 ,A_ : Dict=4 ,A_ : Optional[Any]=2 ,A_ : Any=7 ,A_ : Any=True ,A_ : List[str]=True ,A_ : Tuple=True ,A_ : Optional[int]=True ,A_ : Dict=99 ,A_ : int=36 ,A_ : Dict=2 ,A_ : Tuple=4 ,A_ : List[Any]=37 ,A_ : int="gelu" ,A_ : Tuple=0.1 ,A_ : Union[str, Any]=0.1 ,A_ : Optional[int]=512 ,A_ : Dict=16 ,A_ : Dict=2 ,A_ : int=0.02 ,A_ : Dict=6 ,A_ : Dict=6 ,A_ : int=3 ,A_ : str=4 ,A_ : List[Any]=None ,A_ : str=1000 ,) -> Optional[Any]: A = parent A = batch_size A = num_channels A = image_size A = patch_size A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = coordinate_size A = shape_size A = num_labels A = num_choices A = scope A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A = text_seq_length A = (image_size // patch_size) ** 2 + 1 A = self.text_seq_length + self.image_seq_length def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) A = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A = bbox[i, j, 3] A = bbox[i, j, 1] A = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A = bbox[i, j, 2] A = bbox[i, j, 0] A = tmp_coordinate A = tf.constant(A_ ) A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.text_seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: A = TFLayoutLMvaModel(config=A_ ) # text + image A = model(A_ ,pixel_values=A_ ,training=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,training=A_ ,) A = model(A_ ,bbox=A_ ,pixel_values=A_ ,training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only A = model(A_ ,training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A = model({'pixel_values': pixel_values} ,training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ,A_ : Any ,A_ : str ,A_ : str ,A_ : List[str] ,A_ : Optional[Any] ,A_ : List[str] ) -> Union[str, Any]: A = self.num_labels A = TFLayoutLMvaForSequenceClassification(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,training=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Any ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Union[str, Any] ,A_ : List[Any] ) -> Union[str, Any]: A = self.num_labels A = TFLayoutLMvaForTokenClassification(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,training=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : List[str] ,A_ : Tuple ,A_ : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[Any] ) -> Optional[Any]: A = 2 A = TFLayoutLMvaForQuestionAnswering(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,start_positions=A_ ,end_positions=A_ ,training=A_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.prepare_config_and_inputs() ((A) , (A) , (A) , (A) , (A) , (A) , (A) , (A)) = config_and_inputs A = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: int = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowerCamelCase: int = False _lowerCamelCase: Any = False _lowerCamelCase: Any = False def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Dict ) -> List[Any]: return True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int]=False ) -> dict: A = copy.deepcopy(A_ ) if model_class in get_values(A_ ): A = { k: tf.tile(tf.expand_dims(A_ ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A_ ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): A = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: A = TFLayoutLMvaModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) if getattr(A_ ,'hf_compute_loss' ,A_ ): # The number of elements in the loss should be the same as the number of elements in the label A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=A_ )[0] ] A = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class.pop('input_ids' ) A = model(A_ ,**A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: A = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A = -100 A = tf.convert_to_tensor(A_ ) A = model(A_ ,**A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = model(A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) # Get keys that were added with the _prepare_for_class function A = prepared_for_class.keys() - inputs_dict.keys() A = inspect.signature(model.call ).parameters A = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A = {0: 'input_ids'} for label_key in label_keys: A = signature_names.index(A_ ) A = label_key A = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A = prepared_for_class[value] A = tuple(A_ ) # Send to model A = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFLayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: A = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) A = self.default_image_processor A = prepare_img() A = image_processor(images=A_ ,return_tensors='tf' ).pixel_values A = tf.constant([[1, 2]] ) A = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass A = model(input_ids=A_ ,bbox=A_ ,pixel_values=A_ ,training=A_ ) # verify the logits A = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape ,A_ ) A = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,A_ ,atol=1e-4 ) )
91
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : str ) -> str: return "".join(chr(ord(__magic_name__ ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
92
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __A = """Create a default config file for Accelerate with only a few flags set.""" def __A (_SCREAMING_SNAKE_CASE="no" , _SCREAMING_SNAKE_CASE = default_json_config_file , _SCREAMING_SNAKE_CASE = False ) ->List[str]: """simple docstring""" lowerCAmelCase__ :int = Path(_SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) if path.exists(): print( F"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False lowerCAmelCase__ :Tuple = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) lowerCAmelCase__ :Union[str, Any] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase__ :str = torch.cuda.device_count() lowerCAmelCase__ :Any = num_gpus lowerCAmelCase__ :Tuple = False if num_gpus > 1: lowerCAmelCase__ :int = 'MULTI_GPU' else: lowerCAmelCase__ :int = 'NO' elif is_xpu_available() and use_xpu: lowerCAmelCase__ :Optional[Any] = torch.xpu.device_count() lowerCAmelCase__ :Tuple = num_xpus lowerCAmelCase__ :List[str] = False if num_xpus > 1: lowerCAmelCase__ :Any = 'MULTI_XPU' else: lowerCAmelCase__ :List[str] = 'NO' elif is_npu_available(): lowerCAmelCase__ :Optional[int] = torch.npu.device_count() lowerCAmelCase__ :Union[str, Any] = num_npus lowerCAmelCase__ :Optional[Any] = False if num_npus > 1: lowerCAmelCase__ :Dict = 'MULTI_NPU' else: lowerCAmelCase__ :int = 'NO' else: lowerCAmelCase__ :List[Any] = 0 lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :str = 1 lowerCAmelCase__ :Optional[Any] = 'NO' lowerCAmelCase__ :Optional[int] = ClusterConfig(**_SCREAMING_SNAKE_CASE ) config.to_json_file(_SCREAMING_SNAKE_CASE ) return path def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Dict = parser.add_parser('default' , parents=_SCREAMING_SNAKE_CASE , help=_SCREAMING_SNAKE_CASE , formatter_class=_SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=_SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_SCREAMING_SNAKE_CASE , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Any = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"accelerate configuration saved at {config_file}" )
93
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = list[tuple[int, int]] SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float , UpperCAmelCase : Node | None , ) -> List[str]: '''simple docstring''' lowercase : Dict =pos_x lowercase : Any =pos_y lowercase : Optional[Any] =(pos_y, pos_x) lowercase : Tuple =goal_x lowercase : Union[str, Any] =goal_y lowercase : Union[str, Any] =g_cost lowercase : str =parent lowercase : List[Any] =self.calculate_heuristic() def A__ ( self : int ) -> float: '''simple docstring''' lowercase : List[str] =abs(self.pos_x - self.goal_x ) lowercase : List[Any] =abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Tuple , UpperCAmelCase : Tuple ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : tuple[int, int] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase ) lowercase : int =Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , UpperCAmelCase ) lowercase : str =[self.start] lowercase : list[Node] =[] lowercase : Tuple =False def A__ ( self : Union[str, Any] ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase : Union[str, Any] =self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowercase : List[str] =True return self.retrace_path(UpperCAmelCase ) self.closed_nodes.append(UpperCAmelCase ) lowercase : Dict =self.get_successors(UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase ) else: # retrieve the best current path lowercase : Any =self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase ) else: self.open_nodes.append(UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def A__ ( self : Optional[int] , UpperCAmelCase : Node ) -> list[Node]: '''simple docstring''' lowercase : int =[] for action in delta: lowercase : List[Any] =parent.pos_x + action[1] lowercase : Optional[Any] =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase , UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase , ) ) return successors def A__ ( self : int , UpperCAmelCase : Node | None ) -> Path: '''simple docstring''' lowercase : Optional[Any] =node lowercase : int =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : Any =current_node.parent path.reverse() return path if __name__ == "__main__": SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') SCREAMING_SNAKE_CASE = GreedyBestFirst(init, goal) SCREAMING_SNAKE_CASE = greedy_bf.search() if path: for pos_x, pos_y in path: SCREAMING_SNAKE_CASE = 2 for elem in grid: print(elem)
94
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCamelCase_ (__A ): def __init__( self : Optional[Any] , **lowerCAmelCase_ : List[str] ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self : List[str] , lowerCAmelCase_ : Union[np.ndarray, bytes, str] , **lowerCAmelCase_ : List[str] ) -> int: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , **lowerCAmelCase_ : Any ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = {} if "candidate_labels" in kwargs: UpperCAmelCase_ : int = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCAmelCase_ : List[str] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]="This is a sound of {}." ) -> Tuple: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png UpperCAmelCase_ : Any = requests.get(lowerCAmelCase_ ).content else: with open(lowerCAmelCase_ , "rb" ) as f: UpperCAmelCase_ : Dict = f.read() if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = ffmpeg_read(lowerCAmelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase_ , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) UpperCAmelCase_ : Union[str, Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) UpperCAmelCase_ : Any = candidate_labels UpperCAmelCase_ : Union[str, Any] = [hypothesis_template.format(lowerCAmelCase_ ) for x in candidate_labels] UpperCAmelCase_ : List[str] = self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework , padding=lowerCAmelCase_ ) UpperCAmelCase_ : int = [text_inputs] return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Optional[int] ) -> Any: UpperCAmelCase_ : Dict = model_inputs.pop("candidate_labels" ) UpperCAmelCase_ : List[str] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = text_inputs[0] else: # Batching case. UpperCAmelCase_ : Optional[Any] = text_inputs[0][0] UpperCAmelCase_ : Any = self.model(**lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : str = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[Any] ) -> Tuple: UpperCAmelCase_ : int = model_outputs.pop("candidate_labels" ) UpperCAmelCase_ : Optional[int] = model_outputs["logits"][0] if self.framework == "pt": UpperCAmelCase_ : Tuple = logits.softmax(dim=0 ) UpperCAmelCase_ : int = probs.tolist() else: raise ValueError("`tf` framework not supported." ) UpperCAmelCase_ : Union[str, Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : -x[0] ) ] return result
95
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
"""simple docstring""" from string import ascii_uppercase __lowerCamelCase = {char: i for i, char in enumerate(ascii_uppercase)} __lowerCamelCase = dict(enumerate(ascii_uppercase)) def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> str: __magic_name__: Union[str, Any] = len(__UpperCAmelCase ) __magic_name__: Optional[int] = 0 while True: if x == i: __magic_name__: List[Any] = 0 if len(__UpperCAmelCase ) == len(__UpperCAmelCase ): break key += key[i] i += 1 return key def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> str: __magic_name__: int = """""" __magic_name__: int = 0 for letter in message: if letter == " ": cipher_text += " " else: __magic_name__: Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> str: __magic_name__: Dict = """""" __magic_name__: int = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __magic_name__: str = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def a ( ) -> None: __magic_name__: Optional[Any] = """THE GERMAN ATTACK""" __magic_name__: str = """SECRET""" __magic_name__: Any = generate_key(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[int] = cipher_text(__UpperCAmelCase , __UpperCAmelCase ) print(f'Encrypted Text = {s}' ) print(f'Original Text = {original_text(__UpperCAmelCase , __UpperCAmelCase )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
96
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a ( snake_case__: Dict ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def a ( snake_case__: Any , snake_case__: Any ): '''simple docstring''' return (-y * np.log(snake_case__ ) - (1 - y) * np.log(1 - h )).mean() def a ( snake_case__: Any , snake_case__: Optional[int] , snake_case__: List[Any] ): '''simple docstring''' lowercase_ = np.dot(snake_case__ , snake_case__ ) return np.sum(y * scores - np.log(1 + np.exp(snake_case__ ) ) ) def a ( snake_case__: int , snake_case__: Optional[int] , snake_case__: List[str] , snake_case__: List[Any]=70_000 ): '''simple docstring''' lowercase_ = np.zeros(x.shape[1] ) for iterations in range(snake_case__ ): lowercase_ = np.dot(snake_case__ , snake_case__ ) lowercase_ = sigmoid_function(snake_case__ ) lowercase_ = np.dot(x.T , h - y ) / y.size lowercase_ = theta - alpha * gradient # updating the weights lowercase_ = np.dot(snake_case__ , snake_case__ ) lowercase_ = sigmoid_function(snake_case__ ) lowercase_ = cost_function(snake_case__ , snake_case__ ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __a = datasets.load_iris() __a = iris.data[:, :2] __a = (iris.target != 0) * 1 __a = 0.1 __a = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def a ( snake_case__: List[Any] ): '''simple docstring''' return sigmoid_function( np.dot(snake_case__ , snake_case__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__a) , (__a)) = (x[:, 0].min(), x[:, 0].max()) ((__a) , (__a)) = (x[:, 1].min(), x[:, 1].max()) ((__a) , (__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __a = np.c_[xxa.ravel(), xxa.ravel()] __a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
97
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowercase__ : str = datasets.load_iris() lowercase__ : str = np.array(data['data']) lowercase__ : int = np.array(data['target']) lowercase__ : Union[str, Any] = data['target_names'] lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = train_test_split(X, y) def a__ ( lowercase : str, lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return np.linalg.norm(np.array(lowercase ) - np.array(lowercase ) ) def a__ ( lowercase : int, lowercase : Union[str, Any], lowercase : List[Any], lowercase : Tuple, lowercase : str=5 ) -> List[Any]: """simple docstring""" _UpperCamelCase = zip(lowercase, lowercase ) # List of distances of all points from the point to be classified _UpperCamelCase = [] for data_point in data: _UpperCamelCase = euclidean_distance(data_point[0], lowercase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _UpperCamelCase = [i[1] for i in sorted(lowercase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _UpperCamelCase = Counter(lowercase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
98
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """glpn""" def __init__( self , __A=3 , __A=4 , __A=[2, 2, 2, 2] , __A=[8, 4, 2, 1] , __A=[32, 64, 160, 256] , __A=[7, 3, 3, 3] , __A=[4, 2, 2, 2] , __A=[1, 2, 5, 8] , __A=[4, 4, 4, 4] , __A="gelu" , __A=0.0 , __A=0.0 , __A=0.02 , __A=0.1 , __A=1E-6 , __A=64 , __A=10 , __A=-1 , **__A , ): super().__init__(**__A ) __a = num_channels __a = num_encoder_blocks __a = depths __a = sr_ratios __a = hidden_sizes __a = patch_sizes __a = strides __a = mlp_ratios __a = num_attention_heads __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = drop_path_rate __a = layer_norm_eps __a = decoder_hidden_size __a = max_depth __a = head_in_index
99
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A : int = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = ["""GLPNFeatureExtractor"""] _A : List[str] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _A : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
100
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__="cls" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = project_dim SCREAMING_SNAKE_CASE_ : List[str] = pooler_fn SCREAMING_SNAKE_CASE_ : List[Any] = learn_encoder SCREAMING_SNAKE_CASE_ : Optional[Any] = use_attention_mask class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = [r"""pooler""", r"""logit_scale"""] _UpperCAmelCase = [r"""position_ids""", r"""predictions.decoder.bias"""] _UpperCAmelCase = """roberta""" _UpperCAmelCase = RobertaSeriesConfig def __init__( self , lowerCAmelCase__ ): """simple docstring""" super().__init__(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = XLMRobertaModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE_ : str = getattr(lowerCAmelCase__ , 'has_pre_transformation' , lowerCAmelCase__ ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE_ : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : List[Any] = self.base_model( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase__ , ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE_ : List[str] = outputs['hidden_states'][-2] SCREAMING_SNAKE_CASE_ : List[str] = self.pre_LN(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.transformation_pre(lowerCAmelCase__ ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: SCREAMING_SNAKE_CASE_ : int = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
101
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , _A , _A ): '''simple docstring''' return f"""gaussian_noise_s={seed}_shape={"_".join([str(_A ) for s in shape] )}.npy""" def _a ( self ): '''simple docstring''' super().tearDown() gc.collect() def _a ( self , _A=0 , _A=(4, 4, 6_4, 6_4) , _A=False ): '''simple docstring''' UpperCamelCase : Tuple = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(_A , _A ) ) , dtype=_A ) return image def _a ( self , _A=False , _A="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' UpperCamelCase : str = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase : str = """bf16""" if fpaa else None UpperCamelCase , UpperCamelCase : str = FlaxUNetaDConditionModel.from_pretrained( _A , subfolder="""unet""" , dtype=_A , revision=_A ) return model, params def _a ( self , _A=0 , _A=(4, 7_7, 7_6_8) , _A=False ): '''simple docstring''' UpperCamelCase : Dict = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase : int = jnp.array(load_hf_numpy(self.get_file_format(_A , _A ) ) , dtype=_A ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=_A ) UpperCamelCase : Any = self.get_latents(_A , fpaa=_A ) UpperCamelCase : Union[str, Any] = self.get_encoder_hidden_states(_A , fpaa=_A ) UpperCamelCase : Union[str, Any] = model.apply( {"""params""": params} , _A , jnp.array(_A , dtype=jnp.intaa ) , encoder_hidden_states=_A , ).sample assert sample.shape == latents.shape UpperCamelCase : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase : Dict = jnp.array(_A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_A , _A , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[Any] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=_A ) UpperCamelCase : List[Any] = self.get_latents(_A , shape=(4, 4, 9_6, 9_6) , fpaa=_A ) UpperCamelCase : Any = self.get_encoder_hidden_states(_A , shape=(4, 7_7, 1_0_2_4) , fpaa=_A ) UpperCamelCase : Optional[int] = model.apply( {"""params""": params} , _A , jnp.array(_A , dtype=jnp.intaa ) , encoder_hidden_states=_A , ).sample assert sample.shape == latents.shape UpperCamelCase : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase : Tuple = jnp.array(_A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_A , _A , atol=1e-2 )
102
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) snake_case = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''ViTFeatureExtractor'''] snake_case = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=18 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=400 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] , ) -> Any: A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size if size is not None else {"height": 18, "width": 20} A__ = do_thumbnail A__ = do_align_axis A__ = do_pad A__ = do_normalize A__ = image_mean A__ = image_std def snake_case__ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = DonutImageProcessor if is_vision_available() else None def snake_case__ ( self ) -> Dict: A__ = DonutImageProcessingTester(self ) @property def snake_case__ ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self ) -> List[Any]: A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_thumbnail" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_align_long_axis" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_pad" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_std" ) ) def snake_case__ ( self ) -> Dict: A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def snake_case__ ( self ) -> Any: pass @is_flaky() def snake_case__ ( self ) -> Tuple: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def snake_case__ ( self ) -> Any: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def snake_case__ ( self ) -> Dict: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
104
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] SCREAMING_SNAKE_CASE_ : Dict = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname ,snake_case__ ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(snake_case__ ,snake_case__ ) def snake_case ( self ,**snake_case__ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): return ViTImageProcessor.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case__ ) self.assertIsInstance(processor_fast.tokenizer ,snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case__ ) self.assertIsInstance(processor_fast.image_processor ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = CLIPSegProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor(do_normalize=snake_case__ ,padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Any = CLIPSegProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=snake_case__ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = image_processor(snake_case__ ,return_tensors='np' ) SCREAMING_SNAKE_CASE_ : str = processor(images=snake_case__ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE_ : List[str] = processor(text=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = 'lower newer' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=snake_case__ ,images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : str = processor(images=snake_case__ ,visual_prompt=snake_case__ ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPSegProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[Any] = processor.batch_decode(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ )
105
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case :int =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' A = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) A = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok A = 847 A = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok A = 150 A = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok A = 171 A = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO A = 133 A = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok A = 19 A = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok A = 65 A = 'mapillary-vistas-id2label.json' A = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) A = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> Dict: '''simple docstring''' A = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' A = dct.pop(lowerCAmelCase__ ) A = val def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) A = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:dim, :] A = in_proj_bias[: dim] A = in_proj_weight[ dim : dim * 2, : ] A = in_proj_bias[ dim : dim * 2 ] A = in_proj_weight[ -dim :, : ] A = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' A = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[: hidden_size, :] A = in_proj_bias[:config.hidden_size] A = in_proj_weight[hidden_size : hidden_size * 2, :] A = in_proj_bias[hidden_size : hidden_size * 2] A = in_proj_weight[-hidden_size :, :] A = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) A = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[: hidden_size, :] A = in_proj_bias[:config.hidden_size] A = in_proj_weight[hidden_size : hidden_size * 2, :] A = in_proj_bias[hidden_size : hidden_size * 2] A = in_proj_weight[-hidden_size :, :] A = in_proj_bias[-hidden_size :] # fmt: on def lowerCamelCase_ ( ) -> torch.Tensor: '''simple docstring''' A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ) -> Optional[Any]: '''simple docstring''' A = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , 'rb' ) as f: A = pickle.load(lowerCAmelCase__ ) A = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): A = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model A = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) A , A = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results A = prepare_img() if "vistas" in model_name: A = 65 elif "cityscapes" in model_name: A = 65535 else: A = 255 A = True if 'ade' in model_name else False A = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) A = image_processor(lowerCAmelCase__ , return_tensors='pt' ) A = model(**lowerCAmelCase__ ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case :int =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case :List[Any] =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
106
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
'''simple docstring''' _UpperCAmelCase : Union[str, Any] = [ (10_00, '''M'''), (9_00, '''CM'''), (5_00, '''D'''), (4_00, '''CD'''), (1_00, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def _SCREAMING_SNAKE_CASE ( __snake_case : str ): _A = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} _A = 0 _A = 0 while place < len(__snake_case ): if (place + 1 < len(__snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _SCREAMING_SNAKE_CASE ( __snake_case : int ): _A = [] for arabic, roman in ROMAN: ((_A) , (_A)) = divmod(__snake_case , __snake_case ) result.append(roman * factor ) if number == 0: break return "".join(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
107
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __a: Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __a: Dict = 256 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''melgan'''] def __init__( self : List[str] , lowerCamelCase : SpectrogramNotesEncoder , lowerCamelCase : SpectrogramContEncoder , lowerCamelCase : TaFilmDecoder , lowerCamelCase : DDPMScheduler , lowerCamelCase : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN _UpperCAmelCase = math.log(1E-5 ) # Matches MelGAN training. _UpperCAmelCase = 4.0 # Largest value for most examples _UpperCAmelCase = 128 self.register_modules( notes_encoder=lowerCamelCase , continuous_encoder=lowerCamelCase , decoder=lowerCamelCase , scheduler=lowerCamelCase , melgan=lowerCamelCase , ) def lowerCamelCase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int=(-1.0, 1.0) , lowerCamelCase : List[str]=False ) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = output_range if clip: _UpperCAmelCase = torch.clip(lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. _UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any=(-1.0, 1.0) , lowerCamelCase : Tuple=False ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = input_range _UpperCAmelCase = torch.clip(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if clip else outputs # Scale to [0, 1]. _UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = input_tokens > 0 _UpperCAmelCase , _UpperCAmelCase = self.notes_encoder( encoder_input_tokens=lowerCamelCase , encoder_inputs_mask=lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = self.continuous_encoder( encoder_inputs=lowerCamelCase , encoder_inputs_mask=lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = noise_time if not torch.is_tensor(lowerCamelCase ): _UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _UpperCAmelCase = self.decoder( encodings_and_masks=lowerCamelCase , decoder_input_tokens=lowerCamelCase , decoder_noise_time=lowerCamelCase ) return logits @torch.no_grad() def __call__( self : Optional[int] , lowerCamelCase : List[List[int]] , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : int = 100 , lowerCamelCase : bool = True , lowerCamelCase : str = "numpy" , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase , lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCamelCase )}.""" ) _UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _UpperCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) _UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(lowerCamelCase ): if i == 0: _UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _UpperCAmelCase = ones _UpperCAmelCase = self.scale_features( lowerCamelCase , output_range=[-1.0, 1.0] , clip=lowerCamelCase ) _UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowerCamelCase , continuous_mask=lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase = self.decode( encodings_and_masks=lowerCamelCase , input_tokens=lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample _UpperCAmelCase = self.scale_to_features(lowerCamelCase , input_range=[-1.0, 1.0] ) _UpperCAmelCase = mel[:1] _UpperCAmelCase = mel.cpu().float().numpy() _UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase , lowerCamelCase ) logger.info("""Generated segment""" , lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": _UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowerCamelCase )
108
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
'''simple docstring''' from PIL import Image def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Image: '''simple docstring''' __SCREAMING_SNAKE_CASE = (259 * (level + 255)) / (255 * (259 - level)) def contrast(__UpperCAmelCase ) -> int: return int(128 + factor * (c - 128) ) return img.point(__UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 a = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
109
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( lowercase ): UpperCamelCase : Optional[int] = (IPNDMScheduler,) UpperCamelCase : Optional[int] = (("""num_inference_steps""", 5_0),) def __snake_case ( self , **UpperCamelCase_ ): UpperCAmelCase__ : Any = {'num_train_timesteps': 1_000} config.update(**UpperCamelCase_ ) return config def __snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase__ : Optional[int] = kwargs.pop('num_inference_steps' , UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = self.dummy_sample UpperCAmelCase__ : Dict = 0.1 * sample UpperCAmelCase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : List[Any] = self.get_scheduler_config(**UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals UpperCAmelCase__ : Union[str, Any] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase__ : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals UpperCAmelCase__ : Any = dummy_past_residuals[:] UpperCAmelCase__ : List[str] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCAmelCase__ : str = new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ : Dict = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCAmelCase__ : Optional[Any] = new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case ( self ): pass def __snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = dict(self.forward_default_kwargs ) UpperCAmelCase__ : Any = kwargs.pop('num_inference_steps' , UpperCamelCase_ ) UpperCAmelCase__ : List[str] = self.dummy_sample UpperCAmelCase__ : Optional[int] = 0.1 * sample UpperCAmelCase__ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ : Union[str, Any] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase__ : int = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ : List[Any] = dummy_past_residuals[:] UpperCAmelCase__ : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCAmelCase__ : int = new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ : Optional[int] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCAmelCase__ : Dict = new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __snake_case ( self , **UpperCamelCase_ ): UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config(**UpperCamelCase_ ) UpperCAmelCase__ : int = scheduler_class(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = 10 UpperCAmelCase__ : Any = self.dummy_model() UpperCAmelCase__ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ : List[Any] = model(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ : List[str] = model(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase__ : List[str] = kwargs.pop('num_inference_steps' , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : Optional[int] = self.get_scheduler_config() UpperCAmelCase__ : Optional[Any] = scheduler_class(**UpperCamelCase_ ) UpperCAmelCase__ : List[str] = self.dummy_sample UpperCAmelCase__ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , 'set_timesteps' ): UpperCAmelCase__ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ : Tuple = dummy_past_residuals[:] UpperCAmelCase__ : List[Any] = scheduler.timesteps[5] UpperCAmelCase__ : List[Any] = scheduler.timesteps[6] UpperCAmelCase__ : Any = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCAmelCase__ : Any = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ : int = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample UpperCAmelCase__ : int = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ , time_step=UpperCamelCase_ ) def __snake_case ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase_ , time_step=UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = self.full_loop() UpperCAmelCase__ : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
110
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_: List[Any] = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_: List[str] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_: List[str] = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A_: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
398
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ :int = 16 UpperCAmelCase__ :List[Any] = 32 def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase, _lowercase = 16 ) -> List[str]: """simple docstring""" __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCamelCase : Optional[int] = DatasetDict( { """train""": dataset["""train"""].select(_lowercase ), """validation""": dataset["""train"""].select(_lowercase ), """test""": dataset["""validation"""], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : str = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=_lowercase, max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : List[str] = datasets.map( _lowercase, batched=_lowercase, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : str = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase : Optional[Any] = 8 else: __lowerCamelCase : Tuple = None return tokenizer.pad( _lowercase, padding="""longest""", max_length=_lowercase, pad_to_multiple_of=_lowercase, return_tensors="""pt""", ) # Instantiate dataloaders. __lowerCamelCase : Optional[int] = DataLoader( tokenized_datasets["""train"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) __lowerCamelCase : Any = DataLoader( tokenized_datasets["""validation"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) __lowerCamelCase : Tuple = DataLoader( tokenized_datasets["""test"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __lowercase (_lowercase, _lowercase ) -> Any: """simple docstring""" __lowerCamelCase : List[str] = [] # Download the dataset __lowerCamelCase : Optional[Any] = load_dataset("""glue""", """mrpc""" ) # Create our splits __lowerCamelCase : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __lowerCamelCase : Tuple = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : List[Any] = config["""lr"""] __lowerCamelCase : Optional[int] = int(config["""num_epochs"""] ) __lowerCamelCase : Any = int(config["""seed"""] ) __lowerCamelCase : str = int(config["""batch_size"""] ) __lowerCamelCase : Dict = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowerCamelCase : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase : List[Any] = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: __lowerCamelCase : Optional[int] = kfold.split(np.zeros(datasets["""train"""].num_rows ), datasets["""train"""]["""label"""] ) __lowerCamelCase : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = get_fold_dataloaders( _lowercase, _lowercase, _lowercase, _lowercase, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Dict = AdamW(params=model.parameters(), lr=_lowercase ) # Instantiate scheduler __lowerCamelCase : List[str] = get_linear_schedule_with_warmup( optimizer=_lowercase, num_warmup_steps=100, num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.prepare( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : str = model(**_lowercase ) __lowerCamelCase : Dict = outputs.loss __lowerCamelCase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : int = model(**_lowercase ) __lowerCamelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowercase, references=_lowercase, ) __lowerCamelCase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", _lowercase ) # New Code # # We also run predictions on the test set at the very end __lowerCamelCase : Tuple = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : Any = model(**_lowercase ) __lowerCamelCase : Optional[Any] = outputs.logits __lowerCamelCase , __lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __lowerCamelCase : List[str] = torch.cat(_lowercase, dim=0 ) __lowerCamelCase : Optional[Any] = torch.stack(_lowercase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __lowerCamelCase : Optional[int] = metric.compute(predictions=_lowercase, references=_lowercase ) accelerator.print("""Average test metrics from all folds:""", _lowercase ) def __lowercase () -> Any: """simple docstring""" __lowerCamelCase : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=_lowercase, default=_lowercase, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""", type=_lowercase, default=3, help="""The number of splits to perform across the dataset""" ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : str = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowercase, _lowercase ) if __name__ == "__main__": main()
150
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class __snake_case : def __init__( self, A ): """simple docstring""" lowerCamelCase : Any = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase : List[str] = len(lowerCamelCase_ ) - 1 def UpperCAmelCase_ ( self, A ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase : Tuple = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, lowerCamelCase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCamelCase_ ), 5 ) == 1 return output_values def UpperCAmelCase_ ( self, A ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase : Union[str, Any] = self.basis_function(lowerCamelCase_ ) lowerCamelCase : List[Any] = 0.0 lowerCamelCase : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase_ ( self, A = 0.01 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowerCamelCase : str = [] # x coordinates of points to plot lowerCamelCase : List[str] = [] # y coordinates of points to plot lowerCamelCase : Optional[Any] = 0.0 while t <= 1: lowerCamelCase : List[Any] = self.bezier_curve_function(lowerCamelCase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase : Tuple = [i[0] for i in self.list_of_points] lowerCamelCase : Any = [i[1] for i in self.list_of_points] plt.plot( lowerCamelCase_, lowerCamelCase_, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(lowerCamelCase_, lowerCamelCase_, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
320
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): """simple docstring""" assert x is not None assert y is not None _lowerCamelCase : Dict = len(_lowercase ) _lowerCamelCase : str = len(_lowercase ) # declaring the array for storing the dp values _lowerCamelCase : Union[str, Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCamelCase : int = 1 if x[i - 1] == y[j - 1] else 0 _lowerCamelCase : int = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCamelCase : Union[str, Any] = "" _lowerCamelCase , _lowerCamelCase : Any = m, n while i > 0 and j > 0: _lowerCamelCase : List[str] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCamelCase : List[str] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCAmelCase_ : int = 'AGGTAB' UpperCAmelCase_ : Tuple = 'GXTXAYB' UpperCAmelCase_ : Union[str, Any] = 4 UpperCAmelCase_ : Any = 'GTAB' UpperCAmelCase_, UpperCAmelCase_ : int = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
44
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase , lowerCamelCase = analyze_text(_lowercase ) lowerCamelCase = list(" " + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase = sum(single_char_strings.values() ) # one length string lowerCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase = single_char_strings[ch] lowerCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCamelCase = sum(two_char_strings.values() ) lowerCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase = cha + cha if sequence in two_char_strings: lowerCamelCase = two_char_strings[sequence] lowerCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = Counter() # type: ignore lowerCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __lowercase( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
623
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase :Optional[int] = logging.get_logger(__name__) lowerCamelCase :Dict = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCAmelCase ( lowerCamelCase_ ): __SCREAMING_SNAKE_CASE : Dict = 'deformable_detr' __SCREAMING_SNAKE_CASE : Tuple = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__(self , lowercase=True , lowercase=None , lowercase=3 , lowercase=300 , lowercase=1024 , lowercase=6 , lowercase=1024 , lowercase=8 , lowercase=6 , lowercase=1024 , lowercase=8 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , lowercase=True , lowercase=False , lowercase="sine" , lowercase="resnet50" , lowercase=True , lowercase=False , lowercase=4 , lowercase=4 , lowercase=4 , lowercase=False , lowercase=300 , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=1 , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=0.1 , lowercase=0.25 , lowercase=False , **lowercase , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A_ : Union[str, Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): A_ : Tuple = backbone_config.get("""model_type""" ) A_ : Tuple = CONFIG_MAPPING[backbone_model_type] A_ : Union[str, Any] = config_class.from_dict(lowerCamelCase_ ) A_ : List[str] = use_timm_backbone A_ : List[Any] = backbone_config A_ : Optional[int] = num_channels A_ : Tuple = num_queries A_ : Dict = max_position_embeddings A_ : Tuple = d_model A_ : Optional[Any] = encoder_ffn_dim A_ : Any = encoder_layers A_ : Dict = encoder_attention_heads A_ : Union[str, Any] = decoder_ffn_dim A_ : List[Any] = decoder_layers A_ : str = decoder_attention_heads A_ : int = dropout A_ : Union[str, Any] = attention_dropout A_ : Optional[int] = activation_dropout A_ : List[str] = activation_function A_ : Optional[Any] = init_std A_ : List[Any] = init_xavier_std A_ : List[str] = encoder_layerdrop A_ : Tuple = auxiliary_loss A_ : Union[str, Any] = position_embedding_type A_ : str = backbone A_ : str = use_pretrained_backbone A_ : Tuple = dilation # deformable attributes A_ : int = num_feature_levels A_ : List[str] = encoder_n_points A_ : Tuple = decoder_n_points A_ : Any = two_stage A_ : Tuple = two_stage_num_proposals A_ : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher A_ : List[str] = class_cost A_ : str = bbox_cost A_ : int = giou_cost # Loss coefficients A_ : Tuple = mask_loss_coefficient A_ : str = dice_loss_coefficient A_ : Union[str, Any] = bbox_loss_coefficient A_ : Union[str, Any] = giou_loss_coefficient A_ : Optional[int] = eos_coefficient A_ : Optional[Any] = focal_alpha A_ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) @property def _a (self ): return self.encoder_attention_heads @property def _a (self ): return self.d_model def _a (self ): A_ : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A_ : str = self.backbone_config.to_dict() A_ : Any = self.__class__.model_type return output
667
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _UpperCamelCase ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = """pegasus""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , _lowerCAmelCase : Optional[Any]=5_0_2_6_5 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : str=1_2 , _lowerCAmelCase : int=4_0_9_6 , _lowerCAmelCase : List[str]=1_6 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : List[Any]=4_0_9_6 , _lowerCAmelCase : Optional[Any]=1_6 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : Any=False , _lowerCAmelCase : str=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Optional[int]=1 , **_lowerCAmelCase : int , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self : Any): '''simple docstring''' return self.d_model
474
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : List[str] = ["audio_values", "audio_mask"] def __init__( self, lowerCamelCase__=2048, lowerCamelCase__=1, lowerCamelCase__=[16, 16], lowerCamelCase__=128, lowerCamelCase__=4_4100, lowerCamelCase__=86, lowerCamelCase__=2048, lowerCamelCase__=0.0, **lowerCamelCase__, ): super().__init__( feature_size=lowerCamelCase_, sampling_rate=lowerCamelCase_, padding_value=lowerCamelCase_, **lowerCamelCase_, ) A : str = spectrogram_length A : Dict = num_channels A : Optional[Any] = patch_size A : List[Any] = feature_size // self.patch_size[1] A : Tuple = n_fft A : Any = sampling_rate // hop_length_to_sampling_rate A : int = sampling_rate A : Dict = padding_value A : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=lowerCamelCase_, min_frequency=0.0, max_frequency=2_2050.0, sampling_rate=lowerCamelCase_, norm="""slaney""", mel_scale="""slaney""", ).T def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = spectrogram( lowerCamelCase_, window_function(self.n_fft, """hann""" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="""dB""", db_range=80.0, ) A : Union[str, Any] = log_spec[:, :-1] A : Optional[int] = log_spec - 20.0 A : str = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, **lowerCamelCase__, ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A : Dict = isinstance(lowerCamelCase_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A : Tuple = is_batched_numpy or ( isinstance(lowerCamelCase_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: A : int = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_, np.ndarray ): A : str = np.asarray(lowerCamelCase_, dtype=np.floataa ) elif isinstance(lowerCamelCase_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : int = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis A : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], lowerCamelCase_ ): A : str = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask A : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: A : Optional[int] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] A : Optional[Any] = np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding A : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch A : str = np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) A : Optional[int] = padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): A : Union[str, Any] = audio_features[i] A : Any = feature # return as BatchFeature if return_attention_mask: A : Any = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: A : List[Any] = {"""audio_values""": padded_audio_features} A : Any = BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ ) return encoded_inputs
662
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Optional[int] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
23
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCamelCase__ ( lowerCamelCase_ , unittest.TestCase): '''simple docstring''' _A = BarthezTokenizer _A = BarthezTokenizerFast _A = True _A = True def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: super().setUp() __UpperCamelCase : Any = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase_ ) __UpperCamelCase : Union[str, Any] = tokenizer def _lowerCamelCase ( self :Union[str, Any] ) -> Optional[Any]: __UpperCamelCase : Any = "<pad>" __UpperCamelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def _lowerCamelCase ( self :Optional[int] ) -> Tuple: __UpperCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase_ ) , 1_0_1_1_2_2 ) def _lowerCamelCase ( self :List[str] ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCamelCase ( self :int ) -> Optional[Any]: __UpperCamelCase : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] __UpperCamelCase : Dict = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] __UpperCamelCase : List[str] = self.tokenizer( lowerCamelCase_ , max_length=len(lowerCamelCase_ ) , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors="pt" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __UpperCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( self :Any ) -> List[str]: if not self.test_rust_tokenizer: return __UpperCamelCase : List[Any] = self.get_tokenizer() __UpperCamelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCamelCase : str = "I was born in 92000, and this is falsé." __UpperCamelCase : Optional[int] = tokenizer.tokenize(lowerCamelCase_ ) __UpperCamelCase : str = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) __UpperCamelCase : List[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __UpperCamelCase : Tuple = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) __UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCamelCase : int = tokenizer.encode(lowerCamelCase_ ) __UpperCamelCase : List[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def _lowerCamelCase ( self :str ) -> List[str]: # fmt: off __UpperCamelCase : List[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __UpperCamelCase : Tuple = [ "Le transformeur est un modèle d\'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCamelCase_ , )
557
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0