code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCAmelCase_ ( a__ ):
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) )
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any:
UpperCamelCase : int = parent
UpperCamelCase : int = batch_size
UpperCamelCase : List[Any] = image_size
UpperCamelCase : List[str] = patch_size
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 )
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[int] = conv_kernel_size
UpperCamelCase : List[str] = output_stride
UpperCamelCase : Union[str, Any] = classifier_dropout_prob
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Any = is_training
UpperCamelCase : int = num_labels
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Tuple = scope
UpperCamelCase : List[str] = width_multiplier
UpperCamelCase : Any = ffn_dropout
UpperCamelCase : List[Any] = attn_dropout
def snake_case_ ( self ) -> int:
UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : List[str] = None
UpperCamelCase : int = None
if self.use_labels:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCamelCase : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def snake_case_ ( self ) -> int:
return MobileViTVaConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Any = self.num_labels
UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs
UpperCamelCase : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : Tuple = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Any = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[Any] = False
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Dict = MobileViTVaModelTester(self )
UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def snake_case_ ( self ) -> int:
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def snake_case_ ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case_ ( self ) -> Any:
pass
def snake_case_ ( self ) -> List[str]:
UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : str = [*signature.parameters.keys()]
UpperCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Tuple:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = outputs.hidden_states
UpperCamelCase : Dict = 5
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCamelCase : Any = 2
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : Optional[int] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> str:
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ )
@slow
def snake_case_ ( self ) -> Optional[Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Tuple:
UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case_ ( self ) -> str:
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.default_image_processor
UpperCamelCase : Any = prepare_img()
UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Union[str, Any] = prepare_img()
UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = outputs.logits
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
], device=SCREAMING_SNAKE_CASE_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Tuple = prepare_img()
UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = outputs.logits.detach().cpu()
UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] )
UpperCamelCase : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
| 40 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any:
if rng is None:
UpperCamelCase : int = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]:
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Any = min_seq_length
UpperCamelCase : Optional[int] = max_seq_length
UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Any = padding_value
UpperCamelCase : Tuple = sampling_rate
UpperCamelCase : Optional[Any] = return_attention_mask
UpperCamelCase : Optional[Any] = do_normalize
def snake_case_ ( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Any = WavaVecaFeatureExtractor
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) )
def snake_case_ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : Any = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Tuple = range(800, 1400, 200 )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : List[str] = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' )
UpperCamelCase : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' )
UpperCamelCase : int = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def snake_case_ ( self ) -> str:
import torch
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def snake_case_ ( self ) -> Tuple:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
| 40 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : torch.FloatTensor
class lowerCAmelCase_ ( a__ , a__ ):
@register_to_config
def __init__( self, SCREAMING_SNAKE_CASE_ = 6_5536, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 2, SCREAMING_SNAKE_CASE_ = 2, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = "fourier", SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), SCREAMING_SNAKE_CASE_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), SCREAMING_SNAKE_CASE_ = "UNetMidBlock1D", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = (32, 32, 64), SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 8, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = False, ) -> Any:
super().__init__()
UpperCamelCase : Optional[Any] = sample_size
# time
if time_embedding_type == "fourier":
UpperCamelCase : Any = GaussianFourierProjection(
embedding_size=8, set_W_to_weight=SCREAMING_SNAKE_CASE_, log=SCREAMING_SNAKE_CASE_, flip_sin_to_cos=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
UpperCamelCase : Optional[Any] = Timesteps(
block_out_channels[0], flip_sin_to_cos=SCREAMING_SNAKE_CASE_, downscale_freq_shift=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = block_out_channels[0]
if use_timestep_embedding:
UpperCamelCase : List[Any] = block_out_channels[0] * 4
UpperCamelCase : Any = TimestepEmbedding(
in_channels=SCREAMING_SNAKE_CASE_, time_embed_dim=SCREAMING_SNAKE_CASE_, act_fn=SCREAMING_SNAKE_CASE_, out_dim=block_out_channels[0], )
UpperCamelCase : Tuple = nn.ModuleList([] )
UpperCamelCase : Dict = None
UpperCamelCase : Tuple = nn.ModuleList([] )
UpperCamelCase : Optional[Any] = None
# down
UpperCamelCase : Any = in_channels
for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = output_channel
UpperCamelCase : Union[str, Any] = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
UpperCamelCase : str = i == len(SCREAMING_SNAKE_CASE_ ) - 1
UpperCamelCase : Tuple = get_down_block(
SCREAMING_SNAKE_CASE_, num_layers=SCREAMING_SNAKE_CASE_, in_channels=SCREAMING_SNAKE_CASE_, out_channels=SCREAMING_SNAKE_CASE_, temb_channels=block_out_channels[0], add_downsample=not is_final_block or downsample_each_block, )
self.down_blocks.append(SCREAMING_SNAKE_CASE_ )
# mid
UpperCamelCase : Dict = get_mid_block(
SCREAMING_SNAKE_CASE_, in_channels=block_out_channels[-1], mid_channels=block_out_channels[-1], out_channels=block_out_channels[-1], embed_dim=block_out_channels[0], num_layers=SCREAMING_SNAKE_CASE_, add_downsample=SCREAMING_SNAKE_CASE_, )
# up
UpperCamelCase : Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = reversed_block_out_channels[0]
if out_block_type is None:
UpperCamelCase : List[Any] = out_channels
else:
UpperCamelCase : Tuple = block_out_channels[0]
for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = output_channel
UpperCamelCase : Union[str, Any] = (
reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels
)
UpperCamelCase : Dict = i == len(SCREAMING_SNAKE_CASE_ ) - 1
UpperCamelCase : List[str] = get_up_block(
SCREAMING_SNAKE_CASE_, num_layers=SCREAMING_SNAKE_CASE_, in_channels=SCREAMING_SNAKE_CASE_, out_channels=SCREAMING_SNAKE_CASE_, temb_channels=block_out_channels[0], add_upsample=not is_final_block, )
self.up_blocks.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output_channel
# out
UpperCamelCase : List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32 )
UpperCamelCase : Tuple = get_out_block(
out_block_type=SCREAMING_SNAKE_CASE_, num_groups_out=SCREAMING_SNAKE_CASE_, embed_dim=block_out_channels[0], out_channels=SCREAMING_SNAKE_CASE_, act_fn=SCREAMING_SNAKE_CASE_, fc_dim=block_out_channels[-1] // 4, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, ) -> Union[UNetaDOutput, Tuple]:
UpperCamelCase : Optional[Any] = timestep
if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = torch.tensor([timesteps], dtype=torch.long, device=sample.device )
elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0:
UpperCamelCase : List[str] = timesteps[None].to(sample.device )
UpperCamelCase : Tuple = self.time_proj(SCREAMING_SNAKE_CASE_ )
if self.config.use_timestep_embedding:
UpperCamelCase : str = self.time_mlp(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Dict = timestep_embed[..., None]
UpperCamelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
UpperCamelCase : Optional[int] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
UpperCamelCase : str = ()
for downsample_block in self.down_blocks:
UpperCamelCase , UpperCamelCase : Tuple = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_, temb=SCREAMING_SNAKE_CASE_ )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
UpperCamelCase : Tuple = self.mid_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
UpperCamelCase : Optional[Any] = down_block_res_samples[-1:]
UpperCamelCase : Optional[int] = down_block_res_samples[:-1]
UpperCamelCase : Any = upsample_block(SCREAMING_SNAKE_CASE_, res_hidden_states_tuple=SCREAMING_SNAKE_CASE_, temb=SCREAMING_SNAKE_CASE_ )
# 5. post-process
if self.out_block:
UpperCamelCase : Any = self.out_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
| 40 |
def UpperCamelCase ( snake_case__ : int ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
UpperCamelCase : int = False
if num < 0:
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Tuple = -num
UpperCamelCase : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 1 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def UpperCamelCase ( snake_case__ : str ) -> None:
UpperCamelCase , UpperCamelCase : Tuple = analyze_text(snake_case__ )
UpperCamelCase : Optional[Any] = list(' ' + ascii_lowercase )
# what is our total sum of probabilities.
UpperCamelCase : List[str] = sum(single_char_strings.values() )
# one length string
UpperCamelCase : Optional[Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
UpperCamelCase : Tuple = single_char_strings[ch]
UpperCamelCase : Any = my_str / all_sum
my_fir_sum += prob * math.loga(snake_case__ ) # entropy formula.
# print entropy
print(F"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
UpperCamelCase : List[str] = sum(two_char_strings.values() )
UpperCamelCase : Union[str, Any] = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
UpperCamelCase : List[Any] = cha + cha
if sequence in two_char_strings:
UpperCamelCase : List[str] = two_char_strings[sequence]
UpperCamelCase : Dict = int(snake_case__ ) / all_sum
my_sec_sum += prob * math.loga(snake_case__ )
# print second entropy
print(F"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def UpperCamelCase ( snake_case__ : str ) -> tuple[dict, dict]:
UpperCamelCase : List[str] = Counter() # type: ignore
UpperCamelCase : Any = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(snake_case__ ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def UpperCamelCase ( ) -> Optional[int]:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 40 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCAmelCase = logging.get_logger(__name__)
def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
UpperCamelCase : List[Any] = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
UpperCamelCase : Dict = new_module
UpperCamelCase : int = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
UpperCamelCase : Union[str, Any] = tensor_name in module._buffers
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
UpperCamelCase : Optional[Any] = False
UpperCamelCase : str = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase : List[str] = False
UpperCamelCase : Tuple = False
else:
UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase : List[Any] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase : Dict = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[Any] = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
UpperCamelCase : Union[str, Any] = new_value.T
UpperCamelCase : Union[str, Any] = old_value.__dict__
if is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
UpperCamelCase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[str] = value.to(snake_case__ )
else:
UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
UpperCamelCase : Optional[int] = new_value
else:
UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
UpperCamelCase : List[str] = new_value
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int:
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase : str = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape
else:
UpperCamelCase : Any = module.in_features
UpperCamelCase : List[str] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase : Any = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase : Optional[int] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase : str = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase : int = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase : Any = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]:
UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase : List[str] = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] )
UpperCamelCase : Optional[int] = len(snake_case__ ) > 0
# Check if it is a base model
UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase : List[Any] = list(model.named_children() )
UpperCamelCase : Optional[Any] = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ )
UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
UpperCamelCase : Tuple = ['.weight', '.bias']
UpperCamelCase : Tuple = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 40 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__UpperCAmelCase = 0
__UpperCAmelCase = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__UpperCAmelCase = tuple[int, int]
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> None:
UpperCamelCase : int = pos_x
UpperCamelCase : Optional[Any] = pos_y
UpperCamelCase : Tuple = (pos_y, pos_x)
UpperCamelCase : Any = goal_x
UpperCamelCase : Union[str, Any] = goal_y
UpperCamelCase : Optional[int] = g_cost
UpperCamelCase : str = parent
UpperCamelCase : Optional[Any] = self.calculate_heuristic()
UpperCamelCase : str = self.g_cost + self.h_cost
def snake_case_ ( self ) -> float:
UpperCamelCase : str = self.pos_x - self.goal_x
UpperCamelCase : Union[str, Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self, SCREAMING_SNAKE_CASE_ ) -> bool:
return self.f_cost < other.f_cost
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int:
UpperCamelCase : List[Any] = Node(start[1], start[0], goal[1], goal[0], 0, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = Node(goal[1], goal[0], goal[1], goal[0], 9_9999, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = [self.start]
UpperCamelCase : list[Node] = []
UpperCamelCase : Optional[int] = False
def snake_case_ ( self ) -> list[TPosition]:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCamelCase : Union[str, Any] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(SCREAMING_SNAKE_CASE_ )
self.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.get_successors(SCREAMING_SNAKE_CASE_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
# retrieve the best current path
UpperCamelCase : List[str] = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
return [self.start.pos]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> list[Node]:
UpperCamelCase : Any = []
for action in delta:
UpperCamelCase : str = parent.pos_x + action[1]
UpperCamelCase : int = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, SCREAMING_SNAKE_CASE_, ) )
return successors
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> list[TPosition]:
UpperCamelCase : Union[str, Any] = node
UpperCamelCase : str = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCamelCase : Union[str, Any] = current_node.parent
path.reverse()
return path
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None:
UpperCamelCase : Union[str, Any] = AStar(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AStar(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = False
def snake_case_ ( self ) -> list[TPosition]:
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCamelCase : Union[str, Any] = self.fwd_astar.open_nodes.pop(0 )
UpperCamelCase : str = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = current_bwd_node
UpperCamelCase : Tuple = current_fwd_node
UpperCamelCase : Tuple = {
self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ),
self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
# retrieve the best current path
UpperCamelCase : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> list[TPosition]:
UpperCamelCase : Optional[Any] = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ )
bwd_path.pop()
bwd_path.reverse()
UpperCamelCase : Tuple = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__UpperCAmelCase = (0, 0)
__UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__UpperCAmelCase = time.time()
__UpperCAmelCase = AStar(init, goal)
__UpperCAmelCase = a_star.search()
__UpperCAmelCase = time.time() - start_time
print(F"""AStar execution time = {end_time:f} seconds""")
__UpperCAmelCase = time.time()
__UpperCAmelCase = BidirectionalAStar(init, goal)
__UpperCAmelCase = time.time() - bd_start_time
print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 40 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCamelCase ( snake_case__ : int ) -> Dict:
UpperCamelCase : Optional[Any] = tmp_path / 'file.csv'
UpperCamelCase : Optional[Any] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]:
UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv'
UpperCamelCase : Any = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str:
UpperCamelCase : Any = tmp_path / 'csv_with_image.csv'
UpperCamelCase : Dict = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple:
UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv'
UpperCamelCase : Dict = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Dict ) -> List[str]:
UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv'
UpperCamelCase : Union[str, Any] = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]:
UpperCamelCase : str = Csv()
UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(snake_case__ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(snake_case__ ) in record.message
for record in caplog.records )
@require_pil
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : List[str] = f.read().splitlines()[1]
UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
UpperCamelCase : str = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCamelCase ( snake_case__ : Any ) -> str:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : Any = f.read().splitlines()[1:]
UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
UpperCamelCase : List[str] = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels]
def UpperCamelCase ( snake_case__ : str ) -> List[Any]:
UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} )
UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
UpperCamelCase : str = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 40 | 1 |
from __future__ import annotations
from collections import Counter
from random import random
class lowerCAmelCase_ :
def __init__( self ) -> str:
UpperCamelCase : List[Any] = {}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
UpperCamelCase : Tuple = {}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None:
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE_ )
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = probability
def snake_case_ ( self ) -> list[str]:
return list(self.connections )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : List[Any] = 0
UpperCamelCase : Tuple = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def UpperCamelCase ( snake_case__ : str , snake_case__ : list[tuple[str, str, float]] , snake_case__ : int ) -> dict[str, int]:
UpperCamelCase : int = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(snake_case__ , snake_case__ , snake_case__ )
UpperCamelCase : List[str] = Counter(graph.get_nodes() )
UpperCamelCase : List[str] = start
for _ in range(snake_case__ ):
UpperCamelCase : List[Any] = graph.transition(snake_case__ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 |
import math
import random
def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__UpperCAmelCase = 0.02
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float:
UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(snake_case__ ):
# Forward propagation
UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
UpperCamelCase : int = (expected / 100) - layer_a
# Error delta
UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = int(input('''Expected value: '''))
__UpperCAmelCase = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 40 | 1 |
import qiskit
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> qiskit.result.counts.Counts:
UpperCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' )
# Create a Quantum Circuit acting on the q register
UpperCamelCase : int = qiskit.QuantumCircuit(snake_case__ , snake_case__ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
UpperCamelCase : str = qiskit.execute(snake_case__ , snake_case__ , shots=1000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(snake_case__ )
if __name__ == "__main__":
print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
| 40 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]:
return EnvironmentCommand()
class lowerCAmelCase_ ( a__ ):
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
UpperCamelCase : List[Any] = parser.add_parser('env' )
download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = huggingface_hub.__version__
UpperCamelCase : int = 'not installed'
UpperCamelCase : Union[str, Any] = 'NA'
if is_torch_available():
import torch
UpperCamelCase : Any = torch.__version__
UpperCamelCase : str = torch.cuda.is_available()
UpperCamelCase : Dict = 'not installed'
if is_transformers_available():
import transformers
UpperCamelCase : str = transformers.__version__
UpperCamelCase : Optional[Any] = 'not installed'
if is_accelerate_available():
import accelerate
UpperCamelCase : Dict = accelerate.__version__
UpperCamelCase : List[str] = 'not installed'
if is_xformers_available():
import xformers
UpperCamelCase : List[str] = xformers.__version__
UpperCamelCase : Dict = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(SCREAMING_SNAKE_CASE_ ) )
return info
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 40 | 1 |
from __future__ import annotations
import queue
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Optional[Any] = data
UpperCamelCase : Any = None
UpperCamelCase : List[Any] = None
def UpperCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
UpperCamelCase : Optional[int] = input('Enter the value of the root node: ' ).strip().lower()
UpperCamelCase : queue.Queue = queue.Queue()
UpperCamelCase : int = TreeNode(int(snake_case__ ) )
q.put(snake_case__ )
while not q.empty():
UpperCamelCase : Tuple = q.get()
UpperCamelCase : List[Any] = F"""Enter the left node of {node_found.data}: """
UpperCamelCase : List[Any] = input(snake_case__ ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCamelCase : Dict = TreeNode(int(snake_case__ ) )
UpperCamelCase : Any = left_node
q.put(snake_case__ )
UpperCamelCase : List[Any] = F"""Enter the right node of {node_found.data}: """
UpperCamelCase : Optional[Any] = input(snake_case__ ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCamelCase : Tuple = TreeNode(int(snake_case__ ) )
UpperCamelCase : str = right_node
q.put(snake_case__ )
raise
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : queue.Queue = queue.Queue()
q.put(snake_case__ )
while not q.empty():
UpperCamelCase : List[str] = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : queue.Queue = queue.Queue()
q.put(snake_case__ )
while not q.empty():
UpperCamelCase : str = []
while not q.empty():
UpperCamelCase : Optional[Any] = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(snake_case__ )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : list[TreeNode] = []
UpperCamelCase : Dict = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(snake_case__ )
UpperCamelCase : List[str] = n.left
# end of while means current node doesn't have left child
UpperCamelCase : Union[str, Any] = stack.pop()
# start to traverse its right child
UpperCamelCase : int = n.right
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : list[TreeNode] = []
UpperCamelCase : Tuple = node
while n or stack:
while n:
stack.append(snake_case__ )
UpperCamelCase : List[Any] = n.left
UpperCamelCase : int = stack.pop()
print(n.data , end=',' )
UpperCamelCase : Optional[Any] = n.right
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase , UpperCamelCase : Optional[int] = [], []
UpperCamelCase : List[str] = node
stacka.append(snake_case__ )
while stacka: # to find the reversed order of post order, store it in stack2
UpperCamelCase : Optional[Any] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(snake_case__ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def UpperCamelCase ( snake_case__ : str = "" , snake_case__ : List[str]=50 , snake_case__ : List[Any]="*" ) -> str:
if not s:
return "\n" + width * char
UpperCamelCase , UpperCamelCase : Union[str, Any] = divmod(width - len(snake_case__ ) - 2 , 2 )
return F"""{left * char} {s} {(left + extra) * char}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
__UpperCAmelCase = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 50 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 40 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''▁'''
__UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__UpperCAmelCase = {
'''facebook/xglm-564M''': 2_048,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None:
UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
UpperCamelCase : Any = 7
UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase : int = 1
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
UpperCamelCase : Optional[int] = len(self.sp_model )
UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
UpperCamelCase : int = self.__dict__.copy()
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : Any = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
UpperCamelCase : Any = {}
UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
UpperCamelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def snake_case_ ( self ) -> int:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def snake_case_ ( self ) -> int:
UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip()
return out_string
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi:
UpperCamelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 40 | 1 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Tuple=1.0 , snake_case__ : int=None , snake_case__ : Optional[Any]=None ) -> List[Any]:
if rng is None:
UpperCamelCase : Union[str, Any] = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=160, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=4000, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, ) -> str:
UpperCamelCase : Dict = parent
UpperCamelCase : Optional[Any] = batch_size
UpperCamelCase : Optional[int] = min_seq_length
UpperCamelCase : Optional[Any] = max_seq_length
UpperCamelCase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Optional[int] = padding_value
UpperCamelCase : Optional[Any] = sampling_rate
UpperCamelCase : List[Any] = return_attention_mask
UpperCamelCase : Union[str, Any] = do_normalize
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Dict = chunk_length
UpperCamelCase : Dict = hop_length
def snake_case_ ( self ) -> List[Any]:
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
UpperCamelCase : Optional[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : str = WhisperFeatureExtractor if is_speech_available() else None
def snake_case_ ( self ) -> str:
UpperCamelCase : int = WhisperFeatureExtractionTester(self )
def snake_case_ ( self ) -> Any:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase : Union[str, Any] = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0]
check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = feat_extract_first.to_dict()
UpperCamelCase : int = feat_extract_second.to_dict()
UpperCamelCase : Union[str, Any] = feat_extract_first.mel_filters
UpperCamelCase : Optional[Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_, 'feat_extract.json' )
feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = feat_extract_first.to_dict()
UpperCamelCase : List[str] = feat_extract_second.to_dict()
UpperCamelCase : int = feat_extract_first.mel_filters
UpperCamelCase : Union[str, Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> List[str]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test feature size
UpperCamelCase : List[Any] = feature_extractor(SCREAMING_SNAKE_CASE_, padding='max_length', return_tensors='np' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
UpperCamelCase : List[str] = feature_extractor(speech_inputs[0], return_tensors='np' ).input_features
UpperCamelCase : Tuple = feature_extractor(np_speech_inputs[0], return_tensors='np' ).input_features
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_features
UpperCamelCase : List[str] = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_features
UpperCamelCase : Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test truncation required
UpperCamelCase : List[Any] = [floats_list((1, x) )[0] for x in range(200, (feature_extractor.n_samples + 500), 200 )]
UpperCamelCase : List[str] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
UpperCamelCase : List[str] = [x[: feature_extractor.n_samples] for x in speech_inputs]
UpperCamelCase : Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs_truncated]
UpperCamelCase : List[str] = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_features
UpperCamelCase : Tuple = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> Dict:
import torch
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = np.random.rand(100, 32 ).astype(np.floataa )
UpperCamelCase : Optional[Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : List[str] = feature_extractor.pad([{'input_features': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
UpperCamelCase : List[Any] = feature_extractor.pad([{'input_features': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : List[Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation' )
# automatic decoding with librispeech
UpperCamelCase : Dict = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def snake_case_ ( self ) -> int:
# fmt: off
UpperCamelCase : Dict = torch.tensor(
[
0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51,
0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78,
0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54,
-0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54
] )
# fmt: on
UpperCamelCase : List[Any] = self._load_datasamples(1 )
UpperCamelCase : Dict = WhisperFeatureExtractor()
UpperCamelCase : Any = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).input_features
self.assertEqual(input_features.shape, (1, 80, 3000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : str = self._load_datasamples(1 )[0]
UpperCamelCase : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue
UpperCamelCase : Any = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=SCREAMING_SNAKE_CASE_ )[0]
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ ) - 1 ) < 1e-3 ) )
| 40 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__UpperCAmelCase = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
UpperCAmelCase__ : Dict = RobertaTokenizer
def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]:
super().__init__(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) )
UpperCamelCase : List[str] = add_prefix_space
UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = add_prefix_space
UpperCamelCase : Optional[Any] = 'post_processor'
UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
if tokenizer_component_instance:
UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase : Optional[Any] = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase : Optional[int] = tuple(state['cls'] )
UpperCamelCase : Any = False
if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Optional[int] = add_prefix_space
UpperCamelCase : List[Any] = True
if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets:
UpperCamelCase : Dict = trim_offsets
UpperCamelCase : Union[str, Any] = True
if changes_to_apply:
UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) )
UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ )
setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
@property
def snake_case_ ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value
UpperCamelCase : List[Any] = value
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple:
UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 40 | 1 |
from collections import Counter
from timeit import timeit
def UpperCamelCase ( snake_case__ : str = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2
def UpperCamelCase ( snake_case__ : str = "" ) -> bool:
if len(snake_case__ ) == 0:
return True
UpperCamelCase : Union[str, Any] = input_str.replace(' ' , '' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
UpperCamelCase : dict[str, int] = {}
for character in lower_case_input_str:
UpperCamelCase : List[Any] = character_freq_dict.get(snake_case__ , 0 ) + 1
UpperCamelCase : int = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def UpperCamelCase ( snake_case__ : str = "" ) -> None:
print('\nFor string = ' , snake_case__ , ':' )
print(
'> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(snake_case__ ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
print(
'> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(snake_case__ ) , '\ttime =' , timeit(
'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , )
if __name__ == "__main__":
__UpperCAmelCase = input(
'''Enter string to determine if it can be rearranged as a palindrome or not: '''
).strip()
benchmark(check_str)
__UpperCAmelCase = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
| 40 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
super().__init__(features=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch_tensor_kwargs
import torch # noqa import torch at initialization
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column:
if all(
isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ):
return value
elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ):
return value.tolist()
UpperCamelCase : str = {}
if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ):
UpperCamelCase : List[str] = {'dtype': torch.intaa}
elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ):
UpperCamelCase : int = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ):
UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ )
return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
import torch
# support for torch, tf, jax etc.
if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ):
UpperCamelCase : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ):
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
return self._tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int:
return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ )
return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor":
UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] )
UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
for column_name in batch:
UpperCamelCase : str = self._consolidate(batch[column_name] )
return batch
| 40 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : List[Any] = ["image_processor", "tokenizer"]
UpperCAmelCase__ : Optional[int] = "CLIPImageProcessor"
UpperCAmelCase__ : Any = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Any:
UpperCamelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Dict = kwargs.pop('feature_extractor' )
UpperCamelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def __call__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[str]:
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
UpperCamelCase : Dict = self.tokenizer(SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
if images is not None:
UpperCamelCase : List[str] = self.image_processor(SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
if text is not None and images is not None:
UpperCamelCase : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ), tensor_type=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
@property
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Tuple = self.tokenizer.model_input_names
UpperCamelCase : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 40 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) )
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
UpperCamelCase : int = (
'Wrong input data\'s dimensions... '
F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(snake_case__ )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase : str = (
'Wrong input data\'s shape... '
F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(snake_case__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
UpperCamelCase : Dict = (
'Input data have different datatype... '
F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(snake_case__ )
UpperCamelCase : List[Any] = []
for value in value_array:
UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] )
UpperCamelCase : Dict = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ )
if dist > temp_dist:
UpperCamelCase : str = temp_dist
UpperCamelCase : List[str] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : Any = data
UpperCamelCase : Node | None = None
class lowerCAmelCase_ :
def __init__( self ) -> Tuple:
UpperCamelCase : List[str] = None
UpperCamelCase : str = None
def __iter__( self ) -> Iterator[Any]:
UpperCamelCase : List[str] = self.head
while self.head:
yield node.data
UpperCamelCase : Optional[Any] = node.next
if node == self.head:
break
def __len__( self ) -> int:
return sum(1 for _ in self )
def __repr__( self ) -> Dict:
return "->".join(str(SCREAMING_SNAKE_CASE_ ) for item in iter(self ) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
self.insert_nth(len(self ), SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
self.insert_nth(0, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None:
if index < 0 or index > len(self ):
raise IndexError('list index out of range.' )
UpperCamelCase : Dict = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
UpperCamelCase : Dict = new_node # first node points itself
UpperCamelCase : Tuple = new_node
elif index == 0: # insert at head
UpperCamelCase : List[str] = self.head
UpperCamelCase : Optional[int] = new_node
else:
UpperCamelCase : List[Any] = self.head
for _ in range(index - 1 ):
UpperCamelCase : List[str] = temp.next
UpperCamelCase : List[str] = temp.next
UpperCamelCase : Optional[int] = new_node
if index == len(self ) - 1: # insert at tail
UpperCamelCase : Union[str, Any] = new_node
def snake_case_ ( self ) -> Optional[Any]:
return self.delete_nth(0 )
def snake_case_ ( self ) -> Any:
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ = 0 ) -> Any:
if not 0 <= index < len(self ):
raise IndexError('list index out of range.' )
UpperCamelCase : Dict = self.head
if self.head == self.tail: # just one node
UpperCamelCase : int = None
elif index == 0: # delete head node
UpperCamelCase : Optional[int] = self.tail.next.next
UpperCamelCase : Any = self.head.next
else:
UpperCamelCase : Optional[int] = self.head
for _ in range(index - 1 ):
UpperCamelCase : List[Any] = temp.next
UpperCamelCase : Optional[Any] = temp.next
UpperCamelCase : Union[str, Any] = temp.next.next
if index == len(self ) - 1: # delete at tail
UpperCamelCase : List[Any] = temp
return delete_node.data
def snake_case_ ( self ) -> bool:
return len(self ) == 0
def UpperCamelCase ( ) -> None:
UpperCamelCase : Tuple = CircularLinkedList()
assert len(snake_case__ ) == 0
assert circular_linked_list.is_empty() is True
assert str(snake_case__ ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(snake_case__ ) == i
circular_linked_list.insert_nth(snake_case__ , i + 1 )
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__UpperCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__UpperCAmelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__UpperCAmelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__UpperCAmelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__UpperCAmelCase = np.expand_dims(test_image, axis=0)
__UpperCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__UpperCAmelCase = '''Normal'''
if result[0][0] == 1:
__UpperCAmelCase = '''Abnormality detected'''
| 40 | 1 |
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
__UpperCAmelCase = HfArgumentParser(InitializationArguments)
__UpperCAmelCase = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
__UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
__UpperCAmelCase = {
'''vocab_size''': len(tokenizer),
'''scale_attn_by_inverse_layer_idx''': True,
'''reorder_and_upcast_attn''': True,
}
# Load model config (GPT-2 large in this case)
__UpperCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
__UpperCAmelCase = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 40 |
import os
import pytest
from attr import dataclass
__UpperCAmelCase = '''us-east-1''' # defaults region
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase__ : str
UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
UpperCAmelCase__ : Union[str, Any] = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000}
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def snake_case_ ( self ) -> str:
return F"""{self.framework}-transfromers-test"""
@property
def snake_case_ ( self ) -> str:
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
| 40 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''',
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : Optional[Any] = "mgp-str"
def __init__( self, SCREAMING_SNAKE_CASE_=[32, 128], SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=27, SCREAMING_SNAKE_CASE_=38, SCREAMING_SNAKE_CASE_=5_0257, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=4.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.02, **SCREAMING_SNAKE_CASE_, ) -> Any:
super().__init__(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = image_size
UpperCamelCase : int = patch_size
UpperCamelCase : Dict = num_channels
UpperCamelCase : Tuple = max_token_length
UpperCamelCase : Optional[Any] = num_character_labels
UpperCamelCase : Dict = num_bpe_labels
UpperCamelCase : str = num_wordpiece_labels
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Any = num_hidden_layers
UpperCamelCase : Tuple = num_attention_heads
UpperCamelCase : List[Any] = mlp_ratio
UpperCamelCase : List[str] = distilled
UpperCamelCase : Tuple = layer_norm_eps
UpperCamelCase : List[Any] = drop_rate
UpperCamelCase : Tuple = qkv_bias
UpperCamelCase : Union[str, Any] = attn_drop_rate
UpperCamelCase : Optional[Any] = drop_path_rate
UpperCamelCase : int = output_aa_attentions
UpperCamelCase : Optional[int] = initializer_range
| 40 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
__UpperCAmelCase = '''src/transformers'''
__UpperCAmelCase = '''docs/source/en/tasks'''
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]:
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : Optional[Any] = f.readlines()
# Find the start prompt.
UpperCamelCase : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
UpperCamelCase : Optional[Any] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
__UpperCAmelCase = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
__UpperCAmelCase = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]:
UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
UpperCamelCase : Tuple = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__UpperCAmelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 40 | 1 |
from math import isclose, sqrt
def UpperCamelCase ( snake_case__ : float , snake_case__ : float , snake_case__ : float ) -> tuple[float, float, float]:
UpperCamelCase : List[Any] = point_y / 4 / point_x
UpperCamelCase : Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCamelCase : Union[str, Any] = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCamelCase : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCamelCase : Union[str, Any] = outgoing_gradient**2 + 4
UpperCamelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCamelCase : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCamelCase : Tuple = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCamelCase : Dict = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCamelCase : Union[str, Any] = x_minus if isclose(snake_case__ , snake_case__ ) else x_plus
UpperCamelCase : Any = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def UpperCamelCase ( snake_case__ : float = 1.4 , snake_case__ : float = -9.6 ) -> int:
UpperCamelCase : int = 0
UpperCamelCase : float = first_x_coord
UpperCamelCase : float = first_y_coord
UpperCamelCase : float = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = next_point(snake_case__ , snake_case__ , snake_case__ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"""{solution() = }""")
| 40 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : int = IFPipeline
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
def snake_case_ ( self ) -> str:
return self._get_dummy_components()
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' )
def snake_case_ ( self ) -> str:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def snake_case_ ( self ) -> Dict:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_local()
def snake_case_ ( self ) -> List[str]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2, )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def snake_case_ ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> List[Any]:
# if
UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa )
UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCamelCase : int = None
UpperCamelCase : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components )
UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components )
UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
UpperCamelCase : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Tuple = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : List[Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Union[str, Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 40 | 1 |
import copy
import random
from transformers import CLIPTokenizer
class lowerCAmelCase_ ( a__ ):
def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
super().__init__(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = {}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]:
UpperCamelCase : List[Any] = super().add_tokens(SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
if num_added_tokens == 0:
raise ValueError(
F"""The tokenizer already contains the token {placeholder_token}. Please pass a different"""
' `placeholder_token` that is not already in the tokenizer.' )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=1, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
UpperCamelCase : List[str] = []
if num_vec_per_token == 1:
self.try_adding_tokens(SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
output.append(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : int = []
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = placeholder_token + F"""_{i}"""
self.try_adding_tokens(SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
output.append(SCREAMING_SNAKE_CASE_ )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F"""The tokenizer already has placeholder token {token} that can get confused with"""
F""" {placeholder_token}keep placeholder tokens independent""" )
UpperCamelCase : Optional[int] = output
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1.0 ) -> str:
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = []
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=SCREAMING_SNAKE_CASE_ ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
UpperCamelCase : List[Any] = self.token_map[placeholder_token]
UpperCamelCase : Optional[Any] = tokens[: 1 + int(len(SCREAMING_SNAKE_CASE_ ) * prop_tokens_to_load )]
if vector_shuffle:
UpperCamelCase : Union[str, Any] = copy.copy(SCREAMING_SNAKE_CASE_ )
random.shuffle(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = text.replace(SCREAMING_SNAKE_CASE_, ' '.join(SCREAMING_SNAKE_CASE_ ) )
return text
def __call__( self, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1.0, **SCREAMING_SNAKE_CASE_ ) -> Any:
return super().__call__(
self.replace_placeholder_tokens_in_text(
SCREAMING_SNAKE_CASE_, vector_shuffle=SCREAMING_SNAKE_CASE_, prop_tokens_to_load=SCREAMING_SNAKE_CASE_ ), *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1.0, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
return super().encode(
self.replace_placeholder_tokens_in_text(
SCREAMING_SNAKE_CASE_, vector_shuffle=SCREAMING_SNAKE_CASE_, prop_tokens_to_load=SCREAMING_SNAKE_CASE_ ), *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
| 40 |
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def UpperCamelCase ( snake_case__ : Tuple="" ) -> str:
UpperCamelCase : Union[str, Any] = tempfile.mkdtemp()
return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> int:
UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
# Ensure that the file contains the same value as the original tensor
UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) )
def snake_case_ ( self ) -> Any:
UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' )
sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 )
UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ )
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Any:
UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) )
UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw(), Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = 'Hey!'
UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() )
self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
| 40 | 1 |
def UpperCamelCase ( snake_case__ : list , snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> int:
if index == number_of_items:
return 0
UpperCamelCase : str = 0
UpperCamelCase : Union[str, Any] = 0
UpperCamelCase : List[str] = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ , index + 1 )
if weights[index] <= max_weight:
UpperCamelCase : Optional[int] = values[index] + knapsack(
snake_case__ , snake_case__ , snake_case__ , max_weight - weights[index] , index + 1 )
return max(snake_case__ , snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 |
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : int = [1]
for i in range(2 , snake_case__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCamelCase : List[Any] = []
UpperCamelCase : List[Any] = list(range(snake_case__ ) )
# Find permutation
while factorials:
UpperCamelCase : int = factorials.pop()
UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 1 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
__UpperCAmelCase = {'''tokenization_tapex''': ['''TapexTokenizer''']}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 40 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCAmelCase_ ( a__ ):
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) )
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any:
UpperCamelCase : int = parent
UpperCamelCase : int = batch_size
UpperCamelCase : List[Any] = image_size
UpperCamelCase : List[str] = patch_size
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 )
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[int] = conv_kernel_size
UpperCamelCase : List[str] = output_stride
UpperCamelCase : Union[str, Any] = classifier_dropout_prob
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Any = is_training
UpperCamelCase : int = num_labels
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Tuple = scope
UpperCamelCase : List[str] = width_multiplier
UpperCamelCase : Any = ffn_dropout
UpperCamelCase : List[Any] = attn_dropout
def snake_case_ ( self ) -> int:
UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : List[str] = None
UpperCamelCase : int = None
if self.use_labels:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCamelCase : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def snake_case_ ( self ) -> int:
return MobileViTVaConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Any = self.num_labels
UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs
UpperCamelCase : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : Tuple = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Any = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[Any] = False
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Dict = MobileViTVaModelTester(self )
UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def snake_case_ ( self ) -> int:
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def snake_case_ ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case_ ( self ) -> Any:
pass
def snake_case_ ( self ) -> List[str]:
UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : str = [*signature.parameters.keys()]
UpperCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Tuple:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = outputs.hidden_states
UpperCamelCase : Dict = 5
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCamelCase : Any = 2
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : Optional[int] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> str:
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ )
@slow
def snake_case_ ( self ) -> Optional[Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Tuple:
UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case_ ( self ) -> str:
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.default_image_processor
UpperCamelCase : Any = prepare_img()
UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Union[str, Any] = prepare_img()
UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = outputs.logits
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
], device=SCREAMING_SNAKE_CASE_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Tuple = prepare_img()
UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = outputs.logits.detach().cpu()
UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] )
UpperCamelCase : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
| 40 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''',
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : Any = "bloom"
UpperCAmelCase__ : List[Any] = ["past_key_values"]
UpperCAmelCase__ : Any = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__( self, SCREAMING_SNAKE_CASE_=25_0880, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Dict:
UpperCamelCase : List[Any] = vocab_size
# Backward compatibility with n_embed kwarg
UpperCamelCase : Optional[Any] = kwargs.pop('n_embed', SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = hidden_size if n_embed is None else n_embed
UpperCamelCase : Dict = n_layer
UpperCamelCase : Optional[int] = n_head
UpperCamelCase : Union[str, Any] = layer_norm_epsilon
UpperCamelCase : Dict = initializer_range
UpperCamelCase : Optional[int] = use_cache
UpperCamelCase : int = pretraining_tp
UpperCamelCase : Union[str, Any] = apply_residual_connection_post_layernorm
UpperCamelCase : Optional[int] = hidden_dropout
UpperCamelCase : List[str] = attention_dropout
UpperCamelCase : List[str] = bos_token_id
UpperCamelCase : Optional[int] = eos_token_id
UpperCamelCase : int = slow_but_exact
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : Tuple = version.parse("1.12" )
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> Dict:
super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ )
if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ):
# TODO: how to do that better?
UpperCamelCase : int = 0
@property
def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]:
UpperCamelCase : Union[str, Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs', inverted_values_shape=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = {0: 'batch', 1: 'past_sequence + sequence'}
else:
UpperCamelCase : Any = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def snake_case_ ( self ) -> int:
return self._config.n_layer
@property
def snake_case_ ( self ) -> int:
return self._config.n_head
@property
def snake_case_ ( self ) -> float:
return 1e-3
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]:
UpperCamelCase : Union[str, Any] = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ )
# We need to order the input in the way they appears in the forward()
UpperCamelCase : int = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
UpperCamelCase : Dict = seqlen + 2
UpperCamelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads
UpperCamelCase : Optional[int] = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
UpperCamelCase : List[Any] = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
UpperCamelCase : Any = [
(torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers )
]
UpperCamelCase : Optional[Any] = common_inputs['attention_mask']
if self.use_past:
UpperCamelCase : List[Any] = ordered_inputs['attention_mask'].dtype
UpperCamelCase : str = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 )
return ordered_inputs
@property
def snake_case_ ( self ) -> int:
return 13
| 40 |
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str:
UpperCamelCase : List[str] = [0] * len(snake_case__ )
UpperCamelCase : int = []
UpperCamelCase : Optional[int] = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
UpperCamelCase : Optional[int] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCamelCase : Tuple = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
__UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 40 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : jnp.ndarray
UpperCAmelCase__ : jnp.ndarray
class lowerCAmelCase_ ( nn.Module ):
UpperCAmelCase__ : int
UpperCAmelCase__ : Tuple[int] = (16, 32, 96, 256)
UpperCAmelCase__ : jnp.dtype = jnp.floataa
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = nn.Conv(
self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, )
UpperCamelCase : str = []
for i in range(len(self.block_out_channels ) - 1 ):
UpperCamelCase : Optional[Any] = self.block_out_channels[i]
UpperCamelCase : Optional[Any] = self.block_out_channels[i + 1]
UpperCamelCase : List[Any] = nn.Conv(
SCREAMING_SNAKE_CASE_, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, )
blocks.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = nn.Conv(
SCREAMING_SNAKE_CASE_, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, )
blocks.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = blocks
UpperCamelCase : List[Any] = nn.Conv(
self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
def __call__( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Optional[int] = self.conv_in(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = nn.silu(SCREAMING_SNAKE_CASE_ )
for block in self.blocks:
UpperCamelCase : Any = block(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = nn.silu(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.conv_out(SCREAMING_SNAKE_CASE_ )
return embedding
@flax_register_to_config
class lowerCAmelCase_ ( nn.Module , a__ , a__ ):
UpperCAmelCase__ : int = 32
UpperCAmelCase__ : int = 4
UpperCAmelCase__ : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
UpperCAmelCase__ : Union[bool, Tuple[bool]] = False
UpperCAmelCase__ : Tuple[int] = (320, 640, 1280, 1280)
UpperCAmelCase__ : int = 2
UpperCAmelCase__ : Union[int, Tuple[int]] = 8
UpperCAmelCase__ : Optional[Union[int, Tuple[int]]] = None
UpperCAmelCase__ : int = 1280
UpperCAmelCase__ : float = 0.0
UpperCAmelCase__ : bool = False
UpperCAmelCase__ : jnp.dtype = jnp.floataa
UpperCAmelCase__ : bool = True
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : str = "rgb"
UpperCAmelCase__ : Tuple[int] = (16, 32, 96, 256)
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> FrozenDict:
# init input tensors
UpperCamelCase : Tuple = (1, self.in_channels, self.sample_size, self.sample_size)
UpperCamelCase : List[str] = jnp.zeros(SCREAMING_SNAKE_CASE_, dtype=jnp.floataa )
UpperCamelCase : List[str] = jnp.ones((1,), dtype=jnp.intaa )
UpperCamelCase : Any = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa )
UpperCamelCase : Any = (1, 3, self.sample_size * 8, self.sample_size * 8)
UpperCamelCase : Union[str, Any] = jnp.zeros(SCREAMING_SNAKE_CASE_, dtype=jnp.floataa )
UpperCamelCase , UpperCamelCase : Tuple = jax.random.split(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = {'params': params_rng, 'dropout': dropout_rng}
return self.init(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )["params"]
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : Optional[int] = self.block_out_channels
UpperCamelCase : Optional[int] = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
UpperCamelCase : List[str] = self.num_attention_heads or self.attention_head_dim
# input
UpperCamelCase : int = nn.Conv(
block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, )
# time
UpperCamelCase : List[str] = FlaxTimesteps(
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift )
UpperCamelCase : Optional[int] = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE_, dtype=self.dtype )
UpperCamelCase : int = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, )
UpperCamelCase : str = self.only_cross_attention
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = (only_cross_attention,) * len(self.down_block_types )
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = (num_attention_heads,) * len(self.down_block_types )
# down
UpperCamelCase : Optional[int] = []
UpperCamelCase : Any = []
UpperCamelCase : str = block_out_channels[0]
UpperCamelCase : str = nn.Conv(
SCREAMING_SNAKE_CASE_, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ )
for i, down_block_type in enumerate(self.down_block_types ):
UpperCamelCase : Any = output_channel
UpperCamelCase : Optional[Any] = block_out_channels[i]
UpperCamelCase : int = i == len(SCREAMING_SNAKE_CASE_ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
UpperCamelCase : Tuple = FlaxCrossAttnDownBlockaD(
in_channels=SCREAMING_SNAKE_CASE_, out_channels=SCREAMING_SNAKE_CASE_, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, )
else:
UpperCamelCase : List[str] = FlaxDownBlockaD(
in_channels=SCREAMING_SNAKE_CASE_, out_channels=SCREAMING_SNAKE_CASE_, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, )
down_blocks.append(SCREAMING_SNAKE_CASE_ )
for _ in range(self.layers_per_block ):
UpperCamelCase : Dict = nn.Conv(
SCREAMING_SNAKE_CASE_, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ )
if not is_final_block:
UpperCamelCase : str = nn.Conv(
SCREAMING_SNAKE_CASE_, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = down_blocks
UpperCamelCase : Any = controlnet_down_blocks
# mid
UpperCamelCase : Any = block_out_channels[-1]
UpperCamelCase : Optional[int] = FlaxUNetMidBlockaDCrossAttn(
in_channels=SCREAMING_SNAKE_CASE_, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, )
UpperCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_, kernel_size=(1, 1), padding='VALID', kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, )
def __call__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = False, ) -> Union[FlaxControlNetOutput, Tuple]:
UpperCamelCase : List[str] = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
UpperCamelCase : int = jnp.flip(SCREAMING_SNAKE_CASE_, axis=1 )
# 1. time
if not isinstance(SCREAMING_SNAKE_CASE_, jnp.ndarray ):
UpperCamelCase : Any = jnp.array([timesteps], dtype=jnp.intaa )
elif isinstance(SCREAMING_SNAKE_CASE_, jnp.ndarray ) and len(timesteps.shape ) == 0:
UpperCamelCase : Tuple = timesteps.astype(dtype=jnp.floataa )
UpperCamelCase : Union[str, Any] = jnp.expand_dims(SCREAMING_SNAKE_CASE_, 0 )
UpperCamelCase : Optional[Any] = self.time_proj(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = self.time_embedding(SCREAMING_SNAKE_CASE_ )
# 2. pre-process
UpperCamelCase : Tuple = jnp.transpose(SCREAMING_SNAKE_CASE_, (0, 2, 3, 1) )
UpperCamelCase : List[Any] = self.conv_in(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = jnp.transpose(SCREAMING_SNAKE_CASE_, (0, 2, 3, 1) )
UpperCamelCase : List[Any] = self.controlnet_cond_embedding(SCREAMING_SNAKE_CASE_ )
sample += controlnet_cond
# 3. down
UpperCamelCase : List[Any] = (sample,)
for down_block in self.down_blocks:
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase , UpperCamelCase : Optional[int] = down_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, deterministic=not train )
else:
UpperCamelCase , UpperCamelCase : List[str] = down_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
UpperCamelCase : List[Any] = self.mid_block(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, deterministic=not train )
# 5. contronet blocks
UpperCamelCase : str = ()
for down_block_res_sample, controlnet_block in zip(SCREAMING_SNAKE_CASE_, self.controlnet_down_blocks ):
UpperCamelCase : Any = controlnet_block(SCREAMING_SNAKE_CASE_ )
controlnet_down_block_res_samples += (down_block_res_sample,)
UpperCamelCase : Dict = controlnet_down_block_res_samples
UpperCamelCase : Optional[int] = self.controlnet_mid_block(SCREAMING_SNAKE_CASE_ )
# 6. scaling
UpperCamelCase : List[str] = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=SCREAMING_SNAKE_CASE_, mid_block_res_sample=SCREAMING_SNAKE_CASE_ )
| 40 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MraForMaskedLM''',
'''MraForMultipleChoice''',
'''MraForQuestionAnswering''',
'''MraForSequenceClassification''',
'''MraForTokenClassification''',
'''MraLayer''',
'''MraModel''',
'''MraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 40 | 1 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
__UpperCAmelCase = '''src/transformers'''
__UpperCAmelCase = '''docs/source/en/tasks'''
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]:
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : Optional[Any] = f.readlines()
# Find the start prompt.
UpperCamelCase : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
UpperCamelCase : Optional[Any] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
__UpperCAmelCase = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
__UpperCAmelCase = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]:
UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
UpperCamelCase : Tuple = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__UpperCAmelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 40 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {
'''configuration_pix2struct''': [
'''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Pix2StructConfig''',
'''Pix2StructTextConfig''',
'''Pix2StructVisionConfig''',
],
'''processing_pix2struct''': ['''Pix2StructProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''Pix2StructImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Pix2StructPreTrainedModel''',
'''Pix2StructForConditionalGeneration''',
'''Pix2StructVisionModel''',
'''Pix2StructTextModel''',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
SCREAMING_SNAKE_CASE__ : Tuple = {
"""configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : List[Any] = ["""MobileViTFeatureExtractor"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""MobileViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"""MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MobileViTForImageClassification""",
"""MobileViTForSemanticSegmentation""",
"""MobileViTModel""",
"""MobileViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Dict = [
"""TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFMobileViTForImageClassification""",
"""TFMobileViTForSemanticSegmentation""",
"""TFMobileViTModel""",
"""TFMobileViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __lowerCamelCase (_a , _a ):
@register_to_config
def __init__( self: List[Any],*,
A_: int = 4,A_: int = 768,A_: int,A_: Tuple,):
'''simple docstring'''
super().__init__()
__UpperCamelCase = nn.Parameter(torch.zeros(A_ ) )
# parameters for additional clip time embeddings
__UpperCamelCase = nn.Linear(A_,A_ )
__UpperCamelCase = nn.Linear(A_,A_ )
# parameters for encoder hidden states
__UpperCamelCase = clip_extra_context_tokens
__UpperCamelCase = nn.Linear(
A_,self.clip_extra_context_tokens * cross_attention_dim )
__UpperCamelCase = nn.Linear(A_,A_ )
__UpperCamelCase = nn.LayerNorm(A_ )
def snake_case_ ( self: int,*, A_: Optional[int],A_: Tuple,A_: str,A_: int ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__UpperCamelCase = image_embeddings.shape[0]
__UpperCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__UpperCamelCase = classifier_free_guidance_embeddings.expand(
A_,-1 )
__UpperCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings],dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__UpperCamelCase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__UpperCamelCase = self.embedding_proj(A_ )
__UpperCamelCase = self.clip_image_embeddings_project_to_time_embeddings(A_ )
__UpperCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__UpperCamelCase = self.clip_extra_context_tokens_proj(A_ )
__UpperCamelCase = clip_extra_context_tokens.reshape(A_,-1,self.clip_extra_context_tokens )
__UpperCamelCase = clip_extra_context_tokens.permute(0,2,1 )
__UpperCamelCase = self.encoder_hidden_states_proj(A_ )
__UpperCamelCase = self.text_encoder_hidden_states_norm(A_ )
__UpperCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states],dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''ViTFeatureExtractor''']
__UpperCAmelCase = ['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class lowerCamelCase__ :
"""simple docstring"""
def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = False ) -> Union[str, Any]:
_A = scheduler
_A = optimizers if isinstance(__lowerCAmelCase , (list, tuple) ) else [optimizers]
_A = split_batches
_A = step_with_optimizer
_A = GradientState()
def snake_case_ ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[Any] ) -> Optional[int]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_A = AcceleratorState().num_processes
for _ in range(__lowerCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , '''total_steps''' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase )
else:
self.scheduler.step(*__lowerCAmelCase , **__lowerCAmelCase )
def snake_case_ ( self : int ) -> List[Any]:
return self.scheduler.get_last_lr()
def snake_case_ ( self : str ) -> Optional[int]:
return self.scheduler.state_dict()
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Optional[Any]:
self.scheduler.load_state_dict(__lowerCAmelCase )
def snake_case_ ( self : str ) -> int:
return self.scheduler.get_lr()
def snake_case_ ( self : Optional[Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[Any] ) -> Tuple:
return self.scheduler.print_lr(*__lowerCAmelCase , **__lowerCAmelCase )
| 2 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any:
if rng is None:
UpperCamelCase : int = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]:
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Any = min_seq_length
UpperCamelCase : Optional[int] = max_seq_length
UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Any = padding_value
UpperCamelCase : Tuple = sampling_rate
UpperCamelCase : Optional[Any] = return_attention_mask
UpperCamelCase : Optional[Any] = do_normalize
def snake_case_ ( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Any = WavaVecaFeatureExtractor
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) )
def snake_case_ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : Any = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Tuple = range(800, 1400, 200 )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : List[str] = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' )
UpperCamelCase : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' )
UpperCamelCase : int = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def snake_case_ ( self ) -> str:
import torch
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def snake_case_ ( self ) -> Tuple:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
| 40 | 0 |
'''simple docstring'''
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def A_( A : str , A : Optional[int] , A : List[str]):
return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :]
def A_( A : List[str] , A : List[Any] , A : List[str] , A : Union[str, Any]="attention"):
UpperCamelCase = UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :])
UpperCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2])
UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :])
UpperCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2])
UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :])
UpperCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2])
UpperCamelCase = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :])
UpperCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2])
return k, o, q, v
def A_( A : List[Any] , A : Dict , A : str , A : Optional[Any]=False):
if split_mlp_wi:
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :]
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :]
UpperCamelCase = (wi_a, wi_a)
else:
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :]
UpperCamelCase = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :]
return wi, wo
def A_( A : List[Any] , A : Union[str, Any] , A : Optional[Any] , A : Optional[int]):
return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i]
def A_( A : dict , *, A : int , A : bool , A : bool = False):
UpperCamelCase = traverse_util.flatten_dict(variables['target'])
UpperCamelCase = {'/'.join(A): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCamelCase = 'encoder/encoder/mlp/wi_0/kernel' in old
print('Split MLP:' , A)
UpperCamelCase = collections.OrderedDict()
# Shared embeddings.
UpperCamelCase = old['token_embedder/embedding']
# Encoder.
for i in range(A):
# Block i, layer 0 (Self Attention).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'encoder' , 'pre_attention_layer_norm')
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(A , A , 'encoder' , 'attention')
UpperCamelCase = layer_norm
UpperCamelCase = k.T
UpperCamelCase = o.T
UpperCamelCase = q.T
UpperCamelCase = v.T
# Block i, layer 1 (MLP).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'encoder' , 'pre_mlp_layer_norm')
UpperCamelCase , UpperCamelCase = tax_mlp_lookup(A , A , 'encoder' , A)
UpperCamelCase = layer_norm
if split_mlp_wi:
UpperCamelCase = wi[0].T
UpperCamelCase = wi[1].T
else:
UpperCamelCase = wi.T
UpperCamelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCamelCase = tax_relpos_bias_lookup(
A , A , 'encoder').T
UpperCamelCase = old['encoder/encoder_norm/scale']
if not scalable_attention:
UpperCamelCase = tax_relpos_bias_lookup(
A , 0 , 'encoder').T
UpperCamelCase = tax_relpos_bias_lookup(
A , 0 , 'decoder').T
if not is_encoder_only:
# Decoder.
for i in range(A):
# Block i, layer 0 (Self Attention).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'decoder' , 'pre_self_attention_layer_norm')
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(A , A , 'decoder' , 'self_attention')
UpperCamelCase = layer_norm
UpperCamelCase = k.T
UpperCamelCase = o.T
UpperCamelCase = q.T
UpperCamelCase = v.T
# Block i, layer 1 (Cross Attention).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'decoder' , 'pre_cross_attention_layer_norm')
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = tax_attention_lookup(A , A , 'decoder' , 'encoder_decoder_attention')
UpperCamelCase = layer_norm
UpperCamelCase = k.T
UpperCamelCase = o.T
UpperCamelCase = q.T
UpperCamelCase = v.T
# Block i, layer 2 (MLP).
UpperCamelCase = tax_layer_norm_lookup(A , A , 'decoder' , 'pre_mlp_layer_norm')
UpperCamelCase , UpperCamelCase = tax_mlp_lookup(A , A , 'decoder' , A)
UpperCamelCase = layer_norm
if split_mlp_wi:
UpperCamelCase = wi[0].T
UpperCamelCase = wi[1].T
else:
UpperCamelCase = wi.T
UpperCamelCase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCamelCase = tax_relpos_bias_lookup(A , A , 'decoder').T
UpperCamelCase = old['decoder/decoder_norm/scale']
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCamelCase = old['decoder/logits_dense/kernel'].T
return new
def A_( A : Any , A : bool):
UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()])
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCamelCase = state_dict['shared.weight']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCamelCase = state_dict['shared.weight']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('Using shared word embeddings as lm_head.')
UpperCamelCase = state_dict['shared.weight']
return state_dict
def A_( A : List[str] , A : Optional[Any] , A : str , A : int , A : List[Any]):
UpperCamelCase = checkpoints.load_tax_checkpoint(A)
UpperCamelCase = convert_tax_to_pytorch(
A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A)
UpperCamelCase = make_state_dict(A , A)
model.load_state_dict(A , strict=A)
def A_( A : Optional[Any] , A : List[str] , A : List[Any] , A : bool = False , A : bool = False , ):
UpperCamelCase = MTaConfig.from_json_file(A)
print(f'''Building PyTorch model from configuration: {config}''')
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCamelCase = UMTaEncoderModel(A)
else:
UpperCamelCase = UMTaForConditionalGeneration(A)
# Load weights from tf checkpoint
load_tax_weights_in_ta(A , A , A , A , A)
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''')
model.save_pretrained(A)
# Verify that we can load the checkpoint.
model.from_pretrained(A)
print('Done')
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
parser.add_argument(
'--scalable_attention',
action='store_true',
help='Whether the model uses scaled attention (umt5 model)',
default=False,
)
lowerCAmelCase : Dict = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 3 |
def UpperCamelCase ( snake_case__ : int ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
UpperCamelCase : int = False
if num < 0:
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Tuple = -num
UpperCamelCase : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
"""simple docstring"""
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _SCREAMING_SNAKE_CASE ():
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
lowerCAmelCase = '__test_patch_submodule_mock__'
with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _SCREAMING_SNAKE_CASE ():
assert _test_patching.open is open
lowerCAmelCase = '__test_patch_submodule_builtin_mock__'
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , 'open' , _UpperCAmelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _SCREAMING_SNAKE_CASE ():
# pandas.read_csv is not present in _test_patching
lowerCAmelCase = '__test_patch_submodule_missing_mock__'
with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCAmelCase ):
pass
def _SCREAMING_SNAKE_CASE ():
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
lowerCAmelCase = '__test_patch_submodule_missing_builtin_mock__'
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , 'len' , _UpperCAmelCase ) is None
with patch_submodule(_test_patching , 'len' , _UpperCAmelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '__test_patch_submodule_start_and_stop_mock__'
lowerCAmelCase = patch_submodule(_test_patching , 'open' , _UpperCAmelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _SCREAMING_SNAKE_CASE ():
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
lowerCAmelCase = '__test_patch_submodule_successive_join__'
lowerCAmelCase = '__test_patch_submodule_successive_dirname__'
lowerCAmelCase = '__test_patch_submodule_successive_rename__'
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '__test_patch_submodule_doesnt_exist_mock__'
with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCAmelCase ):
pass
with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCAmelCase ):
pass
| 4 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCAmelCase = logging.get_logger(__name__)
def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
UpperCamelCase : List[Any] = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
UpperCamelCase : Dict = new_module
UpperCamelCase : int = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
UpperCamelCase : Union[str, Any] = tensor_name in module._buffers
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
UpperCamelCase : Optional[Any] = False
UpperCamelCase : str = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase : List[str] = False
UpperCamelCase : Tuple = False
else:
UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase : List[Any] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase : Dict = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[Any] = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
UpperCamelCase : Union[str, Any] = new_value.T
UpperCamelCase : Union[str, Any] = old_value.__dict__
if is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
UpperCamelCase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[str] = value.to(snake_case__ )
else:
UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
UpperCamelCase : Optional[int] = new_value
else:
UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
UpperCamelCase : List[str] = new_value
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int:
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase : str = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape
else:
UpperCamelCase : Any = module.in_features
UpperCamelCase : List[str] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase : Any = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase : Optional[int] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase : str = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase : int = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase : Any = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]:
UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase : List[str] = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] )
UpperCamelCase : Optional[int] = len(snake_case__ ) > 0
# Check if it is a base model
UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase : List[Any] = list(model.named_children() )
UpperCamelCase : Optional[Any] = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ )
UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
UpperCamelCase : Tuple = ['.weight', '.bias']
UpperCamelCase : Tuple = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 40 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowercase : Optional[Any] = DiTPipeline
_lowercase : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
_lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
_lowercase : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
_lowercase : Optional[int] = False
def _lowercase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowercase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_lowercase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def _lowercase ( self , _lowercase , _lowercase=0 ):
"""simple docstring"""
if str(_lowercase ).startswith("""mps""" ):
_lowerCAmelCase = torch.manual_seed(_lowercase )
else:
_lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
_lowerCAmelCase = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """cpu"""
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
_lowerCAmelCase = self.get_dummy_inputs(_lowercase )
_lowerCAmelCase = pipe(**_lowercase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowercase , 1e-3 )
def _lowercase ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=_lowercase , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _lowercase ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
_lowerCAmelCase = pipe.get_label_ids(_lowercase )
_lowerCAmelCase = pipe(_lowercase , generator=_lowercase , num_inference_steps=40 , output_type="""np""" ).images
for word, image in zip(_lowercase , _lowercase ):
_lowerCAmelCase = load_numpy(
F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' )
assert np.abs((expected_image - image).max() ) < 1e-2
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella"""]
_lowerCAmelCase = pipe.get_label_ids(_lowercase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type="""np""" ).images
for word, image in zip(_lowercase , _lowercase ):
_lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
F'/dit/{word}_512.npy' )
assert np.abs((expected_image - image).max() ) < 1e-1
| 5 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCamelCase ( snake_case__ : int ) -> Dict:
UpperCamelCase : Optional[Any] = tmp_path / 'file.csv'
UpperCamelCase : Optional[Any] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]:
UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv'
UpperCamelCase : Any = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str:
UpperCamelCase : Any = tmp_path / 'csv_with_image.csv'
UpperCamelCase : Dict = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple:
UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv'
UpperCamelCase : Dict = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Dict ) -> List[str]:
UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv'
UpperCamelCase : Union[str, Any] = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]:
UpperCamelCase : str = Csv()
UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(snake_case__ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(snake_case__ ) in record.message
for record in caplog.records )
@require_pil
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : List[str] = f.read().splitlines()[1]
UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
UpperCamelCase : str = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCamelCase ( snake_case__ : Any ) -> str:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : Any = f.read().splitlines()[1:]
UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
UpperCamelCase : List[str] = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels]
def UpperCamelCase ( snake_case__ : str ) -> List[Any]:
UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} )
UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
UpperCamelCase : str = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 40 | 0 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
_lowerCamelCase = '2.13.1'
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('3.7'):
raise ImportWarning(
'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'
'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
_lowerCamelCase = concatenate_datasets
_lowerCamelCase = DownloadConfig
_lowerCamelCase = DownloadManager
_lowerCamelCase = DownloadMode
_lowerCamelCase = DownloadConfig
_lowerCamelCase = DownloadMode
_lowerCamelCase = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 6 |
import math
import random
def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__UpperCAmelCase = 0.02
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float:
UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(snake_case__ ):
# Forward propagation
UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
UpperCamelCase : int = (expected / 100) - layer_a
# Error delta
UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = int(input('''Expected value: '''))
__UpperCAmelCase = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 40 | 0 |
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def _snake_case ( _snake_case : Any , _snake_case : str=7 ) -> Optional[Any]:
'''simple docstring'''
_A = None
if token is not None:
_A = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
_A = '636036'
_A = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
_A = requests.get(_snake_case , headers=_snake_case ).json()
return result["workflow_runs"]
def _snake_case ( _snake_case : List[str] ) -> Optional[int]:
'''simple docstring'''
_A = get_daily_ci_runs(_snake_case )
_A = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
_A = workflow_run['id']
break
return workflow_run_id
def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any ) -> Dict:
'''simple docstring'''
_A = get_last_daily_ci_runs(_snake_case )
if workflow_run_id is not None:
_A = get_artifacts_links(worflow_run_id=_snake_case , token=_snake_case )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
_A = artifacts_links[artifact_name]
download_artifact(
artifact_name=_snake_case , artifact_url=_snake_case , output_dir=_snake_case , token=_snake_case )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple ) -> str:
'''simple docstring'''
get_last_daily_ci_artifacts(_snake_case , _snake_case , _snake_case )
_A = {}
for artifact_name in artifact_names:
_A = os.path.join(_snake_case , F'''{artifact_name}.zip''' )
if os.path.isfile(_snake_case ):
_A = {}
with zipfile.ZipFile(_snake_case ) as z:
for filename in z.namelist():
if not os.path.isdir(_snake_case ):
# read the file
with z.open(_snake_case ) as f:
_A = f.read().decode('UTF-8' )
return results
| 7 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]:
return EnvironmentCommand()
class lowerCAmelCase_ ( a__ ):
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
UpperCamelCase : List[Any] = parser.add_parser('env' )
download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = huggingface_hub.__version__
UpperCamelCase : int = 'not installed'
UpperCamelCase : Union[str, Any] = 'NA'
if is_torch_available():
import torch
UpperCamelCase : Any = torch.__version__
UpperCamelCase : str = torch.cuda.is_available()
UpperCamelCase : Dict = 'not installed'
if is_transformers_available():
import transformers
UpperCamelCase : str = transformers.__version__
UpperCamelCase : Optional[Any] = 'not installed'
if is_accelerate_available():
import accelerate
UpperCamelCase : Dict = accelerate.__version__
UpperCamelCase : List[str] = 'not installed'
if is_xformers_available():
import xformers
UpperCamelCase : List[str] = xformers.__version__
UpperCamelCase : Dict = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(SCREAMING_SNAKE_CASE_ ) )
return info
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 40 | 0 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
lowercase__ : Optional[Any] = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.'''
def _lowerCAmelCase ( __snake_case : str=None ) -> int:
if subparsers is not None:
__A : Tuple = subparsers.add_parser('tpu-config' , description=_description )
else:
__A : Dict = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description )
# Core arguments
__A : Dict = parser.add_argument_group(
'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' )
config_args.add_argument(
'--config_file' , type=__snake_case , default=__snake_case , help='Path to the config file to use for accelerate.' , )
config_args.add_argument(
'--tpu_name' , default=__snake_case , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , )
config_args.add_argument(
'--tpu_zone' , default=__snake_case , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , )
__A : Optional[Any] = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' )
pod_args.add_argument(
'--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , )
pod_args.add_argument(
'--command_file' , default=__snake_case , help='The path to the file containing the commands to run on the pod on startup.' , )
pod_args.add_argument(
'--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , )
pod_args.add_argument(
'--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , )
pod_args.add_argument(
'--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , )
pod_args.add_argument(
'--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' )
if subparsers is not None:
parser.set_defaults(func=__snake_case )
return parser
def _lowerCAmelCase ( __snake_case : Dict ) -> Optional[int]:
__A : Tuple = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(__snake_case ):
__A : Tuple = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
__A : Optional[int] = defaults.command_file
if not args.command and defaults.commands is not None:
__A : List[str] = defaults.commands
if not args.tpu_name:
__A : Tuple = defaults.tpu_name
if not args.tpu_zone:
__A : Union[str, Any] = defaults.tpu_zone
if args.accelerate_version == "dev":
__A : Union[str, Any] = 'git+https://github.com/huggingface/accelerate.git'
elif args.accelerate_version == "latest":
__A : Optional[Any] = 'accelerate -U'
elif isinstance(parse(args.accelerate_version ) , __snake_case ):
__A : Tuple = f'accelerate=={args.accelerate_version}'
if not args.command_file and not args.command:
raise ValueError('You must specify either a command file or a command to run on the pod.' )
if args.command_file:
with open(args.command_file , 'r' ) as f:
__A : str = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , __snake_case ):
__A : int = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
__A : Any = ['cd /usr/share']
if args.install_accelerate:
new_cmd += [f'pip install {args.accelerate_version}']
new_cmd += args.command
__A : List[str] = '; '.join(__snake_case )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
__A : Dict = ['gcloud']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(f'Running {" ".join(__snake_case )}' )
return
subprocess.run(__snake_case )
print('Successfully setup pod.' )
def _lowerCAmelCase ( ) -> List[str]:
__A : int = tpu_command_parser()
__A : Union[str, Any] = parser.parse_args()
tpu_command_launcher(__snake_case )
| 8 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''▁'''
__UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__UpperCAmelCase = {
'''facebook/xglm-564M''': 2_048,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None:
UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
UpperCamelCase : Any = 7
UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase : int = 1
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
UpperCamelCase : Optional[int] = len(self.sp_model )
UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
UpperCamelCase : int = self.__dict__.copy()
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : Any = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
UpperCamelCase : Any = {}
UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
UpperCamelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def snake_case_ ( self ) -> int:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def snake_case_ ( self ) -> int:
UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip()
return out_string
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi:
UpperCamelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 40 | 0 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class __lowerCAmelCase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self : Dict , *_snake_case : Optional[int] , **_snake_case : Optional[Any] ):
"""simple docstring"""
warnings.warn(
'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PerceiverImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 9 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__UpperCAmelCase = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
UpperCAmelCase__ : Dict = RobertaTokenizer
def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]:
super().__init__(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) )
UpperCamelCase : List[str] = add_prefix_space
UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = add_prefix_space
UpperCamelCase : Optional[Any] = 'post_processor'
UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
if tokenizer_component_instance:
UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase : Optional[Any] = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase : Optional[int] = tuple(state['cls'] )
UpperCamelCase : Any = False
if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Optional[int] = add_prefix_space
UpperCamelCase : List[Any] = True
if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets:
UpperCamelCase : Dict = trim_offsets
UpperCamelCase : Union[str, Any] = True
if changes_to_apply:
UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) )
UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ )
setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
@property
def snake_case_ ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value
UpperCamelCase : List[Any] = value
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple:
UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 40 | 0 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_lowerCAmelCase = datasets.load_iris()
_lowerCAmelCase = np.array(data["data"])
_lowerCAmelCase = np.array(data["target"])
_lowerCAmelCase = data["target_names"]
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase = train_test_split(X, y)
def _snake_case ( __snake_case , __snake_case ):
return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) )
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=5 ):
_UpperCamelCase = zip(__snake_case , __snake_case )
# List of distances of all points from the point to be classified
_UpperCamelCase = []
for data_point in data:
_UpperCamelCase = euclidean_distance(data_point[0] , __snake_case )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
_UpperCamelCase = [i[1] for i in sorted(__snake_case )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
_UpperCamelCase = Counter(__snake_case ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
super().__init__(features=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch_tensor_kwargs
import torch # noqa import torch at initialization
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column:
if all(
isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ):
return value
elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ):
return value.tolist()
UpperCamelCase : str = {}
if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ):
UpperCamelCase : List[str] = {'dtype': torch.intaa}
elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ):
UpperCamelCase : int = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ):
UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ )
return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
import torch
# support for torch, tf, jax etc.
if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ):
UpperCamelCase : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ):
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
return self._tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int:
return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ )
return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor":
UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] )
UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
for column_name in batch:
UpperCamelCase : str = self._consolidate(batch[column_name] )
return batch
| 40 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __A ( metaclass=A ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = ['torch', 'transformers', 'onnx']
def __init__(self , *A , **A ) -> Any:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> int:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class __A ( metaclass=A ):
'''simple docstring'''
__lowerCamelCase : str = ['torch', 'transformers', 'onnx']
def __init__(self , *A , **A ) -> Any:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> int:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class __A ( metaclass=A ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = ['torch', 'transformers', 'onnx']
def __init__(self , *A , **A ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> int:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class __A ( metaclass=A ):
'''simple docstring'''
__lowerCamelCase : str = ['torch', 'transformers', 'onnx']
def __init__(self , *A , **A ) -> str:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> int:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class __A ( metaclass=A ):
'''simple docstring'''
__lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__(self , *A , **A ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class __A ( metaclass=A ):
'''simple docstring'''
__lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__(self , *A , **A ) -> List[str]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a__ (cls , *A , **A ) -> str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
| 11 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) )
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
UpperCamelCase : int = (
'Wrong input data\'s dimensions... '
F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(snake_case__ )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase : str = (
'Wrong input data\'s shape... '
F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(snake_case__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
UpperCamelCase : Dict = (
'Input data have different datatype... '
F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(snake_case__ )
UpperCamelCase : List[Any] = []
for value in value_array:
UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] )
UpperCamelCase : Dict = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ )
if dist > temp_dist:
UpperCamelCase : str = temp_dist
UpperCamelCase : List[str] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = """ylacombe/bark-small"""
lowercase__ : Dict = tempfile.mkdtemp()
lowercase__ : Any = """en_speaker_1"""
lowercase__ : Optional[int] = """This is a test string"""
lowercase__ : Tuple = """speaker_embeddings_path.json"""
lowercase__ : str = """speaker_embeddings"""
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : int = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_)
processor.save_pretrained(self.tmpdirname)
lowercase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowercase__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
lowercase__ : Any = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowercase__ : Optional[int] = 35
lowercase__ : Tuple = 2
lowercase__ : Dict = 8
lowercase__ : Optional[int] = {
"""semantic_prompt""": np.ones(SCREAMING_SNAKE_CASE_),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len)),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len)),
}
# test providing already loaded voice_preset
lowercase__ : Tuple = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist())
# test loading voice preset from npz file
lowercase__ : List[Any] = os.path.join(self.tmpdirname , """file.npz""")
np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : str = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist())
# test loading voice preset from the hub
lowercase__ : int = processor(text=self.input_string , voice_preset=self.voice_preset)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : str = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = processor(text=self.input_string)
lowercase__ : List[str] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
| 12 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__UpperCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__UpperCAmelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__UpperCAmelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__UpperCAmelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__UpperCAmelCase = np.expand_dims(test_image, axis=0)
__UpperCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__UpperCAmelCase = '''Normal'''
if result[0][0] == 1:
__UpperCAmelCase = '''Abnormality detected'''
| 40 | 0 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> bool:
__lowerCamelCase : Dict = [int(UpperCAmelCase_ ) for i in ip_va_address.split('.' ) if i.isdigit()]
return len(UpperCAmelCase_ ) == 4 and all(0 <= int(UpperCAmelCase_ ) <= 2_54 for octet in octets )
if __name__ == "__main__":
A__ : Optional[Any] = input().strip()
A__ : Tuple = """valid""" if is_ip_va_address_valid(ip) else """invalid"""
print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
| 13 |
import os
import pytest
from attr import dataclass
__UpperCAmelCase = '''us-east-1''' # defaults region
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase__ : str
UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
UpperCAmelCase__ : Union[str, Any] = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000}
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def snake_case_ ( self ) -> str:
return F"""{self.framework}-transfromers-test"""
@property
def snake_case_ ( self ) -> str:
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
| 40 | 0 |
a__ = {
"joule": 1.0,
"kilojoule": 1000,
"megajoule": 1000000,
"gigajoule": 1000000000,
"wattsecond": 1.0,
"watthour": 3600,
"kilowatthour": 3600000,
"newtonmeter": 1.0,
"calorie_nutr": 4186.8,
"kilocalorie_nutr": 4186800.00,
"electronvolt": 1.6_0217_6634E-19,
"britishthermalunit_it": 1055.05585,
"footpound": 1.355818,
}
def __UpperCAmelCase ( __a : str ,__a : str ,__a : float ) -> float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
_a : Optional[Any] = (
F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
F"""Valid values are: {', '.join(__a )}"""
)
raise ValueError(__a )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
__UpperCAmelCase = '''src/transformers'''
__UpperCAmelCase = '''docs/source/en/tasks'''
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]:
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : Optional[Any] = f.readlines()
# Find the start prompt.
UpperCamelCase : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
UpperCamelCase : Optional[Any] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
__UpperCAmelCase = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
__UpperCAmelCase = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]:
UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
UpperCamelCase : Tuple = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__UpperCAmelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 40 | 0 |
A : List[str] = [
(1_0_0_0, 'M'),
(9_0_0, 'CM'),
(5_0_0, 'D'),
(4_0_0, 'CD'),
(1_0_0, 'C'),
(9_0, 'XC'),
(5_0, 'L'),
(4_0, 'XL'),
(1_0, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def UpperCamelCase ( __magic_name__ : str ) -> int:
"""simple docstring"""
lowercase__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
lowercase__ = 0
lowercase__ = 0
while place < len(__magic_name__ ):
if (place + 1 < len(__magic_name__ )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def UpperCamelCase ( __magic_name__ : int ) -> str:
"""simple docstring"""
lowercase__ = []
for arabic, roman in ROMAN:
((lowercase__) , (lowercase__)) = divmod(__magic_name__ , __magic_name__ )
result.append(roman * factor )
if number == 0:
break
return "".join(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : int = IFPipeline
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
def snake_case_ ( self ) -> str:
return self._get_dummy_components()
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' )
def snake_case_ ( self ) -> str:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def snake_case_ ( self ) -> Dict:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_local()
def snake_case_ ( self ) -> List[str]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2, )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def snake_case_ ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> List[Any]:
# if
UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa )
UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCamelCase : int = None
UpperCamelCase : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components )
UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components )
UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
UpperCamelCase : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Tuple = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : List[Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Union[str, Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 40 | 0 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
__A : List[Any] = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = question_encoder
SCREAMING_SNAKE_CASE = generator
SCREAMING_SNAKE_CASE = self.question_encoder
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[str] ):
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "question_encoder_tokenizer" )
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "generator_tokenizer" )
self.question_encoder.save_pretrained(__lowerCamelCase )
self.generator.save_pretrained(__lowerCamelCase )
@classmethod
def _snake_case ( cls : Tuple , __lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
SCREAMING_SNAKE_CASE = kwargs.pop("config" , __lowerCamelCase )
if config is None:
SCREAMING_SNAKE_CASE = RagConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
__lowerCamelCase , config=config.question_encoder , subfolder="question_encoder_tokenizer" )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
__lowerCamelCase , config=config.generator , subfolder="generator_tokenizer" )
return cls(question_encoder=__lowerCamelCase , generator=__lowerCamelCase )
def __call__( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Any ):
return self.current_tokenizer(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Union[str, Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : Union[str, Any] ):
return self.generator.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[int] ):
return self.generator.decode(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.question_encoder
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.generator
def _snake_case ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "longest" , __lowerCamelCase : str = None , __lowerCamelCase : bool = True , **__lowerCamelCase : List[str] , ):
warnings.warn(
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
"details" , __lowerCamelCase , )
if max_length is None:
SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length
SCREAMING_SNAKE_CASE = self(
__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length
SCREAMING_SNAKE_CASE = self(
text_target=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = labels["input_ids"]
return model_inputs
| 16 |
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def UpperCamelCase ( snake_case__ : Tuple="" ) -> str:
UpperCamelCase : Union[str, Any] = tempfile.mkdtemp()
return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> int:
UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
# Ensure that the file contains the same value as the original tensor
UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) )
def snake_case_ ( self ) -> Any:
UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' )
sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 )
UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ )
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Any:
UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) )
UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw(), Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = 'Hey!'
UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() )
self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
| 40 | 0 |
import argparse
from collections import defaultdict
import yaml
UpperCAmelCase_ : List[str] = '''docs/source/en/_toctree.yml'''
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> Union[str, Any]:
__A : Union[str, Any] = defaultdict(a__ )
__A : Dict = []
__A : Dict = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} )
else:
new_doc_list.append(a__ )
__A : Optional[int] = new_doc_list
__A : Optional[int] = [key for key, value in counts.items() if value > 1]
__A : Tuple = []
for duplicate_key in duplicates:
__A : Union[str, Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} )
if len(a__ ) > 1:
raise ValueError(
f"""{duplicate_key} is present several times in the documentation table of content at """
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] )
__A : str = sorted(a__ ,key=lambda a__ : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(a__ ) > 1:
raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" )
overview_doc.extend(a__ )
# Sort
return overview_doc
def __SCREAMING_SNAKE_CASE ( a__ : Tuple=False ) -> List[str]:
with open(a__ ,encoding="""utf-8""" ) as f:
__A : Optional[Any] = yaml.safe_load(f.read() )
# Get to the API doc
__A : List[str] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
__A : Tuple = content[api_idx]["""sections"""]
# Then to the model doc
__A : List[Any] = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
__A : List[Any] = api_doc[scheduler_idx]["""sections"""]
__A : Tuple = clean_doc_toc(a__ )
__A : Tuple = False
if new_scheduler_doc != scheduler_doc:
__A : List[str] = True
if overwrite:
__A : List[str] = new_scheduler_doc
if diff:
if overwrite:
__A : Optional[int] = api_doc
with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(yaml.dump(a__ ,allow_unicode=a__ ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
def __SCREAMING_SNAKE_CASE ( a__ : Any=False ) -> Any:
with open(a__ ,encoding="""utf-8""" ) as f:
__A : Union[str, Any] = yaml.safe_load(f.read() )
# Get to the API doc
__A : Union[str, Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
__A : Dict = content[api_idx]["""sections"""]
# Then to the model doc
__A : Dict = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
__A : Optional[Any] = False
__A : List[str] = api_doc[pipeline_idx]["""sections"""]
__A : Optional[int] = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
__A : List[Any] = pipeline_doc["""section"""]
__A : int = clean_doc_toc(a__ )
if overwrite:
__A : Dict = new_sub_pipeline_doc
new_pipeline_docs.append(a__ )
# sort overall pipeline doc
__A : Tuple = clean_doc_toc(a__ )
if new_pipeline_docs != pipeline_docs:
__A : List[str] = True
if overwrite:
__A : List[Any] = new_pipeline_docs
if diff:
if overwrite:
__A : Optional[Any] = api_doc
with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(yaml.dump(a__ ,allow_unicode=a__ ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
UpperCAmelCase_ : Tuple = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
UpperCAmelCase_ : Tuple = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 17 |
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : int = [1]
for i in range(2 , snake_case__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCamelCase : List[Any] = []
UpperCamelCase : List[Any] = list(range(snake_case__ ) )
# Find permutation
while factorials:
UpperCamelCase : int = factorials.pop()
UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
'''simple docstring'''
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = "▁"
_SCREAMING_SNAKE_CASE = {"vocab_file": "prophetnet.tokenizer"}
_SCREAMING_SNAKE_CASE = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
_SCREAMING_SNAKE_CASE = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
_SCREAMING_SNAKE_CASE = {
"microsoft/xprophetnet-large-wiki100-cased": 5_12,
}
def __a(SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
_lowerCAmelCase = collections.OrderedDict()
with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as reader:
_lowerCAmelCase = reader.readlines()
for index, token in enumerate(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = token.rstrip("\n" )
_lowerCAmelCase = index
return vocab
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
__lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : str = ["input_ids", "attention_mask"]
def __init__( self , _lowerCAmelCase , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None:
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece" )
raise
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
_lowerCAmelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
_lowerCAmelCase = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10 ):
_lowerCAmelCase = f'''[unused{i}]'''
_lowerCAmelCase = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
_lowerCAmelCase = 12
_lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(_lowerCAmelCase )
def __getstate__( self ) -> Dict:
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self , _lowerCAmelCase ) -> str:
_lowerCAmelCase = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece" )
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return ([0] * len(_lowerCAmelCase )) + [1]
return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1]
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
_lowerCAmelCase = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ) -> List[str]:
return len(self.sp_model ) + self.fairseq_offset
def _snake_case ( self ) -> int:
_lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , _lowerCAmelCase ) -> str:
return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase )
def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_lowerCAmelCase = self.sp_model.PieceToId(_lowerCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , _lowerCAmelCase ) -> Any:
_lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip()
return out_string
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_lowerCAmelCase = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase , "wb" ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
_lowerCAmelCase = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 18 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCAmelCase_ ( a__ ):
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) )
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any:
UpperCamelCase : int = parent
UpperCamelCase : int = batch_size
UpperCamelCase : List[Any] = image_size
UpperCamelCase : List[str] = patch_size
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 )
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[int] = conv_kernel_size
UpperCamelCase : List[str] = output_stride
UpperCamelCase : Union[str, Any] = classifier_dropout_prob
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Any = is_training
UpperCamelCase : int = num_labels
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Tuple = scope
UpperCamelCase : List[str] = width_multiplier
UpperCamelCase : Any = ffn_dropout
UpperCamelCase : List[Any] = attn_dropout
def snake_case_ ( self ) -> int:
UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : List[str] = None
UpperCamelCase : int = None
if self.use_labels:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCamelCase : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def snake_case_ ( self ) -> int:
return MobileViTVaConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Any = self.num_labels
UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs
UpperCamelCase : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : Tuple = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Any = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[Any] = False
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Dict = MobileViTVaModelTester(self )
UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def snake_case_ ( self ) -> int:
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def snake_case_ ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case_ ( self ) -> Any:
pass
def snake_case_ ( self ) -> List[str]:
UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : str = [*signature.parameters.keys()]
UpperCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Tuple:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = outputs.hidden_states
UpperCamelCase : Dict = 5
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCamelCase : Any = 2
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : Optional[int] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> str:
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ )
@slow
def snake_case_ ( self ) -> Optional[Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Tuple:
UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case_ ( self ) -> str:
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.default_image_processor
UpperCamelCase : Any = prepare_img()
UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Union[str, Any] = prepare_img()
UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = outputs.logits
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
], device=SCREAMING_SNAKE_CASE_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Tuple = prepare_img()
UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = outputs.logits.detach().cpu()
UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] )
UpperCamelCase : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
| 40 | 0 |
"""simple docstring"""
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
_a = datasets.logging.get_logger(__name__)
_a = """\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
"""
_a = """\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project's README at https://github.com/google-research/bleurt#readme for more information.
"""
_a = """
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
'scores': List of scores.
Examples:
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> bleurt = datasets.load_metric(\"bleurt\")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results[\"scores\"]])
[1.03, 1.04]
"""
_a = {
"""bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""",
"""bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""",
"""bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""",
"""bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""",
"""bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""",
"""bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""",
"""BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""",
"""BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""",
"""BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""",
"""BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase( datasets.Metric ):
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , )
def UpperCAmelCase ( self , __a) -> Union[str, Any]:
'''simple docstring'''
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
'''Using default BLEURT-Base checkpoint for sequence maximum length 128. '''
'''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''')
_UpperCamelCase = '''bleurt-base-128'''
if self.config_name.lower() in CHECKPOINT_URLS:
_UpperCamelCase = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
_UpperCamelCase = self.config_name.upper()
else:
raise KeyError(
F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''')
# download the model checkpoint specified by self.config_name and set up the scorer
_UpperCamelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name])
_UpperCamelCase = score.BleurtScorer(os.path.join(__a , __a))
def UpperCAmelCase ( self , __a , __a) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.scorer.score(references=__a , candidates=__a)
return {"scores": scores}
| 19 |
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str:
UpperCamelCase : List[str] = [0] * len(snake_case__ )
UpperCamelCase : int = []
UpperCamelCase : Optional[int] = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
UpperCamelCase : Optional[int] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCamelCase : Tuple = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
__UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 40 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class lowercase_ (unittest.TestCase ):
def __UpperCamelCase ( self) -> Dict:
a__ ={
'task_specific_params': {
'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4},
'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4},
'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6},
}
}
a__ ={
'task_specific_params.summarization.length_penalty': 1.0,
'task_specific_params.summarization.max_length': 128,
'task_specific_params.summarization.min_length': 12,
'task_specific_params.summarization.num_beams': 4,
'task_specific_params.summarization_cnn.length_penalty': 2.0,
'task_specific_params.summarization_cnn.max_length': 142,
'task_specific_params.summarization_cnn.min_length': 56,
'task_specific_params.summarization_cnn.num_beams': 4,
'task_specific_params.summarization_xsum.length_penalty': 1.0,
'task_specific_params.summarization_xsum.max_length': 62,
'task_specific_params.summarization_xsum.min_length': 11,
'task_specific_params.summarization_xsum.num_beams': 6,
}
self.assertEqual(flatten_dict(lowercase_) , lowercase_)
def __UpperCamelCase ( self) -> Any:
a__ =np.random.randn(3 , 4)
self.assertTrue(np.allclose(transpose(lowercase_) , x.transpose()))
a__ =np.random.randn(3 , 4 , 5)
self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0)) , x.transpose((1, 2, 0))))
@require_torch
def __UpperCamelCase ( self) -> List[str]:
a__ =np.random.randn(3 , 4)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(transpose(lowercase_) , transpose(lowercase_).numpy()))
a__ =np.random.randn(3 , 4 , 5)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0)) , transpose(lowercase_ , axes=(1, 2, 0)).numpy()))
@require_tf
def __UpperCamelCase ( self) -> List[str]:
a__ =np.random.randn(3 , 4)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(transpose(lowercase_) , transpose(lowercase_).numpy()))
a__ =np.random.randn(3 , 4 , 5)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0)) , transpose(lowercase_ , axes=(1, 2, 0)).numpy()))
@require_flax
def __UpperCamelCase ( self) -> Optional[int]:
a__ =np.random.randn(3 , 4)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(transpose(lowercase_) , np.asarray(transpose(lowercase_))))
a__ =np.random.randn(3 , 4 , 5)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(transpose(lowercase_ , axes=(1, 2, 0)) , np.asarray(transpose(lowercase_ , axes=(1, 2, 0)))))
def __UpperCamelCase ( self) -> List[str]:
a__ =np.random.randn(3 , 4)
self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3)) , np.reshape(lowercase_ , (4, 3))))
a__ =np.random.randn(3 , 4 , 5)
self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5)) , np.reshape(lowercase_ , (12, 5))))
@require_torch
def __UpperCamelCase ( self) -> int:
a__ =np.random.randn(3 , 4)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3)) , reshape(lowercase_ , (4, 3)).numpy()))
a__ =np.random.randn(3 , 4 , 5)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5)) , reshape(lowercase_ , (12, 5)).numpy()))
@require_tf
def __UpperCamelCase ( self) -> Dict:
a__ =np.random.randn(3 , 4)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3)) , reshape(lowercase_ , (4, 3)).numpy()))
a__ =np.random.randn(3 , 4 , 5)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5)) , reshape(lowercase_ , (12, 5)).numpy()))
@require_flax
def __UpperCamelCase ( self) -> Any:
a__ =np.random.randn(3 , 4)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(reshape(lowercase_ , (4, 3)) , np.asarray(reshape(lowercase_ , (4, 3)))))
a__ =np.random.randn(3 , 4 , 5)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(reshape(lowercase_ , (12, 5)) , np.asarray(reshape(lowercase_ , (12, 5)))))
def __UpperCamelCase ( self) -> Tuple:
a__ =np.random.randn(1 , 3 , 4)
self.assertTrue(np.allclose(squeeze(lowercase_) , np.squeeze(lowercase_)))
a__ =np.random.randn(1 , 4 , 1 , 5)
self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2) , np.squeeze(lowercase_ , axis=2)))
@require_torch
def __UpperCamelCase ( self) -> Dict:
a__ =np.random.randn(1 , 3 , 4)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(squeeze(lowercase_) , squeeze(lowercase_).numpy()))
a__ =np.random.randn(1 , 4 , 1 , 5)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2) , squeeze(lowercase_ , axis=2).numpy()))
@require_tf
def __UpperCamelCase ( self) -> List[Any]:
a__ =np.random.randn(1 , 3 , 4)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(squeeze(lowercase_) , squeeze(lowercase_).numpy()))
a__ =np.random.randn(1 , 4 , 1 , 5)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2) , squeeze(lowercase_ , axis=2).numpy()))
@require_flax
def __UpperCamelCase ( self) -> int:
a__ =np.random.randn(1 , 3 , 4)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(squeeze(lowercase_) , np.asarray(squeeze(lowercase_))))
a__ =np.random.randn(1 , 4 , 1 , 5)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(squeeze(lowercase_ , axis=2) , np.asarray(squeeze(lowercase_ , axis=2))))
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =np.random.randn(3 , 4)
self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1) , np.expand_dims(lowercase_ , axis=1)))
@require_torch
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =np.random.randn(3 , 4)
a__ =torch.tensor(lowercase_)
self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1) , expand_dims(lowercase_ , axis=1).numpy()))
@require_tf
def __UpperCamelCase ( self) -> Tuple:
a__ =np.random.randn(3 , 4)
a__ =tf.constant(lowercase_)
self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1) , expand_dims(lowercase_ , axis=1).numpy()))
@require_flax
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =np.random.randn(3 , 4)
a__ =jnp.array(lowercase_)
self.assertTrue(np.allclose(expand_dims(lowercase_ , axis=1) , np.asarray(expand_dims(lowercase_ , axis=1))))
| 20 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MraForMaskedLM''',
'''MraForMultipleChoice''',
'''MraForQuestionAnswering''',
'''MraForSequenceClassification''',
'''MraForTokenClassification''',
'''MraLayer''',
'''MraModel''',
'''MraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 40 | 0 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
UpperCamelCase = ["""pixel_values"""]
def __init__( self :Optional[int] , __snake_case :bool = True , __snake_case :Union[int, float] = 1 / 2_55 , __snake_case :bool = True , __snake_case :int = 8 , **__snake_case :int , ):
'''simple docstring'''
super().__init__(**__snake_case )
__magic_name__ : Optional[Any] =do_rescale
__magic_name__ : List[Any] =rescale_factor
__magic_name__ : Dict =do_pad
__magic_name__ : Tuple =pad_size
def A__ ( self :List[str] , __snake_case :np.ndarray , __snake_case :float , __snake_case :Optional[Union[str, ChannelDimension]] = None , **__snake_case :Tuple ):
'''simple docstring'''
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def A__ ( self :List[Any] , __snake_case :np.ndarray , __snake_case :int , __snake_case :Optional[Union[str, ChannelDimension]] = None ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Optional[int] =get_image_size(__snake_case )
__magic_name__ : List[Any] =(old_height // size + 1) * size - old_height
__magic_name__ : Union[str, Any] =(old_width // size + 1) * size - old_width
return pad(__snake_case , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=__snake_case )
def A__ ( self :Union[str, Any] , __snake_case :ImageInput , __snake_case :Optional[bool] = None , __snake_case :Optional[float] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[int] = None , __snake_case :Optional[Union[str, TensorType]] = None , __snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST , **__snake_case :Tuple , ):
'''simple docstring'''
__magic_name__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : str =rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : Dict =do_pad if do_pad is not None else self.do_pad
__magic_name__ : Union[str, Any] =pad_size if pad_size is not None else self.pad_size
__magic_name__ : int =make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__magic_name__ : Optional[int] =[to_numpy_array(__snake_case ) for image in images]
if do_rescale:
__magic_name__ : Any =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images]
if do_pad:
__magic_name__ : Optional[Any] =[self.pad(__snake_case , size=__snake_case ) for image in images]
__magic_name__ : Any =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
__magic_name__ : Dict ={"""pixel_values""": images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
| 21 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {
'''configuration_pix2struct''': [
'''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Pix2StructConfig''',
'''Pix2StructTextConfig''',
'''Pix2StructVisionConfig''',
],
'''processing_pix2struct''': ['''Pix2StructProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''Pix2StructImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Pix2StructPreTrainedModel''',
'''Pix2StructForConditionalGeneration''',
'''Pix2StructVisionModel''',
'''Pix2StructTextModel''',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class A ( _a ,unittest.TestCase ):
lowercase_ = XLMProphetNetTokenizer
lowercase_ = False
lowercase_ = True
def __lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_a = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_a = '''[PAD]'''
_a = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(lowerCAmelCase_ ) , 10_12 )
def __lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_12 )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_a = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ )
_a = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
_a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_a = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
_a = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_a = '''Hello World!'''
_a = [3_53_89, 66_72, 49, 2]
self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) )
@slow
def __lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_a = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 22 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
snake_case__ : List[str] = logging.getLogger(__name__)
@dataclass
class _a :
"""simple docstring"""
A_ = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
A_ = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
@dataclass
class _a :
"""simple docstring"""
A_ = field(default=UpperCAmelCase__ , metadata={"""help""": """The input training data file (a text file)."""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
A_ = field(
default=UpperCAmelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. If passed, sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""Whether to pad all samples to the maximum sentence length. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch. More """
"""efficient on GPU but very bad for TPU."""
)
} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
A_ = field(
default=UpperCAmelCase__ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
if self.train_file is not None:
UpperCamelCase_ = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
UpperCamelCase_ = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class _a :
"""simple docstring"""
A_ = 42
A_ = True
A_ = None
A_ = None
def __call__( self , _UpperCAmelCase ) -> List[Any]:
UpperCamelCase_ = 'label' if 'label' in features[0].keys() else 'labels'
UpperCamelCase_ = [feature.pop(_UpperCAmelCase ) for feature in features]
UpperCamelCase_ = len(_UpperCAmelCase )
UpperCamelCase_ = len(features[0]['input_ids'] )
UpperCamelCase_ = [
[{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features
]
UpperCamelCase_ = list(chain(*_UpperCAmelCase ) )
UpperCamelCase_ = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
UpperCamelCase_ = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
UpperCamelCase_ = torch.tensor(_UpperCAmelCase , dtype=torch.intaa )
return batch
def _snake_case ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __lowercase , __lowercase)
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCamelCase_ = training_args.get_process_log_level()
logger.setLevel(__lowercase)
datasets.utils.logging.set_verbosity(__lowercase)
transformers.utils.logging.set_verbosity(__lowercase)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""")
logger.info(f"""Training/evaluation parameters {training_args}""")
# Detecting last checkpoint.
UpperCamelCase_ = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCamelCase_ = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.')
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.')
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
UpperCamelCase_ = {}
if data_args.train_file is not None:
UpperCamelCase_ = data_args.train_file
if data_args.validation_file is not None:
UpperCamelCase_ = data_args.validation_file
UpperCamelCase_ = data_args.train_file.split('.')[-1]
UpperCamelCase_ = load_dataset(
__lowercase , data_files=__lowercase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
UpperCamelCase_ = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCamelCase_ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCamelCase_ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCamelCase_ = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
UpperCamelCase_ = [f"""ending{i}""" for i in range(4)]
UpperCamelCase_ = 'sent1'
UpperCamelCase_ = 'sent2'
if data_args.max_seq_length is None:
UpperCamelCase_ = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.')
UpperCamelCase_ = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""")
UpperCamelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length)
# Preprocessing the datasets.
def preprocess_function(__lowercase):
UpperCamelCase_ = [[context] * 4 for context in examples[context_name]]
UpperCamelCase_ = examples[question_header_name]
UpperCamelCase_ = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__lowercase)
]
# Flatten out
UpperCamelCase_ = list(chain(*__lowercase))
UpperCamelCase_ = list(chain(*__lowercase))
# Tokenize
UpperCamelCase_ = tokenizer(
__lowercase , __lowercase , truncation=__lowercase , max_length=__lowercase , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__lowercase) , 4)] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset')
UpperCamelCase_ = raw_datasets['train']
if data_args.max_train_samples is not None:
UpperCamelCase_ = min(len(__lowercase) , data_args.max_train_samples)
UpperCamelCase_ = train_dataset.select(range(__lowercase))
with training_args.main_process_first(desc='train dataset map pre-processing'):
UpperCamelCase_ = train_dataset.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset')
UpperCamelCase_ = raw_datasets['validation']
if data_args.max_eval_samples is not None:
UpperCamelCase_ = min(len(__lowercase) , data_args.max_eval_samples)
UpperCamelCase_ = eval_dataset.select(range(__lowercase))
with training_args.main_process_first(desc='validation dataset map pre-processing'):
UpperCamelCase_ = eval_dataset.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
UpperCamelCase_ = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__lowercase , pad_to_multiple_of=8 if training_args.fpaa else None)
)
# Metric
def compute_metrics(__lowercase):
UpperCamelCase_ , UpperCamelCase_ = eval_predictions
UpperCamelCase_ = np.argmax(__lowercase , axis=1)
return {"accuracy": (preds == label_ids).astype(np.floataa).mean().item()}
# Initialize our Trainer
UpperCamelCase_ = Trainer(
model=__lowercase , args=__lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , compute_metrics=__lowercase , )
# Training
if training_args.do_train:
UpperCamelCase_ = None
if training_args.resume_from_checkpoint is not None:
UpperCamelCase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCamelCase_ = last_checkpoint
UpperCamelCase_ = trainer.train(resume_from_checkpoint=__lowercase)
trainer.save_model() # Saves the tokenizer too for easy upload
UpperCamelCase_ = train_result.metrics
UpperCamelCase_ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowercase)
)
UpperCamelCase_ = min(__lowercase , len(__lowercase))
trainer.log_metrics('train' , __lowercase)
trainer.save_metrics('train' , __lowercase)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***')
UpperCamelCase_ = trainer.evaluate()
UpperCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowercase)
UpperCamelCase_ = min(__lowercase , len(__lowercase))
trainer.log_metrics('eval' , __lowercase)
trainer.save_metrics('eval' , __lowercase)
UpperCamelCase_ = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowercase)
else:
trainer.create_model_card(**__lowercase)
def _snake_case (__lowercase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 23 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''ViTFeatureExtractor''']
__UpperCAmelCase = ['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
'''simple docstring'''
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
UpperCAmelCase_ : Tuple = '''\
@inproceedings{kakwani2020indicnlpsuite,
title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
booktitle={Findings of EMNLP},
}
'''
UpperCAmelCase_ : Optional[Any] = '''\
IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide
variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.
'''
UpperCAmelCase_ : int = '''
Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset.
Args:
predictions: list of predictions to score (as int64),
except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).
references: list of ground truth labels corresponding to the predictions (as int64),
except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).
Returns: depending on the IndicGLUE subset, one or several of:
"accuracy": Accuracy
"f1": F1 score
"precision": Precision@10
Examples:
>>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')
>>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'precision@10\': 1.0}
'''
def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] )-> str:
'''simple docstring'''
return float((preds == labels).mean() )
def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : List[str] )-> Tuple:
'''simple docstring'''
__snake_case = simple_accuracy(_lowerCamelCase , _lowerCamelCase )
__snake_case = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] )-> str:
'''simple docstring'''
__snake_case = np.array(_lowerCamelCase )
__snake_case = np.array(_lowerCamelCase )
__snake_case = en_sentvecs.shape[0]
# mean centering
__snake_case = en_sentvecs - np.mean(_lowerCamelCase , axis=0 )
__snake_case = in_sentvecs - np.mean(_lowerCamelCase , axis=0 )
__snake_case = cdist(_lowerCamelCase , _lowerCamelCase , '''cosine''' )
__snake_case = np.array(range(_lowerCamelCase ) )
__snake_case = sim.argsort(axis=1 )[:, :10]
__snake_case = np.any(preds == actual[:, None] , axis=1 )
return float(matches.mean() )
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowerCAmelCase ( datasets.Metric):
def lowerCAmelCase ( self ) -> str:
'''simple docstring'''
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
'''references''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , )
def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]:
'''simple docstring'''
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
| 24 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any:
if rng is None:
UpperCamelCase : int = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]:
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Any = min_seq_length
UpperCamelCase : Optional[int] = max_seq_length
UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Any = padding_value
UpperCamelCase : Tuple = sampling_rate
UpperCamelCase : Optional[Any] = return_attention_mask
UpperCamelCase : Optional[Any] = do_normalize
def snake_case_ ( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Any = WavaVecaFeatureExtractor
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) )
def snake_case_ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : Any = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Tuple = range(800, 1400, 200 )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : List[str] = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' )
UpperCamelCase : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' )
UpperCamelCase : int = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def snake_case_ ( self ) -> str:
import torch
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def snake_case_ ( self ) -> Tuple:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
| 40 | 0 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , a : Any , a : str=13 , a : Union[str, Any]=7 , a : int=True , a : Optional[Any]=True , a : Optional[int]=True , a : int=True , a : List[Any]=99 , a : List[Any]=16 , a : str=36 , a : Dict=6 , a : str=6 , a : List[str]=6 , a : Any=37 , a : Optional[Any]="gelu" , a : List[str]=0.1 , a : Tuple=0.1 , a : int=512 , a : Optional[Any]=16 , a : List[str]=2 , a : List[str]=0.02 , a : int=3 , a : int=4 , a : Union[str, Any]=None , ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = parent
SCREAMING_SNAKE_CASE : List[str] = batch_size
SCREAMING_SNAKE_CASE : int = seq_length
SCREAMING_SNAKE_CASE : int = is_training
SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask
SCREAMING_SNAKE_CASE : str = use_token_type_ids
SCREAMING_SNAKE_CASE : int = use_labels
SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE : Optional[int] = embedding_size
SCREAMING_SNAKE_CASE : Optional[int] = hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = num_hidden_groups
SCREAMING_SNAKE_CASE : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple = type_vocab_size
SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : Optional[int] = num_labels
SCREAMING_SNAKE_CASE : int = num_choices
SCREAMING_SNAKE_CASE : str = scope
def __UpperCamelCase ( self : Any ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : Union[str, Any] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : List[Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __UpperCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Optional[Any] , a : int , a : Dict , a : int , a : Union[str, Any] , a : int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = AlbertModel(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Any = model(a , attention_mask=a , token_type_ids=a )
SCREAMING_SNAKE_CASE : Optional[int] = model(a , token_type_ids=a )
SCREAMING_SNAKE_CASE : Dict = model(a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCamelCase ( self : str , a : int , a : Optional[int] , a : Optional[Any] , a : Dict , a : str , a : int , a : Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = AlbertForPreTraining(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Union[str, Any] = model(
a , attention_mask=a , token_type_ids=a , labels=a , sentence_order_label=a , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __UpperCamelCase ( self : Any , a : Any , a : Any , a : Optional[int] , a : str , a : int , a : str , a : Any ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = AlbertForMaskedLM(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : str , a : Tuple , a : Optional[Any] , a : Union[str, Any] , a : Optional[int] , a : Optional[int] , a : List[Any] , a : Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = AlbertForQuestionAnswering(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = model(
a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : List[Any] , a : Tuple , a : Tuple , a : int , a : List[Any] , a : List[Any] , a : Dict , a : Any ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.num_labels
SCREAMING_SNAKE_CASE : Optional[int] = AlbertForSequenceClassification(a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : int = model(a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : List[str] , a : List[str] , a : str , a : Optional[int] , a : Optional[int] , a : str , a : List[Any] , a : List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = self.num_labels
SCREAMING_SNAKE_CASE : Union[str, Any] = AlbertForTokenClassification(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : str , a : Optional[int] , a : Tuple , a : Optional[int] , a : Union[str, Any] , a : Union[str, Any] , a : List[Any] , a : str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = self.num_choices
SCREAMING_SNAKE_CASE : Any = AlbertForMultipleChoice(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE : List[str] = model(
a , attention_mask=a , token_type_ids=a , labels=a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : int ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,(
SCREAMING_SNAKE_CASE
) ,
) : int = config_and_inputs
SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _UpperCamelCase ( __A , __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
'feature-extraction': AlbertModel,
'fill-mask': AlbertForMaskedLM,
'question-answering': AlbertForQuestionAnswering,
'text-classification': AlbertForSequenceClassification,
'token-classification': AlbertForTokenClassification,
'zero-shot': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
def __UpperCamelCase ( self : List[str] , a : int , a : List[str] , a : Optional[int]=False ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = super()._prepare_for_class(a , a , return_labels=a )
if return_labels:
if model_class in get_values(a ):
SCREAMING_SNAKE_CASE : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a )
return inputs_dict
def __UpperCamelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = AlbertModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=a , hidden_size=37 )
def __UpperCamelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Tuple ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*a )
def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a )
def __UpperCamelCase ( self : str ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*a )
def __UpperCamelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a )
def __UpperCamelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a )
def __UpperCamelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
SCREAMING_SNAKE_CASE : Any = type
self.model_tester.create_and_check_model(*a )
@slow
def __UpperCamelCase ( self : Tuple ) -> str:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Optional[Any] = AlbertModel.from_pretrained(a )
self.assertIsNotNone(a )
@require_torch
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCamelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = AlbertModel.from_pretrained("albert-base-v2" )
SCREAMING_SNAKE_CASE : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a )[0]
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , a )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
| 25 |
def UpperCamelCase ( snake_case__ : int ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
UpperCamelCase : int = False
if num < 0:
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Tuple = -num
UpperCamelCase : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class _A ( unittest.TestCase ):
@require_torch
def lowercase__ ( self : int ) -> List[str]:
"""simple docstring"""
__snake_case : Any = pipeline(
task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" )
__snake_case : Optional[Any] = load_dataset("""ashraq/esc50""" )
__snake_case : Dict = dataset["""train"""]["""audio"""][-1]["""array"""]
__snake_case : str = audio_classifier(__magic_name__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , )
@unittest.skip("""No models are available in TF""" )
def lowercase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
pass
@slow
@require_torch
def lowercase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__snake_case : Optional[int] = pipeline(
task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , )
# This is an audio of a dog
__snake_case : Tuple = load_dataset("""ashraq/esc50""" )
__snake_case : Union[str, Any] = dataset["""train"""]["""audio"""][-1]["""array"""]
__snake_case : str = audio_classifier(__magic_name__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
{"""score""": 0.999, """label""": """Sound of a dog"""},
{"""score""": 0.001, """label""": """Sound of vaccum cleaner"""},
] , )
__snake_case : Any = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.999, """label""": """Sound of a dog"""},
{"""score""": 0.001, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
__snake_case : Optional[int] = audio_classifier(
[audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 )
self.assertEqual(
nested_simplify(__magic_name__ ) , [
[
{"""score""": 0.999, """label""": """Sound of a dog"""},
{"""score""": 0.001, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
@unittest.skip("""No models are available in TF""" )
def lowercase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
pass
| 26 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCAmelCase = logging.get_logger(__name__)
def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
UpperCamelCase : List[Any] = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
UpperCamelCase : Dict = new_module
UpperCamelCase : int = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
UpperCamelCase : Union[str, Any] = tensor_name in module._buffers
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
UpperCamelCase : Optional[Any] = False
UpperCamelCase : str = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase : List[str] = False
UpperCamelCase : Tuple = False
else:
UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase : List[Any] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase : Dict = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[Any] = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
UpperCamelCase : Union[str, Any] = new_value.T
UpperCamelCase : Union[str, Any] = old_value.__dict__
if is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
UpperCamelCase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[str] = value.to(snake_case__ )
else:
UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
UpperCamelCase : Optional[int] = new_value
else:
UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
UpperCamelCase : List[str] = new_value
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int:
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase : str = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape
else:
UpperCamelCase : Any = module.in_features
UpperCamelCase : List[str] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase : Any = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase : Optional[int] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase : str = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase : int = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase : Any = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]:
UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase : List[str] = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] )
UpperCamelCase : Optional[int] = len(snake_case__ ) > 0
# Check if it is a base model
UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase : List[Any] = list(model.named_children() )
UpperCamelCase : Optional[Any] = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ )
UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
UpperCamelCase : Tuple = ['.weight', '.bias']
UpperCamelCase : Tuple = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 40 | 0 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
__A : Optional[int] = logging.get_logger(__name__)
# General docstring
__A : Optional[Any] = "PoolFormerConfig"
# Base docstring
__A : Tuple = "sail/poolformer_s12"
__A : List[str] = [1, 512, 7, 7]
# Image classification docstring
__A : Optional[int] = "sail/poolformer_s12"
__A : Union[str, Any] = "tabby, tabby cat"
__A : int = [
"sail/poolformer_s12",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = False ) -> str:
"""simple docstring"""
if drop_prob == 0.0 or not training:
return input
_A = 1 - drop_prob
_A = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
_A = keep_prob + torch.rand(_SCREAMING_SNAKE_CASE , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
_A = input.div(_SCREAMING_SNAKE_CASE ) * random_tensor
return output
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ = None ):
super().__init__()
_A = drop_prob
def lowerCAmelCase__ ( self , snake_case_ ):
return drop_path(snake_case_ , self.drop_prob , self.training )
def lowerCAmelCase__ ( self ):
return "p={}".format(self.drop_prob )
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ):
super().__init__()
_A = patch_size if isinstance(snake_case_ , collections.abc.Iterable ) else (patch_size, patch_size)
_A = stride if isinstance(snake_case_ , collections.abc.Iterable ) else (stride, stride)
_A = padding if isinstance(snake_case_ , collections.abc.Iterable ) else (padding, padding)
_A = nn.Convad(snake_case_ , snake_case_ , kernel_size=snake_case_ , stride=snake_case_ , padding=snake_case_ )
_A = norm_layer(snake_case_ ) if norm_layer else nn.Identity()
def lowerCAmelCase__ ( self , snake_case_ ):
_A = self.projection(snake_case_ )
_A = self.norm(snake_case_ )
return embeddings
class lowerCamelCase( nn.GroupNorm ):
'''simple docstring'''
def __init__( self , snake_case_ , **snake_case_ ):
super().__init__(1 , snake_case_ , **snake_case_ )
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ ):
super().__init__()
_A = nn.AvgPoolad(snake_case_ , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case_ )
def lowerCAmelCase__ ( self , snake_case_ ):
return self.pool(snake_case_ ) - hidden_states
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
super().__init__()
_A = nn.Convad(snake_case_ , snake_case_ , 1 )
_A = nn.Convad(snake_case_ , snake_case_ , 1 )
_A = PoolFormerDropPath(snake_case_ )
if isinstance(config.hidden_act , snake_case_ ):
_A = ACTaFN[config.hidden_act]
else:
_A = config.hidden_act
def lowerCAmelCase__ ( self , snake_case_ ):
_A = self.conva(snake_case_ )
_A = self.act_fn(snake_case_ )
_A = self.drop(snake_case_ )
_A = self.conva(snake_case_ )
_A = self.drop(snake_case_ )
return hidden_states
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
super().__init__()
_A = PoolFormerPooling(snake_case_ )
_A = PoolFormerOutput(snake_case_ , snake_case_ , snake_case_ , snake_case_ )
_A = PoolFormerGroupNorm(snake_case_ )
_A = PoolFormerGroupNorm(snake_case_ )
# Useful for training neural nets
_A = PoolFormerDropPath(snake_case_ ) if drop_path > 0.0 else nn.Identity()
_A = config.use_layer_scale
if config.use_layer_scale:
_A = nn.Parameter(
config.layer_scale_init_value * torch.ones((snake_case_) ) , requires_grad=snake_case_ )
_A = nn.Parameter(
config.layer_scale_init_value * torch.ones((snake_case_) ) , requires_grad=snake_case_ )
def lowerCAmelCase__ ( self , snake_case_ ):
if self.use_layer_scale:
_A = self.pooling(self.before_norm(snake_case_ ) )
_A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
_A = hidden_states + self.drop_path(snake_case_ )
_A = ()
_A = self.output(self.after_norm(snake_case_ ) )
_A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
_A = hidden_states + self.drop_path(snake_case_ )
_A = (output,) + outputs
return outputs
else:
_A = self.drop_path(self.pooling(self.before_norm(snake_case_ ) ) )
# First residual connection
_A = pooling_output + hidden_states
_A = ()
# Second residual connection inside the PoolFormerOutput block
_A = self.drop_path(self.output(self.after_norm(snake_case_ ) ) )
_A = hidden_states + layer_output
_A = (output,) + outputs
return outputs
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ ):
super().__init__()
_A = config
# stochastic depth decay rule
_A = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
_A = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
_A = nn.ModuleList(snake_case_ )
# Transformer blocks
_A = []
_A = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
_A = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
snake_case_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(snake_case_ ) )
_A = nn.ModuleList(snake_case_ )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_=False , snake_case_=True ):
_A = () if output_hidden_states else None
_A = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
_A, _A = layers
# Get patch embeddings from hidden_states
_A = embedding_layer(snake_case_ )
# Send the embeddings through the blocks
for _, blk in enumerate(snake_case_ ):
_A = blk(snake_case_ )
_A = layer_outputs[0]
if output_hidden_states:
_A = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=snake_case_ , hidden_states=snake_case_ )
class lowerCamelCase( __snake_case ):
'''simple docstring'''
__magic_name__ = PoolFormerConfig
__magic_name__ = 'poolformer'
__magic_name__ = 'pixel_values'
__magic_name__ = True
def lowerCAmelCase__ ( self , snake_case_ ):
if isinstance(snake_case_ , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(snake_case_ , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_=False ):
if isinstance(snake_case_ , snake_case_ ):
_A = value
__A : Tuple = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__A : str = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n"
@add_start_docstrings(
'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __snake_case , )
class lowerCamelCase( __snake_case ):
'''simple docstring'''
def __init__( self , snake_case_ ):
super().__init__(snake_case_ )
_A = config
_A = PoolFormerEncoder(snake_case_ )
# Initialize weights and apply final processing
self.post_init()
def lowerCAmelCase__ ( self ):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(snake_case_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase__ ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , ):
_A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_A = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values' )
_A = self.encoder(
snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , )
_A = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=snake_case_ , hidden_states=encoder_outputs.hidden_states , )
class lowerCamelCase( nn.Module ):
'''simple docstring'''
def __init__( self , snake_case_ ):
super().__init__()
_A = nn.Linear(config.hidden_size , config.hidden_size )
def lowerCAmelCase__ ( self , snake_case_ ):
_A = self.dense(snake_case_ )
return output
@add_start_docstrings(
'\n PoolFormer Model transformer with an image classification head on top\n ' , __snake_case , )
class lowerCamelCase( __snake_case ):
'''simple docstring'''
def __init__( self , snake_case_ ):
super().__init__(snake_case_ )
_A = config.num_labels
_A = PoolFormerModel(snake_case_ )
# Final norm
_A = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
_A = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(snake_case_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase__ ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , ):
_A = return_dict if return_dict is not None else self.config.use_return_dict
_A = self.poolformer(
snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , )
_A = outputs[0]
_A = self.classifier(self.norm(snake_case_ ).mean([-2, -1] ) )
_A = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_A = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_A = 'single_label_classification'
else:
_A = 'multi_label_classification'
if self.config.problem_type == "regression":
_A = MSELoss()
if self.num_labels == 1:
_A = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_A = loss_fct(snake_case_ , snake_case_ )
elif self.config.problem_type == "single_label_classification":
_A = CrossEntropyLoss()
_A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_A = BCEWithLogitsLoss()
_A = loss_fct(snake_case_ , snake_case_ )
if not return_dict:
_A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states )
| 27 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCamelCase ( snake_case__ : int ) -> Dict:
UpperCamelCase : Optional[Any] = tmp_path / 'file.csv'
UpperCamelCase : Optional[Any] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]:
UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv'
UpperCamelCase : Any = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str:
UpperCamelCase : Any = tmp_path / 'csv_with_image.csv'
UpperCamelCase : Dict = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple:
UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv'
UpperCamelCase : Dict = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Dict ) -> List[str]:
UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv'
UpperCamelCase : Union[str, Any] = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]:
UpperCamelCase : str = Csv()
UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(snake_case__ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(snake_case__ ) in record.message
for record in caplog.records )
@require_pil
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : List[str] = f.read().splitlines()[1]
UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
UpperCamelCase : str = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCamelCase ( snake_case__ : Any ) -> str:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : Any = f.read().splitlines()[1:]
UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
UpperCamelCase : List[str] = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels]
def UpperCamelCase ( snake_case__ : str ) -> List[Any]:
UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} )
UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
UpperCamelCase : str = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 40 | 0 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCamelCase_ = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE )
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, *A, **A ):
'''simple docstring'''
super().__init__(*A, **A )
requires_backends(self, 'vision' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def UpperCamelCase_ ( self, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = {}
if top_k is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = top_k
return {}, {}, postprocess_params
def __call__( self, A, **A ):
'''simple docstring'''
return super().__call__(A, **A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = load_image(A )
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(images=A, return_tensors=self.framework )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=5 ):
'''simple docstring'''
if top_k > self.model.config.num_labels:
SCREAMING_SNAKE_CASE : int = self.model.config.num_labels
if self.framework == "pt":
SCREAMING_SNAKE_CASE : str = model_outputs.logits.softmax(-1 )[0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = probs.topk(A )
elif self.framework == "tf":
SCREAMING_SNAKE_CASE : Optional[Any] = stable_softmax(model_outputs.logits, axis=-1 )[0]
SCREAMING_SNAKE_CASE : int = tf.math.top_k(A, k=A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
SCREAMING_SNAKE_CASE : Optional[int] = scores.tolist()
SCREAMING_SNAKE_CASE : str = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A, A )]
| 28 |
import math
import random
def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__UpperCAmelCase = 0.02
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float:
UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(snake_case__ ):
# Forward propagation
UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
UpperCamelCase : int = (expected / 100) - layer_a
# Error delta
UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = int(input('''Expected value: '''))
__UpperCAmelCase = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 40 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: str = AltDiffusionPipeline
a__: List[str] = TEXT_TO_IMAGE_PARAMS
a__: Any = TEXT_TO_IMAGE_BATCH_PARAMS
a__: int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__: Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase__ ( self ):
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
lowerCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , )
torch.manual_seed(0 )
lowerCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
lowerCamelCase_ = CLIPTextModel(UpperCAmelCase )
lowerCamelCase_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ = 77
lowerCamelCase_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
torch.manual_seed(0 )
lowerCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCamelCase_ = RobertaSeriesModelWithTransformation(UpperCAmelCase )
lowerCamelCase_ = text_encoder
lowerCamelCase_ = AltDiffusionPipeline(**UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = '''A photo of an astronaut'''
lowerCamelCase_ = alt_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase_ = np.array(
[0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase )
torch.manual_seed(0 )
lowerCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCamelCase_ = RobertaSeriesModelWithTransformation(UpperCAmelCase )
lowerCamelCase_ = text_encoder
lowerCamelCase_ = AltDiffusionPipeline(**UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = alt_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase_ = np.array(
[0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ):
# make sure here that pndm scheduler skips prk
lowerCamelCase_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = alt_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
lowerCamelCase_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = alt_pipe([prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''numpy''' )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 29 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]:
return EnvironmentCommand()
class lowerCAmelCase_ ( a__ ):
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
UpperCamelCase : List[Any] = parser.add_parser('env' )
download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = huggingface_hub.__version__
UpperCamelCase : int = 'not installed'
UpperCamelCase : Union[str, Any] = 'NA'
if is_torch_available():
import torch
UpperCamelCase : Any = torch.__version__
UpperCamelCase : str = torch.cuda.is_available()
UpperCamelCase : Dict = 'not installed'
if is_transformers_available():
import transformers
UpperCamelCase : str = transformers.__version__
UpperCamelCase : Optional[Any] = 'not installed'
if is_accelerate_available():
import accelerate
UpperCamelCase : Dict = accelerate.__version__
UpperCamelCase : List[str] = 'not installed'
if is_xformers_available():
import xformers
UpperCamelCase : List[str] = xformers.__version__
UpperCamelCase : Dict = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(SCREAMING_SNAKE_CASE_ ) )
return info
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 40 | 0 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
__a = logging.get_logger(__name__)
__a = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class __a( _a ):
"""simple docstring"""
lowerCAmelCase = '''perceiver'''
def __init__( self ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=1_280 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=26 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="kv" ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=262 ,_SCREAMING_SNAKE_CASE=2_048 ,_SCREAMING_SNAKE_CASE=56 ,_SCREAMING_SNAKE_CASE=[368, 496] ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=1_920 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=[1, 16, 224, 224] ,**_SCREAMING_SNAKE_CASE ,) -> int:
super().__init__(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[int] = num_latents
UpperCAmelCase_ : Any = d_latents
UpperCAmelCase_ : List[str] = d_model
UpperCAmelCase_ : int = num_blocks
UpperCAmelCase_ : str = num_self_attends_per_block
UpperCAmelCase_ : Any = num_self_attention_heads
UpperCAmelCase_ : List[str] = num_cross_attention_heads
UpperCAmelCase_ : List[Any] = qk_channels
UpperCAmelCase_ : Union[str, Any] = v_channels
UpperCAmelCase_ : Optional[Any] = cross_attention_shape_for_attention
UpperCAmelCase_ : List[str] = self_attention_widening_factor
UpperCAmelCase_ : Optional[Any] = cross_attention_widening_factor
UpperCAmelCase_ : str = hidden_act
UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : int = use_query_residual
# masked language modeling attributes
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : Tuple = max_position_embeddings
# image classification attributes
UpperCAmelCase_ : Tuple = image_size
# flow attributes
UpperCAmelCase_ : int = train_size
# multimodal autoencoding attributes
UpperCAmelCase_ : int = num_frames
UpperCAmelCase_ : Dict = audio_samples_per_frame
UpperCAmelCase_ : Dict = samples_per_patch
UpperCAmelCase_ : str = output_shape
class __a( _a ):
"""simple docstring"""
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase_ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase_ : Tuple = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''inputs''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
@property
def a__ ( self ) -> float:
return 1e-4
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 40 ,_SCREAMING_SNAKE_CASE = 40 ,) -> Mapping[str, Any]:
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ : Dict = compute_effective_axis_dimension(
_SCREAMING_SNAKE_CASE ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ : str = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Union[str, Any] = compute_effective_axis_dimension(
_SCREAMING_SNAKE_CASE ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_SCREAMING_SNAKE_CASE )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ : Union[str, Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size
UpperCAmelCase_ : Optional[int] = dict(preprocessor(_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase_ : List[str] = inputs.pop('''input_ids''' )
return inputs
elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ : int = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE ,fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCAmelCase_ : Optional[int] = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[str] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase_ : str = inputs.pop('''pixel_values''' )
return inputs
else:
raise ValueError(
'''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
| 30 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''▁'''
__UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__UpperCAmelCase = {
'''facebook/xglm-564M''': 2_048,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None:
UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
UpperCamelCase : Any = 7
UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase : int = 1
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
UpperCamelCase : Optional[int] = len(self.sp_model )
UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
UpperCamelCase : int = self.__dict__.copy()
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : Any = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
UpperCamelCase : Any = {}
UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
UpperCamelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def snake_case_ ( self ) -> int:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def snake_case_ ( self ) -> int:
UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip()
return out_string
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi:
UpperCamelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 40 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
lowerCamelCase__ : Dict = random.Random()
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple:
if rng is None:
SCREAMING_SNAKE_CASE_ = global_rng
SCREAMING_SNAKE_CASE_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = min_seq_length
SCREAMING_SNAKE_CASE_ = max_seq_length
SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE_ = feature_size
SCREAMING_SNAKE_CASE_ = padding_value
SCREAMING_SNAKE_CASE_ = sampling_rate
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = num_mel_bins
SCREAMING_SNAKE_CASE_ = hop_length
SCREAMING_SNAKE_CASE_ = win_length
SCREAMING_SNAKE_CASE_ = win_function
SCREAMING_SNAKE_CASE_ = fmin
SCREAMING_SNAKE_CASE_ = fmax
SCREAMING_SNAKE_CASE_ = mel_floor
SCREAMING_SNAKE_CASE_ = return_attention_mask
def lowerCAmelCase_ ( self : Union[str, Any] ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ):
def _flatten(_lowerCAmelCase : Dict ):
return list(itertools.chain(*_lowerCAmelCase ) )
if equal_length:
SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ):
if equal_length:
SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = SpeechTaFeatureExtractor
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self )
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ):
self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def lowerCAmelCase_ ( self : List[Any] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowerCAmelCase_ ( self : Tuple ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(
_lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ):
from datasets import load_dataset
SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowerCAmelCase_ ( self : Any ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03,
3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03,
2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04,
4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03,
7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04,
4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) )
def lowerCAmelCase_ ( self : Optional[int] ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
| 31 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__UpperCAmelCase = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
UpperCAmelCase__ : Dict = RobertaTokenizer
def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]:
super().__init__(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) )
UpperCamelCase : List[str] = add_prefix_space
UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = add_prefix_space
UpperCamelCase : Optional[Any] = 'post_processor'
UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
if tokenizer_component_instance:
UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase : Optional[Any] = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase : Optional[int] = tuple(state['cls'] )
UpperCamelCase : Any = False
if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Optional[int] = add_prefix_space
UpperCamelCase : List[Any] = True
if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets:
UpperCamelCase : Dict = trim_offsets
UpperCamelCase : Union[str, Any] = True
if changes_to_apply:
UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) )
UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ )
setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
@property
def snake_case_ ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value
UpperCamelCase : List[Any] = value
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple:
UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 40 | 0 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(A__ ) , """Tatoeba directory does not exist.""" )
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def UpperCamelCase( self ):
_UpperCAmelCase = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCamelCase )
@slow
def UpperCamelCase( self ):
self.resolver.convert_models(['''heb-eng'''] )
@slow
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_UpperCamelCase )
assert mmeta["long_pair"] == "heb-eng"
| 32 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
super().__init__(features=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch_tensor_kwargs
import torch # noqa import torch at initialization
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column:
if all(
isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ):
return value
elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ):
return value.tolist()
UpperCamelCase : str = {}
if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ):
UpperCamelCase : List[str] = {'dtype': torch.intaa}
elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ):
UpperCamelCase : int = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ):
UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ )
return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
import torch
# support for torch, tf, jax etc.
if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ):
UpperCamelCase : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ):
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
return self._tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int:
return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ )
return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor":
UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] )
UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
for column_name in batch:
UpperCamelCase : str = self._consolidate(batch[column_name] )
return batch
| 40 | 0 |
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class __magic_name__ :
'''simple docstring'''
def __init__( self:str , _a:Optional[Any] , _a:Any=13 , _a:List[str]=7 , _a:str=True , _a:Dict=True , _a:Any=False , _a:Dict=True , _a:int=99 , _a:List[str]=64 , _a:Union[str, Any]=5 , _a:Optional[int]=4 , _a:int=64 , _a:List[str]="gelu" , _a:List[Any]=0.1 , _a:Dict=0.1 , _a:str=5_12 , _a:Optional[int]=16 , _a:Tuple=2 , _a:int=0.02 , _a:Dict=3 , _a:Tuple=4 , _a:Tuple=None , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_input_mask
snake_case__ = use_token_type_ids
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = type_vocab_size
snake_case__ = type_sequence_label_size
snake_case__ = initializer_range
snake_case__ = num_labels
snake_case__ = num_choices
snake_case__ = scope
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = None
if self.use_input_mask:
snake_case__ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ = None
snake_case__ = None
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case__ = ids_tensor([self.batch_size] , self.num_choices )
snake_case__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self:str ):
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Dict , _a:Dict , _a:Optional[Any] , _a:Dict , _a:Optional[int] , _a:int ):
snake_case__ = MPNetModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , _a )
snake_case__ = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:str , _a:Optional[Any] , _a:Tuple , _a:Tuple , _a:Tuple , _a:Optional[int] ):
snake_case__ = MPNetForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(
_a , attention_mask=_a , start_positions=_a , end_positions=_a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:int , _a:List[Any] , _a:Union[str, Any] , _a:Optional[int] , _a:Tuple , _a:List[str] ):
snake_case__ = self.num_labels
snake_case__ = MPNetForSequenceClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[Any] , _a:List[Any] , _a:Any , _a:int , _a:str , _a:Tuple ):
snake_case__ = self.num_choices
snake_case__ = MPNetForMultipleChoice(config=_a )
model.to(_a )
model.eval()
snake_case__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
snake_case__ = model(
_a , attention_mask=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int , _a:Optional[Any] , _a:Optional[Any] , _a:Union[str, Any] , _a:List[Any] , _a:List[Any] ):
snake_case__ = self.num_labels
snake_case__ = MPNetForTokenClassification(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.prepare_config_and_inputs()
((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) = config_and_inputs
snake_case__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
__lowercase : int = (
{
'feature-extraction': MPNetModel,
'fill-mask': MPNetForMaskedLM,
'question-answering': MPNetForQuestionAnswering,
'text-classification': MPNetForSequenceClassification,
'token-classification': MPNetForTokenClassification,
'zero-shot': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Any = True
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = MPNetModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*_a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*_a )
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = MPNetModel.from_pretrained('''microsoft/mpnet-base''' )
snake_case__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
snake_case__ = model(_a )[0]
snake_case__ = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _a )
snake_case__ = torch.tensor(
[[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
| 33 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) )
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
UpperCamelCase : int = (
'Wrong input data\'s dimensions... '
F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(snake_case__ )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase : str = (
'Wrong input data\'s shape... '
F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(snake_case__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
UpperCamelCase : Dict = (
'Input data have different datatype... '
F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(snake_case__ )
UpperCamelCase : List[Any] = []
for value in value_array:
UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] )
UpperCamelCase : Dict = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ )
if dist > temp_dist:
UpperCamelCase : str = temp_dist
UpperCamelCase : List[str] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def __snake_case ( _lowercase ,_lowercase ,_lowercase ):
"""simple docstring"""
UpperCamelCase = 0
if start < end:
UpperCamelCase = randint(_lowercase ,_lowercase )
UpperCamelCase = a[end]
UpperCamelCase = a[pivot]
UpperCamelCase = temp
UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase )
count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 )
count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase )
return count
def __snake_case ( _lowercase ,_lowercase ,_lowercase ):
"""simple docstring"""
UpperCamelCase = 0
UpperCamelCase = randint(_lowercase ,_lowercase )
UpperCamelCase = a[end]
UpperCamelCase = a[pivot]
UpperCamelCase = temp
UpperCamelCase = start - 1
for index in range(_lowercase ,_lowercase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
UpperCamelCase = new_pivot_index + 1
UpperCamelCase = a[new_pivot_index]
UpperCamelCase = a[index]
UpperCamelCase = temp
UpperCamelCase = a[new_pivot_index + 1]
UpperCamelCase = a[end]
UpperCamelCase = temp
return new_pivot_index + 1, count
SCREAMING_SNAKE_CASE_ = TemporaryFile()
SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation
SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
SCREAMING_SNAKE_CASE_ = np.load(outfile)
SCREAMING_SNAKE_CASE_ = len(M) - 1
SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 34 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__UpperCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__UpperCAmelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__UpperCAmelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__UpperCAmelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__UpperCAmelCase = np.expand_dims(test_image, axis=0)
__UpperCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__UpperCAmelCase = '''Normal'''
if result[0][0] == 1:
__UpperCAmelCase = '''Abnormality detected'''
| 40 | 0 |
import unittest
from knapsack import knapsack as k
class lowercase ( unittest.TestCase ):
def lowercase__ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE__ : Optional[Any] = [0]
SCREAMING_SNAKE_CASE__ : Tuple = [0]
SCREAMING_SNAKE_CASE__ : str = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [60]
SCREAMING_SNAKE_CASE__ : Dict = [10]
SCREAMING_SNAKE_CASE__ : Dict = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 )
def lowercase__ ( self : List[str] ):
SCREAMING_SNAKE_CASE__ : Tuple = 3
SCREAMING_SNAKE_CASE__ : Tuple = [1, 2, 3]
SCREAMING_SNAKE_CASE__ : Any = [3, 2, 1]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 )
def lowercase__ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE__ : List[str] = 50
SCREAMING_SNAKE_CASE__ : Tuple = [60, 1_00, 1_20]
SCREAMING_SNAKE_CASE__ : Any = [10, 20, 30]
SCREAMING_SNAKE_CASE__ : int = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 2_20 )
if __name__ == "__main__":
unittest.main()
| 35 |
import os
import pytest
from attr import dataclass
__UpperCAmelCase = '''us-east-1''' # defaults region
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase__ : str
UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
UpperCAmelCase__ : Union[str, Any] = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000}
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def snake_case_ ( self ) -> str:
return F"""{self.framework}-transfromers-test"""
@property
def snake_case_ ( self ) -> str:
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
| 40 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__lowercase : Optional[int] = logging.get_logger(__name__)
__lowercase : List[Any] = {
'''post_extract_proj''': '''feature_projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.upsample.0''': '''encoder.upsample.projection''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''layer_norm''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
def lowercase ( __A : Optional[Any] , __A : List[str] , __A : Union[str, Any] , __A : Optional[Any] , __A : str ) -> Union[str, Any]:
'''simple docstring'''
for attribute in key.split(""".""" ):
snake_case : Optional[int] = getattr(__A , __A )
if weight_type is not None:
snake_case : Tuple = getattr(__A , __A ).shape
else:
snake_case : Dict = hf_pointer.shape
assert hf_shape == value.shape, (
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
snake_case : Optional[int] = value
elif weight_type == "weight_g":
snake_case : int = value
elif weight_type == "weight_v":
snake_case : Union[str, Any] = value
elif weight_type == "bias":
snake_case : int = value
else:
snake_case : str = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowercase ( __A : Tuple , __A : Optional[int] , __A : int ) -> int:
'''simple docstring'''
snake_case : Any = []
snake_case : Optional[int] = fairseq_model.state_dict()
snake_case : Tuple = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
snake_case : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
__A , __A , __A , __A , hf_model.config.feat_extract_norm == """group""" , )
snake_case : Dict = True
else:
for key, mapped_key in MAPPING.items():
snake_case : Dict = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
snake_case : str = True
if "*" in mapped_key:
snake_case : Optional[int] = name.split(__A )[0].split(""".""" )[-2]
snake_case : Optional[Any] = mapped_key.replace("""*""" , __A )
if "weight_g" in name:
snake_case : Dict = """weight_g"""
elif "weight_v" in name:
snake_case : List[Any] = """weight_v"""
elif "weight" in name:
snake_case : Tuple = """weight"""
elif "bias" in name:
snake_case : int = """bias"""
else:
snake_case : List[Any] = None
set_recursively(__A , __A , __A , __A , __A )
continue
if not is_used:
unused_weights.append(__A )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowercase ( __A : List[Any] , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Optional[int] ) -> Any:
'''simple docstring'''
snake_case : str = full_name.split("""conv_layers.""" )[-1]
snake_case : List[Any] = name.split(""".""" )
snake_case : Tuple = int(items[0] )
snake_case : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
snake_case : str = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
snake_case : Any = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
snake_case : Optional[int] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
snake_case : Optional[int] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__A )
def lowercase ( __A : Optional[Any] , __A : List[str] ) -> str:
'''simple docstring'''
snake_case : Tuple = SEWConfig()
if is_finetuned:
snake_case : Dict = model.wav_encoder.wav_model.cfg
else:
snake_case : str = model.cfg
snake_case : Union[str, Any] = fs_config.conv_bias
snake_case : Any = eval(fs_config.conv_feature_layers )
snake_case : Any = [x[0] for x in conv_layers]
snake_case : Dict = [x[1] for x in conv_layers]
snake_case : Optional[int] = [x[2] for x in conv_layers]
snake_case : str = """gelu"""
snake_case : Tuple = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group"""
snake_case : List[Any] = 0.0
snake_case : int = fs_config.activation_fn.name
snake_case : Any = fs_config.encoder_embed_dim
snake_case : Optional[int] = 0.02
snake_case : Dict = fs_config.encoder_ffn_embed_dim
snake_case : int = 1E-5
snake_case : List[Any] = fs_config.encoder_layerdrop
snake_case : List[Any] = fs_config.encoder_attention_heads
snake_case : Dict = fs_config.conv_pos_groups
snake_case : Dict = fs_config.conv_pos
snake_case : Union[str, Any] = len(__A )
snake_case : Dict = fs_config.encoder_layers
snake_case : Tuple = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
snake_case : List[Any] = model.cfg
snake_case : Optional[int] = fs_config.final_dropout
snake_case : List[str] = fs_config.layerdrop
snake_case : int = fs_config.activation_dropout
snake_case : List[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
snake_case : Union[str, Any] = fs_config.attention_dropout
snake_case : List[Any] = fs_config.dropout_input
snake_case : List[Any] = fs_config.dropout
snake_case : int = fs_config.mask_channel_length
snake_case : Any = fs_config.mask_channel_prob
snake_case : Dict = fs_config.mask_length
snake_case : Dict = fs_config.mask_prob
snake_case : Optional[Any] = """Wav2Vec2FeatureExtractor"""
snake_case : Tuple = """Wav2Vec2CTCTokenizer"""
return config
@torch.no_grad()
def lowercase ( __A : Any , __A : str , __A : Any=None , __A : int=None , __A : Union[str, Any]=True ) -> List[str]:
'''simple docstring'''
if is_finetuned:
snake_case , snake_case , snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
snake_case , snake_case , snake_case : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
snake_case : int = SEWConfig.from_pretrained(__A )
else:
snake_case : List[str] = convert_config(model[0] , __A )
snake_case : Optional[Any] = model[0].eval()
snake_case : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False
snake_case : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
if is_finetuned:
if dict_path:
snake_case : str = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case : Optional[Any] = target_dict.pad_index
snake_case : List[Any] = target_dict.bos_index
snake_case : Union[str, Any] = target_dict.pad_index
snake_case : Tuple = target_dict.bos_index
snake_case : Union[str, Any] = target_dict.eos_index
snake_case : str = len(target_dict.symbols )
snake_case : Tuple = os.path.join(__A , """vocab.json""" )
if not os.path.isdir(__A ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) )
return
os.makedirs(__A , exist_ok=__A )
with open(__A , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(target_dict.indices , __A )
snake_case : int = WavaVecaCTCTokenizer(
__A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__A , )
snake_case : Tuple = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A )
processor.save_pretrained(__A )
snake_case : Any = SEWForCTC(__A )
else:
snake_case : Tuple = SEWModel(__A )
feature_extractor.save_pretrained(__A )
recursively_load_weights(__A , __A , __A )
hf_model.save_pretrained(__A )
if __name__ == "__main__":
__lowercase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
__lowercase : Dict = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 36 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
__UpperCAmelCase = '''src/transformers'''
__UpperCAmelCase = '''docs/source/en/tasks'''
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]:
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : Optional[Any] = f.readlines()
# Find the start prompt.
UpperCamelCase : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
UpperCamelCase : Optional[Any] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
__UpperCAmelCase = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
__UpperCAmelCase = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]:
UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
UpperCamelCase : Tuple = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__UpperCAmelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 40 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
class A__ ( A__ ):
"""simple docstring"""
_lowercase = ['input_features', 'attention_mask']
def __init__( self : str , lowerCamelCase__ : List[str]=80 , lowerCamelCase__ : Any=16_000 , lowerCamelCase__ : int=80 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Tuple=True , **lowerCamelCase__ : Optional[int] , ):
super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ )
a__ : Dict = num_mel_bins
a__ : Optional[int] = do_ceptral_normalize
a__ : List[str] = normalize_means
a__ : Any = normalize_vars
a__ : Optional[Any] = True
def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : np.ndarray , ):
a__ : Tuple = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
a__ : Union[str, Any] = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 )
a__ : str = ta_kaldi.fbank(lowerCamelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _UpperCamelCase( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : int , lowerCamelCase__ : Optional[bool] = True , lowerCamelCase__ : Optional[bool] = True , lowerCamelCase__ : float = 0.0 , ):
# make sure we normalize float32 arrays
if normalize_means:
a__ : List[str] = x[:input_length].mean(axis=0 )
a__ : Dict = np.subtract(lowerCamelCase__ , lowerCamelCase__ )
if normalize_vars:
a__ : Any = x[:input_length].std(axis=0 )
a__ : List[str] = np.divide(lowerCamelCase__ , lowerCamelCase__ )
if input_length < x.shape[0]:
a__ : str = padding_value
# make sure array is in float32
a__ : List[Any] = x.astype(np.floataa )
return x
def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[np.ndarray] , lowerCamelCase__ : Optional[np.ndarray] = None ):
a__ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(lowerCamelCase__ , lowerCamelCase__ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(lowerCamelCase__ , lowerCamelCase__ )
]
def __call__( self : str , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , **lowerCamelCase__ : List[Any] , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
a__ : List[str] = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
a__ : Dict = is_batched_numpy or (
isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
a__ : str = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ):
a__ : Tuple = np.asarray(lowerCamelCase__ , dtype=np.floataa )
elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
a__ : str = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
a__ : List[str] = [raw_speech]
# extract fbank features
a__ : Any = [self._extract_fbank_features(lowerCamelCase__ ) for waveform in raw_speech]
# convert into correct format for padding
a__ : Any = BatchFeature({"input_features": features} )
a__ : Any = self.pad(
lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , )
# make sure list is in array format
a__ : List[str] = padded_inputs.get("input_features" )
if isinstance(input_features[0] , lowerCamelCase__ ):
a__ : Optional[int] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_features]
a__ : Dict = padded_inputs.get("attention_mask" )
if attention_mask is not None:
a__ : Optional[int] = [np.asarray(lowerCamelCase__ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
a__ : Optional[Any] = (
np.array(lowerCamelCase__ , dtype=np.intaa )
if self._get_padding_strategies(lowerCamelCase__ , max_length=lowerCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
a__ : Optional[Any] = self.normalize(
padded_inputs["input_features"] , attention_mask=lowerCamelCase__ )
if return_tensors is not None:
a__ : Optional[Any] = padded_inputs.convert_to_tensors(lowerCamelCase__ )
return padded_inputs
| 37 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : int = IFPipeline
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
def snake_case_ ( self ) -> str:
return self._get_dummy_components()
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' )
def snake_case_ ( self ) -> str:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def snake_case_ ( self ) -> Dict:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_local()
def snake_case_ ( self ) -> List[str]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2, )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def snake_case_ ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> List[Any]:
# if
UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa )
UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCamelCase : int = None
UpperCamelCase : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components )
UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components )
UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
UpperCamelCase : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Tuple = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : List[Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Union[str, Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 40 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = KandinskyVaaPipeline
lowerCamelCase__ = [
'''image_embeds''',
'''negative_image_embeds''',
]
lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''']
lowerCamelCase__ = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowerCamelCase__ = False
@property
def __UpperCamelCase ( self ):
return 3_2
@property
def __UpperCamelCase ( self ):
return 3_2
@property
def __UpperCamelCase ( self ):
return self.time_input_dim
@property
def __UpperCamelCase ( self ):
return self.time_input_dim * 4
@property
def __UpperCamelCase ( self ):
return 1_0_0
@property
def __UpperCamelCase ( self ):
torch.manual_seed(0 )
snake_case__ : Union[str, Any] = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
snake_case__ : Dict = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE )
return model
@property
def __UpperCamelCase ( self ):
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __UpperCamelCase ( self ):
torch.manual_seed(0 )
snake_case__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.dummy_unet
snake_case__ : Union[str, Any] = self.dummy_movq
snake_case__ : List[Any] = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__SCREAMING_SNAKE_CASE , )
snake_case__ : Optional[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
snake_case__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__SCREAMING_SNAKE_CASE )
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : int = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 6_4,
"""width""": 6_4,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def __UpperCamelCase ( self ):
snake_case__ : str = """cpu"""
snake_case__ : Dict = self.get_dummy_components()
snake_case__ : int = self.pipeline_class(**__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) )
snake_case__ : int = output.images
snake_case__ : Dict = pipe(
**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0]
snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1]
snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case__ : Tuple = np.array(
[0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self ):
snake_case__ : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" )
snake_case__ : int = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__SCREAMING_SNAKE_CASE )
snake_case__ : str = KandinskyVaaPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa )
snake_case__ : List[str] = pipeline.to(__SCREAMING_SNAKE_CASE )
pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : int = """red cat, 4k photo"""
snake_case__ : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case__ , snake_case__ : Optional[Any] = pipe_prior(
__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
snake_case__ : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 )
snake_case__ : Optional[int] = pipeline(
image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , output_type="""np""" , )
snake_case__ : Optional[int] = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 38 |
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def UpperCamelCase ( snake_case__ : Tuple="" ) -> str:
UpperCamelCase : Union[str, Any] = tempfile.mkdtemp()
return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> int:
UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
# Ensure that the file contains the same value as the original tensor
UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) )
def snake_case_ ( self ) -> Any:
UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' )
sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 )
UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ )
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Any:
UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) )
UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw(), Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = 'Hey!'
UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() )
self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
| 40 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
lowerCAmelCase_ = False
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Tuple ) ->Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__( self : Dict ) ->List[str]:
snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger '''
snake_case_ = torch.manual_seed(0 )
snake_case_ = pipe(
prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_UpperCamelCase )
snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = generator.manual_seed(0 )
snake_case_ = pipe(
prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def snake_case__( self : List[str] ) ->Tuple:
snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger '''
snake_case_ = torch.manual_seed(0 )
snake_case_ = pipe(
prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images
snake_case_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 39 |
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : int = [1]
for i in range(2 , snake_case__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCamelCase : List[Any] = []
UpperCamelCase : List[Any] = list(range(snake_case__ ) )
# Find permutation
while factorials:
UpperCamelCase : int = factorials.pop()
UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''KEY''')
lowerCAmelCase__ = TypeVar('''VAL''')
@dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ )
class lowercase_ (Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : KEY
SCREAMING_SNAKE_CASE : VAL
class lowercase_ (_Item ):
"""simple docstring"""
def __init__( self : Optional[int] ):
super().__init__(lowercase__ ,lowercase__ )
def __bool__( self : List[str] ):
return False
lowerCAmelCase__ = _DeletedItem()
class lowercase_ (MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ):
__lowercase = initial_block_size
__lowercase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowercase = capacity_factor
__lowercase = 0
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ):
return hash(lowercase__ ) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ):
return (ind + 1) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ):
__lowercase = self._buckets[ind]
if not stored:
__lowercase = _Item(lowercase__ ,lowercase__ )
self._len += 1
return True
elif stored.key == key:
__lowercase = _Item(lowercase__ ,lowercase__ )
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
if len(self._buckets ) <= self._initial_block_size:
return False
__lowercase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ):
__lowercase = self._buckets
__lowercase = [None] * new_size
__lowercase = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def SCREAMING_SNAKE_CASE ( self : str ):
self._resize(len(self._buckets ) * 2 )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
self._resize(len(self._buckets ) // 2 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ):
__lowercase = self._get_bucket_index(lowercase__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowercase = self._get_next_ind(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
for ind in self._iterate_buckets(lowercase__ ):
if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ):
break
def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(lowercase__ ,lowercase__ )
def __delitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
raise KeyError(lowercase__ )
if item is _deleted:
continue
if item.key == key:
__lowercase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(lowercase__ )
def __len__( self : Optional[int] ):
return self._len
def __iter__( self : str ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
__lowercase = ''' ,'''.join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 41 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCAmelCase_ ( a__ ):
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) )
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any:
UpperCamelCase : int = parent
UpperCamelCase : int = batch_size
UpperCamelCase : List[Any] = image_size
UpperCamelCase : List[str] = patch_size
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 )
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[int] = conv_kernel_size
UpperCamelCase : List[str] = output_stride
UpperCamelCase : Union[str, Any] = classifier_dropout_prob
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Any = is_training
UpperCamelCase : int = num_labels
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Tuple = scope
UpperCamelCase : List[str] = width_multiplier
UpperCamelCase : Any = ffn_dropout
UpperCamelCase : List[Any] = attn_dropout
def snake_case_ ( self ) -> int:
UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : List[str] = None
UpperCamelCase : int = None
if self.use_labels:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCamelCase : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def snake_case_ ( self ) -> int:
return MobileViTVaConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Any = self.num_labels
UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs
UpperCamelCase : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : Tuple = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Any = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[Any] = False
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Dict = MobileViTVaModelTester(self )
UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def snake_case_ ( self ) -> int:
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def snake_case_ ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case_ ( self ) -> Any:
pass
def snake_case_ ( self ) -> List[str]:
UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : str = [*signature.parameters.keys()]
UpperCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Tuple:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = outputs.hidden_states
UpperCamelCase : Dict = 5
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCamelCase : Any = 2
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : Optional[int] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> str:
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ )
@slow
def snake_case_ ( self ) -> Optional[Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Tuple:
UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case_ ( self ) -> str:
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.default_image_processor
UpperCamelCase : Any = prepare_img()
UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Union[str, Any] = prepare_img()
UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = outputs.logits
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
], device=SCREAMING_SNAKE_CASE_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Tuple = prepare_img()
UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = outputs.logits.detach().cpu()
UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] )
UpperCamelCase : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
| 40 | 0 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase = 4_00_00_00 ) -> int:
lowerCamelCase_ = [0, 1]
lowerCamelCase_ = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
lowerCamelCase_ = 0
for j in range(len(__UpperCamelCase ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 42 |
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str:
UpperCamelCase : List[str] = [0] * len(snake_case__ )
UpperCamelCase : int = []
UpperCamelCase : Optional[int] = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
UpperCamelCase : Optional[int] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCamelCase : Tuple = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
__UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 40 | 0 |
def _a ( SCREAMING_SNAKE_CASE = 1_00 ):
"""simple docstring"""
lowercase__ = n * (n + 1) * (2 * n + 1) / 6
lowercase__ = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 43 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MraForMaskedLM''',
'''MraForMultipleChoice''',
'''MraForQuestionAnswering''',
'''MraForSequenceClassification''',
'''MraForTokenClassification''',
'''MraLayer''',
'''MraModel''',
'''MraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 40 | 0 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_lowerCamelCase : Tuple = torch.exp(_lowerCAmelCase )
_lowerCamelCase : int = torch.sum(_lowerCAmelCase , dim=1 ) # sum of exp(x_i)
_lowerCamelCase : Optional[int] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowerCAmelCase ) - B / A
class UpperCAmelCase__ ( nn.Module ):
def __init__( self : Tuple,__A : List[Any] ):
super().__init__()
_lowerCamelCase : Optional[int] = config.output_attentions
_lowerCamelCase : Any = config.output_hidden_states
_lowerCamelCase : str = nn.ModuleList([BertLayer(__A ) for _ in range(config.num_hidden_layers )] )
_lowerCamelCase : str = nn.ModuleList([BertHighway(__A ) for _ in range(config.num_hidden_layers )] )
_lowerCamelCase : List[str] = [-1 for _ in range(config.num_hidden_layers )]
def lowerCamelCase_ ( self : List[Any],__A : int ):
if (type(__A ) is float) or (type(__A ) is int):
for i in range(len(self.early_exit_entropy ) ):
_lowerCamelCase : List[Any] = x
else:
_lowerCamelCase : List[str] = x
def lowerCamelCase_ ( self : Optional[int],__A : Union[str, Any] ):
_lowerCamelCase : List[str] = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def lowerCamelCase_ ( self : List[str],__A : int,__A : Any=None,__A : Any=None,__A : int=None,__A : Optional[int]=None,):
_lowerCamelCase : Tuple = ()
_lowerCamelCase : Tuple = ()
_lowerCamelCase : Optional[Any] = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_lowerCamelCase : int = all_hidden_states + (hidden_states,)
_lowerCamelCase : List[Any] = layer_module(
__A,__A,head_mask[i],__A,__A )
_lowerCamelCase : Dict = layer_outputs[0]
if self.output_attentions:
_lowerCamelCase : str = all_attentions + (layer_outputs[1],)
_lowerCamelCase : List[str] = (hidden_states,)
if self.output_hidden_states:
_lowerCamelCase : str = current_outputs + (all_hidden_states,)
if self.output_attentions:
_lowerCamelCase : Dict = current_outputs + (all_attentions,)
_lowerCamelCase : Any = self.highway[i](__A )
# logits, pooled_output
if not self.training:
_lowerCamelCase : int = highway_exit[0]
_lowerCamelCase : Optional[Any] = entropy(__A )
_lowerCamelCase : Tuple = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_lowerCamelCase : List[str] = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_lowerCamelCase : int = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(__A,i + 1 )
else:
_lowerCamelCase : int = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_lowerCamelCase : Optional[Any] = all_hidden_states + (hidden_states,)
_lowerCamelCase : List[Any] = (hidden_states,)
if self.output_hidden_states:
_lowerCamelCase : int = outputs + (all_hidden_states,)
if self.output_attentions:
_lowerCamelCase : Optional[int] = outputs + (all_attentions,)
_lowerCamelCase : Tuple = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
'The Bert Model transformer with early exiting (DeeBERT). ' , A , )
class UpperCAmelCase__ ( A ):
def __init__( self : Any,__A : int ):
super().__init__(__A )
_lowerCamelCase : str = config
_lowerCamelCase : str = BertEmbeddings(__A )
_lowerCamelCase : Tuple = DeeBertEncoder(__A )
_lowerCamelCase : List[str] = BertPooler(__A )
self.init_weights()
def lowerCamelCase_ ( self : Dict ):
self.encoder.init_highway_pooler(self.pooler )
def lowerCamelCase_ ( self : Tuple ):
return self.embeddings.word_embeddings
def lowerCamelCase_ ( self : Any,__A : Optional[int] ):
_lowerCamelCase : str = value
def lowerCamelCase_ ( self : Tuple,__A : int ):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(__A )
@add_start_docstrings_to_model_forward(__A )
def lowerCamelCase_ ( self : Optional[int],__A : List[str]=None,__A : int=None,__A : Union[str, Any]=None,__A : Tuple=None,__A : Dict=None,__A : int=None,__A : Dict=None,__A : List[str]=None,):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
_lowerCamelCase : List[str] = input_ids.size()
elif inputs_embeds is not None:
_lowerCamelCase : Optional[int] = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
_lowerCamelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_lowerCamelCase : List[str] = torch.ones(__A,device=__A )
if encoder_attention_mask is None:
_lowerCamelCase : List[Any] = torch.ones(__A,device=__A )
if token_type_ids is None:
_lowerCamelCase : List[str] = torch.zeros(__A,dtype=torch.long,device=__A )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_lowerCamelCase : torch.Tensor = self.get_extended_attention_mask(__A,__A,__A )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_lowerCamelCase : List[str] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_lowerCamelCase : Optional[int] = encoder_attention_mask[:, None, None, :]
_lowerCamelCase : Union[str, Any] = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_lowerCamelCase : Any = (1.0 - encoder_extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_lowerCamelCase : Union[str, Any] = self.get_head_mask(__A,self.config.num_hidden_layers )
_lowerCamelCase : List[Any] = self.embeddings(
input_ids=__A,position_ids=__A,token_type_ids=__A,inputs_embeds=__A )
_lowerCamelCase : Union[str, Any] = self.encoder(
__A,attention_mask=__A,head_mask=__A,encoder_hidden_states=__A,encoder_attention_mask=__A,)
_lowerCamelCase : Union[str, Any] = encoder_outputs[0]
_lowerCamelCase : Tuple = self.pooler(__A )
_lowerCamelCase : Optional[int] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class UpperCAmelCase__ ( A ):
def __init__( self : List[Any],__A : int,__A : int ):
_lowerCamelCase : Tuple = message
_lowerCamelCase : Union[str, Any] = exit_layer # start from 1!
class UpperCAmelCase__ ( nn.Module ):
def __init__( self : int,__A : List[Any] ):
super().__init__()
_lowerCamelCase : List[Any] = BertPooler(__A )
_lowerCamelCase : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_lowerCamelCase : Tuple = nn.Linear(config.hidden_size,config.num_labels )
def lowerCamelCase_ ( self : Tuple,__A : Union[str, Any] ):
# Pooler
_lowerCamelCase : int = encoder_outputs[0]
_lowerCamelCase : Tuple = self.pooler(__A )
# "return" pooler_output
# BertModel
_lowerCamelCase : Any = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_lowerCamelCase : List[Any] = bmodel_output[1]
_lowerCamelCase : Optional[int] = self.dropout(__A )
_lowerCamelCase : Optional[Any] = self.classifier(__A )
return logits, pooled_output
@add_start_docstrings(
'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , A , )
class UpperCAmelCase__ ( A ):
def __init__( self : str,__A : Optional[int] ):
super().__init__(__A )
_lowerCamelCase : Tuple = config.num_labels
_lowerCamelCase : Dict = config.num_hidden_layers
_lowerCamelCase : Union[str, Any] = DeeBertModel(__A )
_lowerCamelCase : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_lowerCamelCase : int = nn.Linear(config.hidden_size,self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(__A )
def lowerCamelCase_ ( self : Dict,__A : Any=None,__A : Optional[Any]=None,__A : Union[str, Any]=None,__A : Union[str, Any]=None,__A : Optional[int]=None,__A : Optional[int]=None,__A : Union[str, Any]=None,__A : Optional[int]=-1,__A : Any=False,):
_lowerCamelCase : Optional[Any] = self.num_layers
try:
_lowerCamelCase : Optional[Any] = self.bert(
__A,attention_mask=__A,token_type_ids=__A,position_ids=__A,head_mask=__A,inputs_embeds=__A,)
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_lowerCamelCase : Union[str, Any] = outputs[1]
_lowerCamelCase : List[Any] = self.dropout(__A )
_lowerCamelCase : str = self.classifier(__A )
_lowerCamelCase : int = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowerCamelCase : Tuple = e.message
_lowerCamelCase : Optional[int] = e.exit_layer
_lowerCamelCase : Optional[Any] = outputs[0]
if not self.training:
_lowerCamelCase : List[Any] = entropy(__A )
_lowerCamelCase : Dict = []
_lowerCamelCase : Optional[Any] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowerCamelCase : List[Any] = MSELoss()
_lowerCamelCase : Tuple = loss_fct(logits.view(-1 ),labels.view(-1 ) )
else:
_lowerCamelCase : Optional[int] = CrossEntropyLoss()
_lowerCamelCase : Optional[int] = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) )
# work with highway exits
_lowerCamelCase : Union[str, Any] = []
for highway_exit in outputs[-1]:
_lowerCamelCase : Any = highway_exit[0]
if not self.training:
highway_logits_all.append(__A )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowerCamelCase : List[str] = MSELoss()
_lowerCamelCase : str = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) )
else:
_lowerCamelCase : Optional[int] = CrossEntropyLoss()
_lowerCamelCase : str = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) )
highway_losses.append(__A )
if train_highway:
_lowerCamelCase : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowerCamelCase : Union[str, Any] = (loss,) + outputs
if not self.training:
_lowerCamelCase : Dict = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowerCamelCase : str = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 44 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {
'''configuration_pix2struct''': [
'''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Pix2StructConfig''',
'''Pix2StructTextConfig''',
'''Pix2StructVisionConfig''',
],
'''processing_pix2struct''': ['''Pix2StructProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''Pix2StructImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Pix2StructPreTrainedModel''',
'''Pix2StructForConditionalGeneration''',
'''Pix2StructVisionModel''',
'''Pix2StructTextModel''',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
from __future__ import annotations
import numpy as np
def A ( lowercase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]:
UpperCamelCase__ , UpperCamelCase__ :str = np.shape(lowercase__ )
if rows != columns:
UpperCamelCase__ :str = (
"""'table' has to be of square shaped array but got a """
f"""{rows}x{columns} array:\n{table}"""
)
raise ValueError(lowercase__ )
UpperCamelCase__ :Union[str, Any] = np.zeros((rows, columns) )
UpperCamelCase__ :int = np.zeros((rows, columns) )
for i in range(lowercase__ ):
for j in range(lowercase__ ):
UpperCamelCase__ :List[str] = sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
UpperCamelCase__ :int = (table[i][j] - total) / upper[j][j]
UpperCamelCase__ :Optional[Any] = 1
for j in range(lowercase__ , lowercase__ ):
UpperCamelCase__ :int = sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) )
UpperCamelCase__ :Optional[int] = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 45 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
@dataclass
class A_ ( _a ):
lowerCAmelCase__ = [
'no_inference',
'no_cuda',
'no_tpu',
'no_speed',
'no_memory',
'no_env_print',
'no_multi_process',
]
def __init__( self: Dict ,**__lowerCAmelCase: str ):
'''simple docstring'''
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
_lowerCamelCase : str = deprecated_arg[3:]
setattr(self ,__lowerCAmelCase ,not kwargs.pop(__lowerCAmelCase ) )
logger.warning(
F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or"""
F""" {positive_arg}={kwargs[positive_arg]}""" )
_lowerCamelCase : Optional[Any] = kwargs.pop("torchscript" ,self.torchscript )
_lowerCamelCase : List[str] = kwargs.pop("torch_xla_tpu_print_metrics" ,self.torch_xla_tpu_print_metrics )
_lowerCamelCase : Optional[int] = kwargs.pop("fp16_opt_level" ,self.fpaa_opt_level )
super().__init__(**__lowerCAmelCase )
lowerCAmelCase__ = field(default=_a , metadata={'help': 'Trace the models using torchscript'} )
lowerCAmelCase__ = field(default=_a , metadata={'help': 'Print Xla/PyTorch tpu metrics'} )
lowerCAmelCase__ = field(
default='O1' , metadata={
'help': (
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '
'See details at https://nvidia.github.io/apex/amp.html'
)
} , )
@cached_property
def _lowercase ( self: Tuple ):
'''simple docstring'''
requires_backends(self ,["torch"] )
logger.info("PyTorch: setting up devices" )
if not self.cuda:
_lowerCamelCase : Optional[int] = torch.device("cpu" )
_lowerCamelCase : Optional[int] = 0
elif is_torch_tpu_available():
_lowerCamelCase : Union[str, Any] = xm.xla_device()
_lowerCamelCase : Tuple = 0
else:
_lowerCamelCase : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
_lowerCamelCase : Optional[Any] = torch.cuda.device_count()
return device, n_gpu
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
return is_torch_tpu_available() and self.tpu
@property
def _lowercase ( self: Any ):
'''simple docstring'''
requires_backends(self ,["torch"] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def _lowercase ( self: Dict ):
'''simple docstring'''
requires_backends(self ,["torch"] )
return self._setup_devices[0]
@property
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
requires_backends(self ,["torch"] )
return self._setup_devices[1]
@property
def _lowercase ( self: Any ):
'''simple docstring'''
return self.n_gpu > 0
| 46 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''ViTFeatureExtractor''']
__UpperCAmelCase = ['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[Any] = '''sew-d'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : str=3_0_7_2 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=("p2c", "c2p") , SCREAMING_SNAKE_CASE__ : str="layer_norm" , SCREAMING_SNAKE_CASE__ : Tuple="gelu_python" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-7 , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : Optional[int]="group" , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE__ : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : str=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=1_2_8 , SCREAMING_SNAKE_CASE__ : Tuple=1_6 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=0.05 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , **SCREAMING_SNAKE_CASE__ : Any , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = hidden_size
__a : Optional[Any] = feat_extract_norm
__a : List[str] = feat_extract_activation
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ )
__a : List[str] = list(SCREAMING_SNAKE_CASE__ )
__a : int = conv_bias
__a : Tuple = num_conv_pos_embeddings
__a : List[str] = num_conv_pos_embedding_groups
__a : Optional[Any] = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : Optional[Any] = intermediate_size
__a : Union[str, Any] = squeeze_factor
__a : List[Any] = max_position_embeddings
__a : Tuple = position_buckets
__a : Optional[int] = share_att_key
__a : List[str] = relative_attention
__a : Any = norm_rel_ebd
__a : Any = list(SCREAMING_SNAKE_CASE__ )
__a : Union[str, Any] = hidden_act
__a : str = num_attention_heads
__a : Union[str, Any] = hidden_dropout
__a : Optional[int] = attention_dropout
__a : List[str] = activation_dropout
__a : int = feat_proj_dropout
__a : int = final_dropout
__a : Dict = layer_norm_eps
__a : Tuple = feature_layer_norm_eps
__a : str = initializer_range
__a : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Tuple = apply_spec_augment
__a : Optional[Any] = mask_time_prob
__a : Any = mask_time_length
__a : List[str] = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : Tuple = mask_feature_length
__a : Any = mask_feature_min_masks
# ctc loss
__a : Optional[int] = ctc_loss_reduction
__a : List[Any] = ctc_zero_infinity
# sequence classification
__a : Dict = use_weighted_layer_sum
__a : Optional[Any] = classifier_proj_size
@property
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any:
if rng is None:
UpperCamelCase : int = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]:
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Any = min_seq_length
UpperCamelCase : Optional[int] = max_seq_length
UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Any = padding_value
UpperCamelCase : Tuple = sampling_rate
UpperCamelCase : Optional[Any] = return_attention_mask
UpperCamelCase : Optional[Any] = do_normalize
def snake_case_ ( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Any = WavaVecaFeatureExtractor
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) )
def snake_case_ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : Any = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Tuple = range(800, 1400, 200 )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : List[str] = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' )
UpperCamelCase : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' )
UpperCamelCase : int = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def snake_case_ ( self ) -> str:
import torch
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def snake_case_ ( self ) -> Tuple:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
| 40 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : int = logging.get_logger(__name__)
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :Any = 'timm_backbone'
def __init__( self : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=True , __magic_name__ : str=True , __magic_name__ : List[Any]=None , **__magic_name__ : Tuple , ):
"""simple docstring"""
super().__init__(**__magic_name__ )
lowerCAmelCase__ = backbone
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = features_only
lowerCAmelCase__ = use_pretrained_backbone
lowerCAmelCase__ = True
lowerCAmelCase__ = out_indices if out_indices is not None else (-1,)
| 48 |
def UpperCamelCase ( snake_case__ : int ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
UpperCamelCase : int = False
if num < 0:
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Tuple = -num
UpperCamelCase : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
"""simple docstring"""
import operator as op
_lowercase : List[str] = 'scaler.pt'
_lowercase : Tuple = 'pytorch_model'
_lowercase : Tuple = 'random_states'
_lowercase : Optional[Any] = 'optimizer'
_lowercase : str = 'scheduler'
_lowercase : List[str] = 'pytorch_model.bin'
_lowercase : Dict = 'pytorch_model.bin.index.json'
_lowercase : Any = 'model.safetensors'
_lowercase : Dict = 'model.safetensors.index.json'
_lowercase : Optional[int] = '1.10.2'
_lowercase : Tuple = 'py38'
_lowercase : Dict = '4.17.0'
_lowercase : List[Any] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge']
_lowercase : Optional[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2']
_lowercase : List[str] = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP']
_lowercase : List[str] = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH']
_lowercase : Optional[Any] = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT']
_lowercase : Optional[Any] = '2.0.1'
_lowercase : Tuple = ['pdsh', 'standard', 'openmpi', 'mvapich']
_lowercase : Tuple = ['default', 'reduce-overhead', 'max-autotune']
_lowercase : List[Any] = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
_lowercase : Dict = [
'nnodes',
'nproc_per_node',
'rdzv_backend',
'rdzv_endpoint',
'rdzv_id',
'rdzv_conf',
'standalone',
'max_restarts',
'monitor_interval',
'start_method',
'role',
'module',
'm',
'no_python',
'run_path',
'log_dir',
'r',
'redirects',
't',
'tee',
'node_rank',
'master_addr',
'master_port',
]
_lowercase : int = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM']
_lowercase : str = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
| 49 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCAmelCase = logging.get_logger(__name__)
def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
UpperCamelCase : List[Any] = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
UpperCamelCase : Dict = new_module
UpperCamelCase : int = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
UpperCamelCase : Union[str, Any] = tensor_name in module._buffers
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
UpperCamelCase : Optional[Any] = False
UpperCamelCase : str = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase : List[str] = False
UpperCamelCase : Tuple = False
else:
UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase : List[Any] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase : Dict = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[Any] = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
UpperCamelCase : Union[str, Any] = new_value.T
UpperCamelCase : Union[str, Any] = old_value.__dict__
if is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
UpperCamelCase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[str] = value.to(snake_case__ )
else:
UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
UpperCamelCase : Optional[int] = new_value
else:
UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
UpperCamelCase : List[str] = new_value
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int:
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase : str = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape
else:
UpperCamelCase : Any = module.in_features
UpperCamelCase : List[str] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase : Any = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase : Optional[int] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase : str = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase : int = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase : Any = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]:
UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase : List[str] = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] )
UpperCamelCase : Optional[int] = len(snake_case__ ) > 0
# Check if it is a base model
UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase : List[Any] = list(model.named_children() )
UpperCamelCase : Optional[Any] = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ )
UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
UpperCamelCase : Tuple = ['.weight', '.bias']
UpperCamelCase : Tuple = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 40 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['torch', 'transformers', 'onnx']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['torch', 'transformers', 'onnx']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['torch', 'transformers', 'onnx']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['torch', 'transformers', 'onnx']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['torch', 'transformers', 'onnx']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['torch', 'transformers', 'onnx']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""torch""", """transformers""", """onnx"""] )
| 50 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCamelCase ( snake_case__ : int ) -> Dict:
UpperCamelCase : Optional[Any] = tmp_path / 'file.csv'
UpperCamelCase : Optional[Any] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]:
UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv'
UpperCamelCase : Any = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str:
UpperCamelCase : Any = tmp_path / 'csv_with_image.csv'
UpperCamelCase : Dict = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple:
UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv'
UpperCamelCase : Dict = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Dict ) -> List[str]:
UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv'
UpperCamelCase : Union[str, Any] = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]:
UpperCamelCase : str = Csv()
UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(snake_case__ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(snake_case__ ) in record.message
for record in caplog.records )
@require_pil
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : List[str] = f.read().splitlines()[1]
UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
UpperCamelCase : str = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCamelCase ( snake_case__ : Any ) -> str:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : Any = f.read().splitlines()[1:]
UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
UpperCamelCase : List[str] = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels]
def UpperCamelCase ( snake_case__ : str ) -> List[Any]:
UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} )
UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
UpperCamelCase : str = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 40 | 0 |
'''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
a__ : Dict = HfApi()
a__ : List[str] = {}
# fmt: off
a__ : Dict = torch.tensor([
-0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467,
1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189,
-1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839,
0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557
])
a__ : Dict = torch.tensor([
-2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436,
1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208,
-2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948,
2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365
])
a__ : str = torch.tensor([
-0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869,
-0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304,
-0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925,
0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943
])
a__ : Dict = torch.tensor([
0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172,
-0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309,
0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805,
-0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505
])
a__ : Any = torch.tensor([
0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133,
-0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395,
0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559,
-0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386
])
a__ : Optional[int] = torch.tensor([
0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078,
-0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330,
0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683,
-0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431
])
a__ : Optional[int] = torch.tensor([
0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042,
-0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398,
0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574,
-0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390
])
a__ : str = torch.tensor([
0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042,
-0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290,
0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746,
-0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473
])
a__ : Union[str, Any] = torch.tensor([
-1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330,
1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243,
-2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810,
1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251])
a__ : int = torch.tensor([
-1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324,
0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181,
-2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259,
1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266
])
a__ : List[str] = torch.tensor([
-1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212,
0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027,
-2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131,
1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355
])
a__ : Union[str, Any] = torch.tensor([
-2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959,
1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351,
-3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341,
3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066
])
a__ : Any = torch.tensor([
-2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740,
1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398,
-2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395,
2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243
])
a__ : List[Any] = torch.tensor([
-2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336,
1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908,
-3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560,
3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343
])
a__ : List[Any] = torch.tensor([
-1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344,
1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391,
-2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439,
1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219
])
# fmt: on
a__ : Optional[Any] = api.list_models(filter='diffusers')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
a__ : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1]
print(F"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith('CompVis'):
a__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet')
else:
a__ : List[Any] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
a__ : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
a__ : int = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
a__ : int = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3
)
print(F"""{mod.modelId} has passed successfully!!!""")
| 51 |
import math
import random
def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__UpperCAmelCase = 0.02
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float:
UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(snake_case__ ):
# Forward propagation
UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
UpperCamelCase : int = (expected / 100) - layer_a
# Error delta
UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = int(input('''Expected value: '''))
__UpperCAmelCase = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 40 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 52 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]:
return EnvironmentCommand()
class lowerCAmelCase_ ( a__ ):
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
UpperCamelCase : List[Any] = parser.add_parser('env' )
download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = huggingface_hub.__version__
UpperCamelCase : int = 'not installed'
UpperCamelCase : Union[str, Any] = 'NA'
if is_torch_available():
import torch
UpperCamelCase : Any = torch.__version__
UpperCamelCase : str = torch.cuda.is_available()
UpperCamelCase : Dict = 'not installed'
if is_transformers_available():
import transformers
UpperCamelCase : str = transformers.__version__
UpperCamelCase : Optional[Any] = 'not installed'
if is_accelerate_available():
import accelerate
UpperCamelCase : Dict = accelerate.__version__
UpperCamelCase : List[str] = 'not installed'
if is_xformers_available():
import xformers
UpperCamelCase : List[str] = xformers.__version__
UpperCamelCase : Dict = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(SCREAMING_SNAKE_CASE_ ) )
return info
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 40 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
_snake_case : List[str] = None
_snake_case : List[Any] = logging.get_logger(__name__)
_snake_case : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
_snake_case : int = {
'vocab_file': {
'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez-orangesum-title': (
'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json',
'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json',
'moussaKam/barthez-orangesum-title': (
'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json'
),
},
}
_snake_case : List[str] = {
'moussaKam/mbarthez': 1024,
'moussaKam/barthez': 1024,
'moussaKam/barthez-orangesum-title': 1024,
}
_snake_case : str = '▁'
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["""input_ids""", """attention_mask"""]
a_ = BarthezTokenizer
def __init__( self : Any , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : int="<mask>" , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]:
# Mask token behave like a normal word, i.e. include the space before it
__lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
__lowerCAmelCase = vocab_file
__lowerCAmelCase = False if not self.vocab_file else True
def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
__lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
__lowerCAmelCase = [self.sep_token_id]
__lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowerCAmelCase = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
return (out_vocab_file,)
| 53 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''▁'''
__UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__UpperCAmelCase = {
'''facebook/xglm-564M''': 2_048,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None:
UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
UpperCamelCase : Any = 7
UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase : int = 1
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
UpperCamelCase : Optional[int] = len(self.sp_model )
UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
UpperCamelCase : int = self.__dict__.copy()
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : Any = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
UpperCamelCase : Any = {}
UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
UpperCamelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def snake_case_ ( self ) -> int:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def snake_case_ ( self ) -> int:
UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip()
return out_string
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi:
UpperCamelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 40 | 0 |
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def lowerCAmelCase__ ( *_lowerCAmelCase: Tuple , **_lowerCAmelCase: Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
pass
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =np.array(lowercase__ )
UpperCAmelCase_ =npimg.shape
return {"hash": hashimage(lowercase__ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class A ( unittest.TestCase ):
_snake_case =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
_snake_case =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: int , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =MaskGenerationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] ) -> Dict:
'''simple docstring'''
pass
@require_tf
@unittest.skip("Image segmentation not implemented in TF" )
def lowerCAmelCase__ ( self: str ) -> int:
'''simple docstring'''
pass
@slow
@require_torch
def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("mask-generation" , model="facebook/sam-vit-huge" )
UpperCAmelCase_ =image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase_ =[]
for i, o in enumerate(outputs["masks"] ):
new_outupt += [{"mask": mask_to_test_readable(_lowerCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [
{"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44},
{"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_21},
{"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67},
{"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32},
{"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53},
{"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.99_67},
{"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_93},
{"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.99_09},
{"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.98_79},
{"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.98_34},
{"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.97_16},
{"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.96_12},
{"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.95_99},
{"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.95_52},
{"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.95_32},
{"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.95_16},
{"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.94_99},
{"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.94_83},
{"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.94_64},
{"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_43},
{"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_43},
{"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.94_08},
{"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.93_35},
{"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.93_26},
{"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.92_62},
{"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.89_99},
{"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.89_86},
{"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.89_84},
{"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.88_73},
{"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.88_71}
] , )
# fmt: on
@require_torch
@slow
def lowerCAmelCase__ ( self: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ ="facebook/sam-vit-huge"
UpperCAmelCase_ =pipeline("mask-generation" , model=_lowerCAmelCase )
UpperCAmelCase_ =image_segmenter(
"http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
UpperCAmelCase_ =[]
for i, o in enumerate(outputs["masks"] ):
new_outupt += [{"mask": mask_to_test_readable(_lowerCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [
{"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.04_44},
{"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.02_10},
{"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.01_67},
{"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.01_32},
{"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.00_53},
] , )
| 54 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__UpperCAmelCase = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
UpperCAmelCase__ : Dict = RobertaTokenizer
def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]:
super().__init__(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) )
UpperCamelCase : List[str] = add_prefix_space
UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = add_prefix_space
UpperCamelCase : Optional[Any] = 'post_processor'
UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
if tokenizer_component_instance:
UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase : Optional[Any] = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase : Optional[int] = tuple(state['cls'] )
UpperCamelCase : Any = False
if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Optional[int] = add_prefix_space
UpperCamelCase : List[Any] = True
if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets:
UpperCamelCase : Dict = trim_offsets
UpperCamelCase : Union[str, Any] = True
if changes_to_apply:
UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) )
UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ )
setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
@property
def snake_case_ ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value
UpperCamelCase : List[Any] = value
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple:
UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 40 | 0 |
SCREAMING_SNAKE_CASE :Union[str, Any] = [0, 2, 4, 6, 8]
SCREAMING_SNAKE_CASE :Tuple = [1, 3, 5, 7, 9]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 1_0
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__A = 0
for digit in range(1_0 ):
__A = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 1_0 , a_ , a_ )
return result
__A = 0
for digita in range(1_0 ):
__A = digita
if (remainder + digita) % 2 == 0:
__A = ODD_DIGITS
else:
__A = EVEN_DIGITS
for digita in other_parity_digits:
__A = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 1_0 , a_ , a_ , )
return result
def UpperCAmelCase ( a_ = 9 ) -> int:
"""simple docstring"""
__A = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(a_ , 0 , [0] * length , a_ )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
super().__init__(features=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch_tensor_kwargs
import torch # noqa import torch at initialization
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column:
if all(
isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ):
return value
elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ):
return value.tolist()
UpperCamelCase : str = {}
if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ):
UpperCamelCase : List[str] = {'dtype': torch.intaa}
elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ):
UpperCamelCase : int = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ):
UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ )
return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
import torch
# support for torch, tf, jax etc.
if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ):
UpperCamelCase : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ):
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
return self._tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int:
return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ )
return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor":
UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] )
UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
for column_name in batch:
UpperCamelCase : str = self._consolidate(batch[column_name] )
return batch
| 40 | 0 |
'''simple docstring'''
def _a (lowercase__ : int = 3 , lowercase__ : int = 7 , lowercase__ : int = 1_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
__snake_case = 0
__snake_case = 1
for current_denominator in range(1 , limit + 1 ):
__snake_case = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__snake_case = current_numerator
__snake_case = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_000_000))
| 56 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) )
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
UpperCamelCase : int = (
'Wrong input data\'s dimensions... '
F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(snake_case__ )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase : str = (
'Wrong input data\'s shape... '
F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(snake_case__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
UpperCamelCase : Dict = (
'Input data have different datatype... '
F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(snake_case__ )
UpperCamelCase : List[Any] = []
for value in value_array:
UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] )
UpperCamelCase : Dict = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ )
if dist > temp_dist:
UpperCamelCase : str = temp_dist
UpperCamelCase : List[str] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=4 , ):
UpperCamelCase_: int = parent
UpperCamelCase_: List[str] = batch_size
UpperCamelCase_: List[str] = seq_length
UpperCamelCase_: Union[str, Any] = is_training
UpperCamelCase_: Optional[int] = use_attention_mask
UpperCamelCase_: List[Any] = use_token_type_ids
UpperCamelCase_: Optional[Any] = use_labels
UpperCamelCase_: List[str] = vocab_size
UpperCamelCase_: Optional[int] = hidden_size
UpperCamelCase_: str = num_hidden_layers
UpperCamelCase_: str = num_attention_heads
UpperCamelCase_: List[Any] = intermediate_size
UpperCamelCase_: Optional[Any] = hidden_act
UpperCamelCase_: int = hidden_dropout_prob
UpperCamelCase_: Any = attention_probs_dropout_prob
UpperCamelCase_: List[Any] = max_position_embeddings
UpperCamelCase_: int = type_vocab_size
UpperCamelCase_: str = type_sequence_label_size
UpperCamelCase_: Union[str, Any] = initializer_range
UpperCamelCase_: Optional[Any] = num_choices
def _a ( self ):
UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: List[str] = None
if self.use_attention_mask:
UpperCamelCase_: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase_: List[Any] = None
if self.use_token_type_ids:
UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase_: List[str] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _a ( self ):
UpperCamelCase_: Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs
UpperCamelCase_: Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Dict =(
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a ( self ):
UpperCamelCase_: int = FlaxAlbertModelTester(self )
@slow
def _a ( self ):
for model_class_name in self.all_model_classes:
UpperCamelCase_: int = model_class_name.from_pretrained('albert-base-v2' )
UpperCamelCase_: Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCamelCase )
@require_flax
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
@slow
def _a ( self ):
UpperCamelCase_: Any = FlaxAlbertModel.from_pretrained('albert-base-v2' )
UpperCamelCase_: Union[str, Any] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
UpperCamelCase_: int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
UpperCamelCase_: str = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
UpperCamelCase_: Union[str, Any] = (1, 1_1, 7_6_8)
self.assertEqual(output.shape , _lowerCamelCase )
UpperCamelCase_: Any = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
| 57 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__UpperCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__UpperCAmelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__UpperCAmelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__UpperCAmelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__UpperCAmelCase = np.expand_dims(test_image, axis=0)
__UpperCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__UpperCAmelCase = '''Normal'''
if result[0][0] == 1:
__UpperCAmelCase = '''Abnormality detected'''
| 40 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ):
'''simple docstring'''
snake_case_ : List[Any] = FunnelConfig.from_json_file(__UpperCamelCase )
print(F'Building PyTorch model from configuration: {config}' )
snake_case_ : Dict = FunnelBaseModel(__UpperCamelCase ) if base_model else FunnelModel(__UpperCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , __UpperCamelCase )
if __name__ == "__main__":
__lowerCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.'''
)
__lowerCAmelCase : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 58 |
import os
import pytest
from attr import dataclass
__UpperCAmelCase = '''us-east-1''' # defaults region
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase__ : str
UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
UpperCAmelCase__ : Union[str, Any] = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000}
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def snake_case_ ( self ) -> str:
return F"""{self.framework}-transfromers-test"""
@property
def snake_case_ ( self ) -> str:
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
| 40 | 0 |
from math import ceil
def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: str =list(range(0 , __a ) )
lowerCamelCase__: Dict =[item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
lowerCamelCase__: List[str] =[]
for i in device_map_blocks:
if device_map_blocks.count(__a ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(__a )
# Missing blocks
lowerCamelCase__: Optional[Any] =[i for i in blocks if i not in device_map_blocks]
lowerCamelCase__: Union[str, Any] =[i for i in device_map_blocks if i not in blocks]
if len(__a ) != 0:
raise ValueError(
"Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."
" These attention blocks were specified more than once: " + str(__a ) )
if len(__a ) != 0:
raise ValueError(
"There are attention blocks for this model that are not specified in the device_map. Add these attention "
"blocks to a device on the device_map: " + str(__a ) )
if len(__a ) != 0:
raise ValueError(
"The device_map contains more attention blocks than this model has. Remove these from the device_map:"
+ str(__a ) )
def lowerCAmelCase_ ( __a , __a ) -> Dict:
"""simple docstring"""
lowerCamelCase__: List[Any] =list(range(__a ) )
lowerCamelCase__: Tuple =int(ceil(n_layers / len(__a ) ) )
lowerCamelCase__: Tuple =[layers[i : i + n_blocks] for i in range(0 , __a , __a )]
return dict(zip(__a , __a ) )
| 59 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
__UpperCAmelCase = '''src/transformers'''
__UpperCAmelCase = '''docs/source/en/tasks'''
def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]:
with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
UpperCamelCase : Optional[Any] = f.readlines()
# Find the start prompt.
UpperCamelCase : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
UpperCamelCase : Optional[Any] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
__UpperCAmelCase = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
__UpperCAmelCase = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]:
UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide]
UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
UpperCamelCase : Tuple = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n"
def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"""
' to fix this.' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__UpperCAmelCase = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 40 | 0 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCAmelCase_ = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def lowerCamelCase_ ( _UpperCamelCase = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
snake_case_ : Tuple = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
snake_case_ : Tuple = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
snake_case_ : int = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
| 60 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : int = IFPipeline
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
def snake_case_ ( self ) -> str:
return self._get_dummy_components()
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]:
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' )
def snake_case_ ( self ) -> str:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def snake_case_ ( self ) -> Dict:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def snake_case_ ( self ) -> Optional[int]:
self._test_save_load_local()
def snake_case_ ( self ) -> List[str]:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2, )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def snake_case_ ( self ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> List[Any]:
# if
UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa )
UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCamelCase : int = None
UpperCamelCase : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components )
UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components )
UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
UpperCamelCase : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Tuple = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : Any = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', )
UpperCamelCase : List[Any] = output.images[0]
assert image.shape == (64, 64, 3)
UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
UpperCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 )
UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = pipe_a(
prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', )
UpperCamelCase : Optional[int] = output.images[0]
assert image.shape == (256, 256, 3)
UpperCamelCase : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
UpperCamelCase : Optional[int] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Union[str, Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 40 | 0 |
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
UpperCamelCase = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int = 101 ) -> List[str]:
lowerCAmelCase__ = length
def __len__( self : Tuple ) -> Union[str, Any]:
return self.length
def __getitem__( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> int:
return i
class __lowerCamelCase :
"""simple docstring"""
def __call__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> int:
return {"input_ids": torch.tensor(SCREAMING_SNAKE_CASE__ ), "labels": torch.tensor(SCREAMING_SNAKE_CASE__ )}
class __lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] ) -> Any:
super().__init__()
# Add some (unused) params otherwise DDP will complain.
lowerCAmelCase__ = nn.Linear(120 , 80 )
def a ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Optional[Any]:
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
@require_torch_neuroncore
def a ( self : Tuple ) -> Optional[Any]:
lowerCAmelCase__ = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split()
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = f'--output_dir {output_dir}'.split()
lowerCAmelCase__ = ["torchrun"] + distributed_args + args
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
@require_torch_multi_gpu
def a ( self : Dict ) -> List[str]:
lowerCAmelCase__ = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split()
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = f'--output_dir {output_dir}'.split()
lowerCAmelCase__ = ["torchrun"] + distributed_args + args
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
UpperCamelCase = HfArgumentParser((TrainingArguments,))
UpperCamelCase = parser.parse_args_into_dataclasses()[0]
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """
F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"""
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
UpperCamelCase = DummyDataset(dataset_length)
def _A ( lowerCAmelCase_ : EvalPrediction ):
"""simple docstring"""
lowerCAmelCase__ = list(range(len(lowerCAmelCase_ ) ) )
lowerCAmelCase__ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"Predictions and/or labels do not match expected results:\n - predictions: "
F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' )
return {"success": success}
UpperCamelCase = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
UpperCamelCase = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
UpperCamelCase = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
UpperCamelCase = 2
UpperCamelCase = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
UpperCamelCase = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
UpperCamelCase = None
| 61 |
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def UpperCamelCase ( snake_case__ : Tuple="" ) -> str:
UpperCamelCase : Union[str, Any] = tempfile.mkdtemp()
return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> int:
UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
# Ensure that the file contains the same value as the original tensor
UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) )
def snake_case_ ( self ) -> Any:
UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5
UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' )
sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 )
UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) )
self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ )
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Any:
UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) )
UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw(), Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png'
UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = 'Hey!'
UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() )
self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() )
self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
| 40 | 0 |
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Union[str, Any]=6 , UpperCAmelCase_ : Optional[Any]=17 , UpperCAmelCase_ : Optional[Any]=23 , UpperCAmelCase_ : Optional[int]=11 , UpperCAmelCase_ : Any=True , ):
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : Tuple = seq_length
SCREAMING_SNAKE_CASE : List[str] = act_dim
SCREAMING_SNAKE_CASE : Optional[int] = state_dim
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = max_length
SCREAMING_SNAKE_CASE : Optional[int] = is_training
def _A ( self : List[str] ):
SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, 1) )
SCREAMING_SNAKE_CASE : Any = floats_tensor((self.batch_size, self.seq_length, 1) )
SCREAMING_SNAKE_CASE : List[str] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 )
SCREAMING_SNAKE_CASE : str = random_attention_mask((self.batch_size, self.seq_length) )
SCREAMING_SNAKE_CASE : str = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def _A ( self : List[Any] ):
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def _A ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , ):
SCREAMING_SNAKE_CASE : Dict = DecisionTransformerModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def _A ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Union[str, Any] = config_and_inputs
SCREAMING_SNAKE_CASE : Any = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Union[str, Any] = (DecisionTransformerModel,) if is_torch_available() else ()
UpperCamelCase_ : Dict = ()
UpperCamelCase_ : Optional[int] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
UpperCamelCase_ : str = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
UpperCamelCase_ : Tuple = False
UpperCamelCase_ : str = False
UpperCamelCase_ : Union[str, Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Tuple = False
UpperCamelCase_ : Union[str, Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Dict = False
UpperCamelCase_ : Optional[Any] = False
def _A ( self : List[Any] ):
SCREAMING_SNAKE_CASE : str = DecisionTransformerModelTester(self )
SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def _A ( self : Optional[int] ):
self.config_tester.run_common_tests()
def _A ( self : Optional[int] ):
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
@slow
def _A ( self : str ):
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = DecisionTransformerModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _A ( self : str ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(UpperCAmelCase_ )] , UpperCAmelCase_ )
@require_torch
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _A ( self : List[str] ):
SCREAMING_SNAKE_CASE : Optional[int] = 2 # number of steps of autoregressive prediction we will perform
SCREAMING_SNAKE_CASE : Tuple = 10 # defined by the RL environment, may be normalized
SCREAMING_SNAKE_CASE : int = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
SCREAMING_SNAKE_CASE : int = model.to(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : int = model.config
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[Any] = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase_ , dtype=torch.floataa ) # env.reset()
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
SCREAMING_SNAKE_CASE : Tuple = state
SCREAMING_SNAKE_CASE : str = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase_ , dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(1 , 0 , device=UpperCAmelCase_ , dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Any = torch.tensor(0 , device=UpperCAmelCase_ , dtype=torch.long ).reshape(1 , 1 )
for step in range(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE : str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase_ )] , dim=1 )
SCREAMING_SNAKE_CASE : List[Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase_ )] , dim=1 )
SCREAMING_SNAKE_CASE : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = model(
states=UpperCAmelCase_ , actions=UpperCAmelCase_ , rewards=UpperCAmelCase_ , returns_to_go=UpperCAmelCase_ , timesteps=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase_ , dtype=torch.floataa ),
1.0,
False,
{},
)
SCREAMING_SNAKE_CASE : List[Any] = action_pred[0, -1]
SCREAMING_SNAKE_CASE : str = torch.cat([states, state] , dim=1 )
SCREAMING_SNAKE_CASE : List[str] = returns_to_go[0, -1] - reward
SCREAMING_SNAKE_CASE : Dict = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(
[timesteps, torch.ones((1, 1) , device=UpperCAmelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 62 |
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : int = [1]
for i in range(2 , snake_case__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCamelCase : List[Any] = []
UpperCamelCase : List[Any] = list(range(snake_case__ ) )
# Find permutation
while factorials:
UpperCamelCase : int = factorials.pop()
UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowerCamelCase__ ( __lowerCamelCase : Tuple ):
__UpperCAmelCase : str = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2]
__UpperCAmelCase : Any = True if """large""" in model_name or """huge""" in model_name else False
__UpperCAmelCase : int = True if """large""" in model_name or """huge""" in model_name else False
__UpperCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 3, 3]
__UpperCAmelCase : Union[str, Any] = [5, 5, 5, 5]
elif "fl4" in model_name:
__UpperCAmelCase : str = [4, 4, 4, 4]
__UpperCAmelCase : Optional[Any] = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__UpperCAmelCase : Dict = [3, 3, 3, 3]
if "lrf" in model_name:
__UpperCAmelCase : Optional[Any] = [3, 3, 3, 3]
else:
__UpperCAmelCase : Optional[int] = [2, 2, 2, 2]
if "tiny" in model_name:
__UpperCAmelCase : List[str] = 96
elif "small" in model_name:
__UpperCAmelCase : Dict = 96
elif "base" in model_name:
__UpperCAmelCase : List[Any] = 128
elif "large" in model_name:
__UpperCAmelCase : Any = 192
elif "xlarge" in model_name:
__UpperCAmelCase : Tuple = 256
elif "huge" in model_name:
__UpperCAmelCase : int = 352
# set label information
__UpperCAmelCase : Tuple = """huggingface/label-files"""
if "large" in model_name or "huge" in model_name:
__UpperCAmelCase : Any = """imagenet-22k-id2label.json"""
else:
__UpperCAmelCase : Dict = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : Optional[int] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : List[str] = FocalNetConfig(
embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , )
return config
def lowerCamelCase__ ( __lowerCamelCase : Tuple ):
if "patch_embed.proj" in name:
__UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__UpperCAmelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
__UpperCAmelCase : int = """encoder.""" + name
if "encoder.layers" in name:
__UpperCAmelCase : Optional[int] = name.replace("""encoder.layers""" , """encoder.stages""" )
if "downsample.proj" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" )
if "blocks" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""blocks""" , """layers""" )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__UpperCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__UpperCAmelCase : List[Any] = name.replace("""modulation.h""" , """modulation.projection_context""" )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__UpperCAmelCase : str = name.replace("""modulation.proj""" , """modulation.projection_out""" )
if name == "norm.weight":
__UpperCAmelCase : Optional[Any] = """layernorm.weight"""
if name == "norm.bias":
__UpperCAmelCase : Dict = """layernorm.bias"""
if "head" in name:
__UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" )
else:
__UpperCAmelCase : int = """focalnet.""" + name
return name
def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ):
# fmt: off
__UpperCAmelCase : Dict = {
"""focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""",
"""focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""",
"""focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""",
"""focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""",
"""focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""",
"""focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""",
"""focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""",
"""focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""",
"""focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""",
"""focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""",
}
# fmt: on
__UpperCAmelCase : int = model_name_to_url[model_name]
print("""Checkpoint URL: """ , __lowerCamelCase )
__UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""]
# rename keys
for key in state_dict.copy().keys():
__UpperCAmelCase : Tuple = state_dict.pop(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = val
__UpperCAmelCase : Optional[Any] = get_focalnet_config(__lowerCamelCase )
__UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase )
model.eval()
# load state dict
model.load_state_dict(__lowerCamelCase )
# verify conversion
__UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Union[str, Any] = BitImageProcessor(
do_resize=__lowerCamelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=224 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , )
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
__UpperCAmelCase : List[Any] = processor(images=__lowerCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : str = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
__UpperCAmelCase : List[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 )
__UpperCAmelCase : Dict = model(**__lowerCamelCase )
__UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
print("""First values of logits:""" , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
__UpperCAmelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
__UpperCAmelCase : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
__UpperCAmelCase : int = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
__UpperCAmelCase : Optional[int] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
__UpperCAmelCase : Optional[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
a : Any = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 63 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCAmelCase_ ( a__ ):
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) )
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any:
UpperCamelCase : int = parent
UpperCamelCase : int = batch_size
UpperCamelCase : List[Any] = image_size
UpperCamelCase : List[str] = patch_size
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 )
UpperCamelCase : List[str] = hidden_act
UpperCamelCase : Optional[int] = conv_kernel_size
UpperCamelCase : List[str] = output_stride
UpperCamelCase : Union[str, Any] = classifier_dropout_prob
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Any = is_training
UpperCamelCase : int = num_labels
UpperCamelCase : List[Any] = initializer_range
UpperCamelCase : Tuple = scope
UpperCamelCase : List[str] = width_multiplier
UpperCamelCase : Any = ffn_dropout
UpperCamelCase : List[Any] = attn_dropout
def snake_case_ ( self ) -> int:
UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : List[str] = None
UpperCamelCase : int = None
if self.use_labels:
UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels )
UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels )
UpperCamelCase : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def snake_case_ ( self ) -> int:
return MobileViTVaConfig(
image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.last_hidden_state.shape, (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Optional[int] = self.num_labels
UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict:
UpperCamelCase : Any = self.num_labels
UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.logits.shape, (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
), )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs
UpperCamelCase : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ):
UpperCAmelCase__ : Tuple = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase__ : Any = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : Optional[Any] = False
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Dict = MobileViTVaModelTester(self )
UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileViTV2 does not use inputs_embeds' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip(reason='MobileViTV2 does not support input and output embeddings' )
def snake_case_ ( self ) -> int:
pass
@unittest.skip(reason='MobileViTV2 does not output attentions' )
def snake_case_ ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' )
def snake_case_ ( self ) -> Dict:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def snake_case_ ( self ) -> Any:
pass
def snake_case_ ( self ) -> List[str]:
UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : str = [*signature.parameters.keys()]
UpperCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Tuple:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Tuple = outputs.hidden_states
UpperCamelCase : Dict = 5
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCamelCase : Any = 2
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], )
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2 )
UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : Optional[int] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> str:
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ )
@slow
def snake_case_ ( self ) -> Optional[Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( ) -> Tuple:
UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case_ ( self ) -> str:
return (
MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to(
SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.default_image_processor
UpperCamelCase : Any = prepare_img()
UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Union[str, Any] = prepare_img()
UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = outputs.logits
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
], device=SCREAMING_SNAKE_CASE_, )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
@slow
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' )
UpperCamelCase : Tuple = prepare_img()
UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = outputs.logits.detach().cpu()
UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] )
UpperCamelCase : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
| 40 | 0 |
def A__ ( snake_case_ : list , snake_case_ : int = 0 ):
SCREAMING_SNAKE_CASE__: Union[str, Any]= length or len(snake_case_ )
SCREAMING_SNAKE_CASE__: Tuple= False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= list_data[i + 1], list_data[i]
SCREAMING_SNAKE_CASE__: Tuple= True
return list_data if not swapped else bubble_sort(snake_case_ , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 64 |
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str:
UpperCamelCase : List[str] = [0] * len(snake_case__ )
UpperCamelCase : int = []
UpperCamelCase : Optional[int] = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
UpperCamelCase : Optional[int] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCamelCase : Tuple = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
__UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 40 | 0 |
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __lowercase :
def __init__( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = """"""
UpperCAmelCase__ : Optional[Any] = """"""
UpperCAmelCase__ : Dict = []
UpperCAmelCase__ : List[Any] = 0
UpperCAmelCase__ : int = 256
UpperCAmelCase__ : Any = 0
UpperCAmelCase__ : str = 0
UpperCAmelCase__ : List[str] = 0
UpperCAmelCase__ : Dict = 0
def __lowercase ( self : Optional[Any] ,A : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = cva.imread(A ,0 )
UpperCAmelCase__ : Union[str, Any] = copy.deepcopy(self.img )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = plt.hist(self.img.ravel() ,256 ,[0, 256] ,label="""x""" )
UpperCAmelCase__ : Dict = np.sum(A )
for i in range(len(A ) ):
UpperCAmelCase__ : Optional[int] = x[i] / self.k
self.sk += prk
UpperCAmelCase__ : str = (self.L - 1) * self.sk
if self.rem != 0:
UpperCAmelCase__ : int = int(last % last )
UpperCAmelCase__ : Optional[int] = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A )
UpperCAmelCase__ : Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size )
UpperCAmelCase__ : List[Any] = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
UpperCAmelCase__ : int = self.img[j][i]
if num != self.last_list[num]:
UpperCAmelCase__ : Optional[Any] = self.last_list[num]
cva.imwrite("""output_data/output.jpg""" ,self.img )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
plt.hist(self.img.ravel() ,256 ,[0, 256] )
def __lowercase ( self : str ):
'''simple docstring'''
cva.imshow("""Output-Image""" ,self.img )
cva.imshow("""Input-Image""" ,self.original_image )
cva.waitKey(5_000 )
cva.destroyAllWindows()
if __name__ == "__main__":
__UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
__UpperCAmelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 65 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MraForMaskedLM''',
'''MraForMultipleChoice''',
'''MraForQuestionAnswering''',
'''MraForSequenceClassification''',
'''MraForTokenClassification''',
'''MraLayer''',
'''MraModel''',
'''MraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 40 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ["ViTFeatureExtractor"]
UpperCamelCase = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 66 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {
'''configuration_pix2struct''': [
'''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Pix2StructConfig''',
'''Pix2StructTextConfig''',
'''Pix2StructVisionConfig''',
],
'''processing_pix2struct''': ['''Pix2StructProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''Pix2StructImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Pix2StructPreTrainedModel''',
'''Pix2StructForConditionalGeneration''',
'''Pix2StructVisionModel''',
'''Pix2StructTextModel''',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A_ ( UpperCAmelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = '''ClapFeatureExtractor'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self : int ,__A : Union[str, Any] ,__A : Union[str, Any] ) -> Dict:
super().__init__(__A ,__A )
def __call__( self : Dict ,__A : Dict=None ,__A : Tuple=None ,__A : Optional[Any]=None ,**__A : List[Any] ) -> List[str]:
_lowercase = kwargs.pop('sampling_rate' ,__A )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
_lowercase = self.tokenizer(__A ,return_tensors=__A ,**__A )
if audios is not None:
_lowercase = self.feature_extractor(
__A ,sampling_rate=__A ,return_tensors=__A ,**__A )
if text is not None and audios is not None:
_lowercase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) ,tensor_type=__A )
def __UpperCAmelCase ( self : List[str] ,*__A : Optional[Any] ,**__A : Optional[Any] ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*__A ,**__A )
def __UpperCAmelCase ( self : Tuple ,*__A : int ,**__A : List[Any] ) -> Tuple:
return self.tokenizer.decode(*__A ,**__A )
@property
def __UpperCAmelCase ( self : str ) -> List[Any]:
_lowercase = self.tokenizer.model_input_names
_lowercase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 67 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class _A ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Dict = StableUnCLIPImgaImgPipeline
lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
lowerCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCamelCase : Union[str, Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCamelCase : List[Any] = frozenset([] )
def _a ( self : Any ) -> Optional[int]:
__UpperCAmelCase =32
__UpperCAmelCase =embedder_hidden_size
# image encoding components
__UpperCAmelCase =CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__UpperCAmelCase =CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=__SCREAMING_SNAKE_CASE , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__UpperCAmelCase =StableUnCLIPImageNormalizer(embedding_dim=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" )
torch.manual_seed(0 )
__UpperCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
torch.manual_seed(0 )
__UpperCAmelCase =CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
__UpperCAmelCase =UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=__SCREAMING_SNAKE_CASE , use_linear_projection=__SCREAMING_SNAKE_CASE , )
torch.manual_seed(0 )
__UpperCAmelCase =DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , )
torch.manual_seed(0 )
__UpperCAmelCase =AutoencoderKL()
__UpperCAmelCase ={
# image encoding components
"""feature_extractor""": feature_extractor,
"""image_encoder""": image_encoder.eval(),
# image noising components
"""image_normalizer""": image_normalizer.eval(),
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder.eval(),
"""unet""": unet.eval(),
"""scheduler""": scheduler,
"""vae""": vae.eval(),
}
return components
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=True ) -> Dict:
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
__UpperCAmelCase =torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
__UpperCAmelCase =torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
if pil_image:
__UpperCAmelCase =input_image * 0.5 + 0.5
__UpperCAmelCase =input_image.clamp(0 , 1 )
__UpperCAmelCase =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__UpperCAmelCase =DiffusionPipeline.numpy_to_pil(__SCREAMING_SNAKE_CASE )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def _a ( self : Tuple ) -> str:
__UpperCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase =self.get_dummy_components()
__UpperCAmelCase =StableUnCLIPImgaImgPipeline(**__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
inputs.update({"""image_embeds""": None} )
__UpperCAmelCase =sd_pipe(**__SCREAMING_SNAKE_CASE ).images
__UpperCAmelCase =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCAmelCase =np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _a ( self : int ) -> str:
__UpperCAmelCase =torch_device in ["""cpu""", """mps"""]
self._test_attention_slicing_forward_pass(test_max_difference=__SCREAMING_SNAKE_CASE )
def _a ( self : Optional[Any] ) -> Any:
__UpperCAmelCase =torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=__SCREAMING_SNAKE_CASE )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _a ( self : List[Any] ) -> Tuple:
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__SCREAMING_SNAKE_CASE )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
"""simple docstring"""
def _a ( self : str ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self : Tuple ) -> List[str]:
__UpperCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
__UpperCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" )
__UpperCAmelCase =StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 )
__UpperCAmelCase =pipe(__SCREAMING_SNAKE_CASE , """anime turle""" , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" )
__UpperCAmelCase =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Optional[Any]:
__UpperCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
__UpperCAmelCase =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" )
__UpperCAmelCase =StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 )
__UpperCAmelCase =pipe(__SCREAMING_SNAKE_CASE , """anime turle""" , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" )
__UpperCAmelCase =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__UpperCAmelCase =StableUnCLIPImgaImgPipeline.from_pretrained(
"""fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa )
__UpperCAmelCase =pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__UpperCAmelCase =pipe(
__SCREAMING_SNAKE_CASE , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , )
__UpperCAmelCase =torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 68 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''ViTFeatureExtractor''']
__UpperCAmelCase = ['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( _UpperCAmelCase : str ) -> list:
__snake_case = [0] * len(_UpperCAmelCase )
for i in range(1 , len(_UpperCAmelCase ) ):
# use last results for better performance - dynamic programming
__snake_case = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
__snake_case = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
__snake_case = j
return prefix_result
def __UpperCAmelCase ( _UpperCAmelCase : str ) -> int:
return max(prefix_function(_UpperCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 69 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__UpperCAmelCase = random.Random()
def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any:
if rng is None:
UpperCamelCase : int = global_rng
UpperCamelCase : Union[str, Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]:
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Any = min_seq_length
UpperCamelCase : Optional[int] = max_seq_length
UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Tuple = feature_size
UpperCamelCase : Any = padding_value
UpperCamelCase : Tuple = sampling_rate
UpperCamelCase : Optional[Any] = return_attention_mask
UpperCamelCase : Optional[Any] = do_normalize
def snake_case_ ( self ) -> Union[str, Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Union[str, Any] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : Any = WavaVecaFeatureExtractor
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) )
def snake_case_ ( self ) -> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values
UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test batched
UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) )
def snake_case_ ( self ) -> int:
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : Any = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Tuple:
UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Tuple = range(800, 1400, 200 )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad']
UpperCamelCase : List[str] = [None, 1600, None]
for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : int = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' )
UpperCamelCase : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def snake_case_ ( self ) -> List[Any]:
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' )
UpperCamelCase : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase : Any = feat_extract(
SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' )
UpperCamelCase : int = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def snake_case_ ( self ) -> str:
import torch
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Dict = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def snake_case_ ( self ) -> Tuple:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
| 40 | 0 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase : Optional[int] = logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
lowerCamelCase : Tuple = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
lowerCamelCase : Any = {
"abeja/gpt-neox-japanese-2.7b": 2_048,
}
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Any ):
'''simple docstring'''
with open(lowercase , 'r' , encoding='utf-8' ) as f:
lowerCamelCase_ = json.loads(f.read() )
lowerCamelCase_ = collections.OrderedDict()
lowerCamelCase_ = collections.OrderedDict()
lowerCamelCase_ = collections.OrderedDict()
with open(lowercase , 'r' , encoding='utf-8' ) as f:
lowerCamelCase_ = f.readlines()
lowerCamelCase_ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token]
for idx, b in enumerate(lowercase ):
lowerCamelCase_ = b
lowerCamelCase_ = idx
for wd in b:
lowerCamelCase_ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class A( UpperCamelCase ):
'''simple docstring'''
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : str , A_ : Any , A_ : Any , A_ : Optional[Any]="<|endoftext|>" , A_ : Any="<|endoftext|>" , A_ : Optional[int]="<|startoftext|>" , A_ : Union[str, Any]="<|endoftext|>" , A_ : Any=False , **A_ : Tuple , ) -> Dict:
"""simple docstring"""
super().__init__(
unk_token=A_ , pad_token=A_ , bos_token=A_ , eos_token=A_ , do_clean_text=A_ , **A_ , )
if not os.path.isfile(A_ ):
raise ValueError(
f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
if not os.path.isfile(A_ ):
raise ValueError(
f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
lowerCamelCase_ = do_clean_text
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = load_vocab_and_emoji(A_ , A_ )
lowerCamelCase_ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
return len(self.raw_vocab )
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return dict(self.raw_vocab , **self.added_tokens_encoder )
def a__ ( self : Optional[Any] , A_ : str ) -> Tuple:
"""simple docstring"""
return self.subword_tokenizer.tokenize(A_ , clean=self.do_clean_text )
def a__ ( self : Optional[int] , A_ : Dict ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(A_ , self.vocab.get(self.unk_token ) )
def a__ ( self : Union[str, Any] , A_ : Union[str, Any] ) -> int:
"""simple docstring"""
return self.subword_tokenizer.convert_id_to_token(A_ )
def a__ ( self : Optional[int] , A_ : Optional[int] ) -> int:
"""simple docstring"""
lowerCamelCase_ = ''.join(A_ ).strip()
return out_string
def a__ ( self : Optional[Any] , A_ : "Conversation" ) -> List[int]:
"""simple docstring"""
lowerCamelCase_ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] )
if len(A_ ) > self.model_max_length:
lowerCamelCase_ = input_ids[-self.model_max_length :]
return input_ids
def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
lowerCamelCase_ = 0
if os.path.isdir(A_ ):
lowerCamelCase_ = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
lowerCamelCase_ = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] )
else:
lowerCamelCase_ = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
lowerCamelCase_ = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(A_ , 'w' , encoding='utf-8' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
' Please check that the vocabulary is not corrupted!' )
lowerCamelCase_ = token_index
writer.write(','.join(A_ ) + '\n' )
index += 1
with open(A_ , 'w' , encoding='utf-8' ) as writer:
json.dump(self.emoji , A_ )
return vocab_file, emoji_file
class A( UpperCamelCase ):
'''simple docstring'''
def __init__( self : Any , A_ : Union[str, Any] , A_ : int , A_ : Tuple ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = vocab # same as swe
lowerCamelCase_ = ids_to_tokens # same as bpe
lowerCamelCase_ = emoji
lowerCamelCase_ = np.max([len(A_ ) for w in self.vocab.keys()] )
lowerCamelCase_ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' )
lowerCamelCase_ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' )
lowerCamelCase_ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' )
lowerCamelCase_ = re.compile(
r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
lowerCamelCase_ = re.compile(
r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
lowerCamelCase_ = re.compile(
r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' )
lowerCamelCase_ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
lowerCamelCase_ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
lowerCamelCase_ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} )
def __len__( self : str ) -> Optional[int]:
"""simple docstring"""
return len(self.ids_to_tokens )
def a__ ( self : Union[str, Any] , A_ : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ = self.content_repattera.sub('<URL>' , A_ )
lowerCamelCase_ = self.content_repattera.sub('<EMAIL>' , A_ )
lowerCamelCase_ = self.content_repattera.sub('<TEL>' , A_ )
lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ )
lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ )
lowerCamelCase_ = self.content_repattera.sub('<PRICE>' , A_ )
lowerCamelCase_ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
lowerCamelCase_ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' )
return content
def a__ ( self : int , A_ : Optional[Any] , A_ : Tuple=False ) -> Dict:
"""simple docstring"""
lowerCamelCase_ = text.replace(' ' , '<SP>' )
lowerCamelCase_ = text.replace(' ' , '<SP>' )
lowerCamelCase_ = text.replace('\r\n' , '<BR>' )
lowerCamelCase_ = text.replace('\n' , '<BR>' )
lowerCamelCase_ = text.replace('\r' , '<BR>' )
lowerCamelCase_ = text.replace('\t' , '<TAB>' )
lowerCamelCase_ = text.replace('—' , 'ー' )
lowerCamelCase_ = text.replace('−' , 'ー' )
for k, v in self.emoji["emoji"].items():
if k in text:
lowerCamelCase_ = text.replace(A_ , A_ )
if clean:
lowerCamelCase_ = self.clean_text(A_ )
def check_simbol(A_ : Union[str, Any] ):
lowerCamelCase_ = x.encode()
if len(A_ ) == 1 and len(A_ ) == 2:
lowerCamelCase_ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0XC2_A1 and c <= 0XC2_BF)
or (c >= 0XC7_80 and c <= 0XC7_83)
or (c >= 0XCA_B9 and c <= 0XCB_BF)
or (c >= 0XCC_80 and c <= 0XCD_A2)
):
return True
return False
def checkuae(A_ : Tuple ):
lowerCamelCase_ = x.encode()
if len(A_ ) == 1 and len(A_ ) == 3:
lowerCamelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0XE2_80_80 and c <= 0XE2_B0_7F:
return True
return False
lowerCamelCase_ = 0
lowerCamelCase_ = []
while pos < len(A_ ):
lowerCamelCase_ = min(len(A_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
lowerCamelCase_ = [] # (token_id, token, pos)
for e in range(A_ , A_ , -1 ):
lowerCamelCase_ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(A_ ) > 2:
lowerCamelCase_ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(A_ ) > 0:
# the smallest token_id is adopted
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sorted(A_ , key=lambda A_ : x[0] )[0]
result.append(A_ )
lowerCamelCase_ = e
else:
lowerCamelCase_ = pos + 1
lowerCamelCase_ = text[pos:end]
if check_simbol(A_ ):
result.append('<KIGOU>' )
elif checkuae(A_ ):
result.append('<U2000U2BFF>' )
else:
for i in wd.encode('utf-8' ):
result.append('<|byte%d|>' % i )
lowerCamelCase_ = end
return result
def a__ ( self : List[Any] , A_ : Tuple , A_ : List[str]="\n" ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ = []
lowerCamelCase_ = []
lowerCamelCase_ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(A_ ) > 0:
words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) )
lowerCamelCase_ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['emoji_inv'][word] )
elif word == "<SP>":
words.append(' ' )
elif word == "<BR>":
words.append(A_ )
elif word == "<TAB>":
words.append('\t' )
elif word == "<BLOCK>":
words.append('▀' )
elif word == "<KIGOU>":
words.append('ǀ' )
elif word == "<U2000U2BFF>":
words.append('‖' )
else:
words.append(A_ )
if len(A_ ) > 0:
words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) )
lowerCamelCase_ = ''.join(A_ )
return text
| 70 |
def UpperCamelCase ( snake_case__ : int ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'float\' object cannot be interpreted as an integer' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('\'str\' object cannot be interpreted as an integer' )
if num == 0:
return "0b0"
UpperCamelCase : int = False
if num < 0:
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Tuple = -num
UpperCamelCase : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case (unittest.TestCase):
def __init__( self ,_snake_case ,_snake_case=3 ,_snake_case=32 ,_snake_case=3 ,_snake_case=10 ,_snake_case=[10, 20, 30, 40] ,_snake_case=[1, 1, 2, 1] ,_snake_case=True ,_snake_case=True ,_snake_case="relu" ,_snake_case=3 ,_snake_case=None ,):
UpperCAmelCase_ : Union[str, Any] = parent
UpperCAmelCase_ : List[str] = batch_size
UpperCAmelCase_ : Union[str, Any] = image_size
UpperCAmelCase_ : Any = num_channels
UpperCAmelCase_ : Optional[Any] = embeddings_size
UpperCAmelCase_ : int = hidden_sizes
UpperCAmelCase_ : Tuple = depths
UpperCAmelCase_ : Optional[int] = is_training
UpperCAmelCase_ : Tuple = use_labels
UpperCAmelCase_ : str = hidden_act
UpperCAmelCase_ : List[Any] = num_labels
UpperCAmelCase_ : Any = scope
UpperCAmelCase_ : str = len(_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : List[str] = self.get_config()
return config, pixel_values
def UpperCamelCase__ ( self ):
return RegNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,)
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
UpperCAmelCase_ : int = FlaxRegNetModel(config=_snake_case )
UpperCAmelCase_ : int = model(_snake_case )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ):
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : int = FlaxRegNetForImageClassification(config=_snake_case )
UpperCAmelCase_ : Optional[Any] = model(_snake_case )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : str = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = config_and_inputs
UpperCAmelCase_ : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase):
__A : Union[str, Any] =(FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
__A : Any =False
__A : List[str] =False
__A : Union[str, Any] =False
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Union[str, Any] = FlaxRegNetModelTester(self )
UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case )
def UpperCamelCase__ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self ):
return
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case )
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def UpperCamelCase__ ( self ):
pass
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def UpperCamelCase__ ( self ):
pass
def UpperCamelCase__ ( self ):
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(_snake_case )
UpperCAmelCase_ : Tuple = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase_ : Union[str, Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,_snake_case )
def UpperCamelCase__ ( self ):
def check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ):
UpperCAmelCase_ : str = model_class(_snake_case )
UpperCAmelCase_ : Any = model(**self._prepare_for_class(_snake_case ,_snake_case ) )
UpperCAmelCase_ : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ : Tuple = self.model_tester.num_stages
self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = True
check_hidden_states_output(_snake_case ,_snake_case ,_snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : List[str] = True
check_hidden_states_output(_snake_case ,_snake_case ,_snake_case )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(_snake_case ,_snake_case )
UpperCAmelCase_ : Union[str, Any] = model_class(_snake_case )
@jax.jit
def model_jitted(_snake_case ,**_snake_case ):
return model(pixel_values=_snake_case ,**_snake_case )
with self.subTest("JIT Enabled" ):
UpperCAmelCase_ : Tuple = model_jitted(**_snake_case ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCAmelCase_ : Optional[int] = model_jitted(**_snake_case ).to_tuple()
self.assertEqual(len(_snake_case ) ,len(_snake_case ) )
for jitted_output, output in zip(_snake_case ,_snake_case ):
self.assertEqual(jitted_output.shape ,output.shape )
def a__ ( ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_flax
class _snake_case (unittest.TestCase):
@cached_property
def UpperCamelCase__ ( self ):
return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" )
UpperCAmelCase_ : Dict = self.default_image_processor
UpperCAmelCase_ : List[Any] = prepare_img()
UpperCAmelCase_ : Tuple = image_processor(images=_snake_case ,return_tensors="np" )
UpperCAmelCase_ : int = model(**_snake_case )
# verify the logits
UpperCAmelCase_ : Tuple = (1, 10_00)
self.assertEqual(outputs.logits.shape ,_snake_case )
UpperCAmelCase_ : Any = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1E-4 ) )
| 71 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCAmelCase = logging.get_logger(__name__)
def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
UpperCamelCase : List[Any] = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
UpperCamelCase : Dict = new_module
UpperCamelCase : int = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
UpperCamelCase : Union[str, Any] = tensor_name in module._buffers
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
UpperCamelCase : Optional[Any] = False
UpperCamelCase : str = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase : List[str] = False
UpperCamelCase : Tuple = False
else:
UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase : List[Any] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase : Dict = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[Any] = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
UpperCamelCase : Union[str, Any] = new_value.T
UpperCamelCase : Union[str, Any] = old_value.__dict__
if is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
UpperCamelCase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[str] = value.to(snake_case__ )
else:
UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
UpperCamelCase : Optional[int] = new_value
else:
UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
UpperCamelCase : List[str] = new_value
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int:
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase : str = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape
else:
UpperCamelCase : Any = module.in_features
UpperCamelCase : List[str] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase : Any = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase : Optional[int] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase : str = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase : int = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase : Any = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]:
UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase : List[str] = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] )
UpperCamelCase : Optional[int] = len(snake_case__ ) > 0
# Check if it is a base model
UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase : List[Any] = list(model.named_children() )
UpperCamelCase : Optional[Any] = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ )
UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
UpperCamelCase : Tuple = ['.weight', '.bias']
UpperCamelCase : Tuple = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 40 | 0 |
'''simple docstring'''
def UpperCamelCase ( lowercase_ : list[int] ) -> int:
'''simple docstring'''
if not numbers:
return 0
if not isinstance(lowercase_ , (list, tuple) ) or not all(
isinstance(lowercase_ , lowercase_ ) for number in numbers ):
raise ValueError('''numbers must be an iterable of integers''' )
lowercase =lowercase =lowercase =numbers[0]
for i in range(1 , len(lowercase_ ) ):
# update the maximum and minimum subarray products
lowercase =numbers[i]
if number < 0:
lowercase , lowercase =min_till_now, max_till_now
lowercase =max(lowercase_ , max_till_now * number )
lowercase =min(lowercase_ , min_till_now * number )
# update the maximum product found till now
lowercase =max(lowercase_ , lowercase_ )
return max_prod
| 72 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCamelCase ( snake_case__ : int ) -> Dict:
UpperCamelCase : Optional[Any] = tmp_path / 'file.csv'
UpperCamelCase : Optional[Any] = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]:
UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv'
UpperCamelCase : Any = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str:
UpperCamelCase : Any = tmp_path / 'csv_with_image.csv'
UpperCamelCase : Dict = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple:
UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv'
UpperCamelCase : Dict = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
@pytest.fixture
def UpperCamelCase ( snake_case__ : Dict ) -> List[str]:
UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv'
UpperCamelCase : Union[str, Any] = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(snake_case__ , 'w' ) as f:
f.write(snake_case__ )
return str(snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]:
UpperCamelCase : str = Csv()
UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(snake_case__ , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(snake_case__ ) in record.message
for record in caplog.records )
@require_pil
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : List[str] = f.read().splitlines()[1]
UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] )
UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
UpperCamelCase : str = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCamelCase ( snake_case__ : Any ) -> str:
with open(snake_case__ , encoding='utf-8' ) as f:
UpperCamelCase : Any = f.read().splitlines()[1:]
UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] )
UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
UpperCamelCase : List[str] = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels]
def UpperCamelCase ( snake_case__ : str ) -> List[Any]:
UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} )
UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] )
UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
UpperCamelCase : str = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 40 | 0 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
a_ : Optional[Any] = re.compile(R'\b(a|an|the)\b', re.UNICODE)
a_ : List[str] = None
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.')
parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.')
parser.add_argument(
'--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).')
parser.add_argument(
'--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.')
parser.add_argument(
'--na-prob-thresh' , '-t' , type=_UpperCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , )
parser.add_argument(
'--out-image-dir' , '-p' , metavar='out_images' , default=_UpperCAmelCase , help='Save precision-recall curves to directory.')
parser.add_argument('--verbose' , '-v' , action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
SCREAMING_SNAKE_CASE = bool(qa['answers']['text'])
return qid_to_has_ans
def lowerCamelCase__ (_UpperCAmelCase):
def remove_articles(_UpperCAmelCase):
return ARTICLES_REGEX.sub(' ' , _UpperCAmelCase)
def white_space_fix(_UpperCAmelCase):
return " ".join(text.split())
def remove_punc(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(_UpperCAmelCase):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase))))
def lowerCamelCase__ (_UpperCAmelCase):
if not s:
return []
return normalize_answer(_UpperCAmelCase).split()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
return int(normalize_answer(_UpperCAmelCase) == normalize_answer(_UpperCAmelCase))
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = get_tokens(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = get_tokens(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = collections.Counter(_UpperCAmelCase) & collections.Counter(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = sum(common.values())
if len(_UpperCAmelCase) == 0 or len(_UpperCAmelCase) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
SCREAMING_SNAKE_CASE = 1.0 * num_same / len(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = 1.0 * num_same / len(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall)
return fa
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
SCREAMING_SNAKE_CASE = qa['id']
SCREAMING_SNAKE_CASE = [t for t in qa['answers']['text'] if normalize_answer(_UpperCAmelCase)]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
SCREAMING_SNAKE_CASE = ['']
if qid not in preds:
print(F'''Missing prediction for {qid}''')
continue
SCREAMING_SNAKE_CASE = preds[qid]
# Take max over all gold answers
SCREAMING_SNAKE_CASE = max(compute_exact(_UpperCAmelCase , _UpperCAmelCase) for a in gold_answers)
SCREAMING_SNAKE_CASE = max(compute_fa(_UpperCAmelCase , _UpperCAmelCase) for a in gold_answers)
return exact_scores, fa_scores
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = {}
for qid, s in scores.items():
SCREAMING_SNAKE_CASE = na_probs[qid] > na_prob_thresh
if pred_na:
SCREAMING_SNAKE_CASE = float(not qid_to_has_ans[qid])
else:
SCREAMING_SNAKE_CASE = s
return new_scores
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None):
if not qid_list:
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
return collections.OrderedDict(
[
('exact', 1_00.0 * sum(exact_scores.values()) / total),
('f1', 1_00.0 * sum(fa_scores.values()) / total),
('total', total),
])
else:
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
return collections.OrderedDict(
[
('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list) / total),
('total', total),
])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
for k in new_eval:
SCREAMING_SNAKE_CASE = new_eval[k]
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
plt.step(_UpperCAmelCase , _UpperCAmelCase , color='b' , alpha=0.2 , where='post')
plt.fill_between(_UpperCAmelCase , _UpperCAmelCase , step='post' , alpha=0.2 , color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.title(_UpperCAmelCase)
plt.savefig(_UpperCAmelCase)
plt.clf()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: na_probs[k])
SCREAMING_SNAKE_CASE = 0.0
SCREAMING_SNAKE_CASE = 1.0
SCREAMING_SNAKE_CASE = 0.0
SCREAMING_SNAKE_CASE = [1.0]
SCREAMING_SNAKE_CASE = [0.0]
SCREAMING_SNAKE_CASE = 0.0
for i, qid in enumerate(_UpperCAmelCase):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
SCREAMING_SNAKE_CASE = true_pos / float(i + 1)
SCREAMING_SNAKE_CASE = true_pos / float(_UpperCAmelCase)
if i == len(_UpperCAmelCase) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(_UpperCAmelCase)
recalls.append(_UpperCAmelCase)
if out_image:
plot_pr_curve(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
return {"ap": 1_00.0 * avg_prec}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if out_image_dir and not os.path.exists(_UpperCAmelCase):
os.makedirs(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = sum(1 for v in qid_to_has_ans.values() if v)
if num_true_pos == 0:
return
SCREAMING_SNAKE_CASE = make_precision_recall_eval(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_exact.png') , title='Precision-Recall curve for Exact Match score' , )
SCREAMING_SNAKE_CASE = make_precision_recall_eval(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_f1.png') , title='Precision-Recall curve for F1 score' , )
SCREAMING_SNAKE_CASE = {k: float(_UpperCAmelCase) for k, v in qid_to_has_ans.items()}
SCREAMING_SNAKE_CASE = make_precision_recall_eval(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_oracle.png') , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , )
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_exact')
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_f1')
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_oracle')
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if not qid_list:
return
SCREAMING_SNAKE_CASE = [na_probs[k] for k in qid_list]
SCREAMING_SNAKE_CASE = np.ones_like(_UpperCAmelCase) / float(len(_UpperCAmelCase))
plt.hist(_UpperCAmelCase , weights=_UpperCAmelCase , bins=20 , range=(0.0, 1.0))
plt.xlabel('Model probability of no-answer')
plt.ylabel('Proportion of dataset')
plt.title(F'''Histogram of no-answer probability: {name}''')
plt.savefig(os.path.join(_UpperCAmelCase , F'''na_prob_hist_{name}.png'''))
plt.clf()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
SCREAMING_SNAKE_CASE = num_no_ans
SCREAMING_SNAKE_CASE = cur_score
SCREAMING_SNAKE_CASE = 0.0
SCREAMING_SNAKE_CASE = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: na_probs[k])
for i, qid in enumerate(_UpperCAmelCase):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
SCREAMING_SNAKE_CASE = scores[qid]
else:
if preds[qid]:
SCREAMING_SNAKE_CASE = -1
else:
SCREAMING_SNAKE_CASE = 0
cur_score += diff
if cur_score > best_score:
SCREAMING_SNAKE_CASE = cur_score
SCREAMING_SNAKE_CASE = na_probs[qid]
return 1_00.0 * best_score / len(_UpperCAmelCase), best_thresh
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = best_exact
SCREAMING_SNAKE_CASE = exact_thresh
SCREAMING_SNAKE_CASE = best_fa
SCREAMING_SNAKE_CASE = fa_thresh
def lowerCamelCase__ ():
with open(OPTS.data_file) as f:
SCREAMING_SNAKE_CASE = json.load(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = dataset_json['data']
with open(OPTS.pred_file) as f:
SCREAMING_SNAKE_CASE = json.load(_UpperCAmelCase)
if OPTS.na_prob_file:
with open(OPTS.na_prob_file) as f:
SCREAMING_SNAKE_CASE = json.load(_UpperCAmelCase)
else:
SCREAMING_SNAKE_CASE = {k: 0.0 for k in preds}
SCREAMING_SNAKE_CASE = make_qid_to_has_ans(_UpperCAmelCase) # maps qid to True/False
SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if v]
SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if not v]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_raw_scores(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh)
SCREAMING_SNAKE_CASE = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh)
SCREAMING_SNAKE_CASE = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase)
if has_ans_qids:
SCREAMING_SNAKE_CASE = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase)
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'HasAns')
if no_ans_qids:
SCREAMING_SNAKE_CASE = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase)
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'NoAns')
if OPTS.na_prob_file:
find_all_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir)
histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'hasAns')
histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'noAns')
if OPTS.out_file:
with open(OPTS.out_file , 'w') as f:
json.dump(_UpperCAmelCase , _UpperCAmelCase)
else:
print(json.dumps(_UpperCAmelCase , indent=2))
if __name__ == "__main__":
a_ : Any = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| 73 |
import math
import random
def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__UpperCAmelCase = 0.02
def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float:
UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 )
for _ in range(snake_case__ ):
# Forward propagation
UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
UpperCamelCase : int = (expected / 100) - layer_a
# Error delta
UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase = int(input('''Expected value: '''))
__UpperCAmelCase = int(input('''Number of propagations: '''))
print(forward_propagation(expected, number_propagations))
| 40 | 0 |
def a__ ( snake_case ):
"""simple docstring"""
if n == 1 or not isinstance(snake_case , snake_case ):
return 0
elif n == 2:
return 1
else:
__SCREAMING_SNAKE_CASE : Any = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def a__ ( snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = 0
__SCREAMING_SNAKE_CASE : Optional[int] = 2
while digits < n:
index += 1
__SCREAMING_SNAKE_CASE : List[Any] = len(str(fibonacci(snake_case ) ) )
return index
def a__ ( snake_case = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(snake_case )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 74 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]:
return EnvironmentCommand()
class lowerCAmelCase_ ( a__ ):
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
UpperCamelCase : List[Any] = parser.add_parser('env' )
download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Any = huggingface_hub.__version__
UpperCamelCase : int = 'not installed'
UpperCamelCase : Union[str, Any] = 'NA'
if is_torch_available():
import torch
UpperCamelCase : Any = torch.__version__
UpperCamelCase : str = torch.cuda.is_available()
UpperCamelCase : Dict = 'not installed'
if is_transformers_available():
import transformers
UpperCamelCase : str = transformers.__version__
UpperCamelCase : Optional[Any] = 'not installed'
if is_accelerate_available():
import accelerate
UpperCamelCase : Dict = accelerate.__version__
UpperCamelCase : List[str] = 'not installed'
if is_xformers_available():
import xformers
UpperCamelCase : List[str] = xformers.__version__
UpperCamelCase : Dict = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(SCREAMING_SNAKE_CASE_ ) )
return info
@staticmethod
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple:
return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
| 40 | 0 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
def __init__( self : Dict , _A : str=2 , _A : Tuple=3 , _A : Tuple=64 , _A : str=None ):
'''simple docstring'''
UpperCAmelCase__ : int = np.random.default_rng(_A )
UpperCAmelCase__ : Any = length
UpperCAmelCase__ : int = rng.normal(size=(length,) ).astype(np.floataa )
UpperCAmelCase__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Tuple ):
'''simple docstring'''
return self.length
def __getitem__( self : Union[str, Any] , _A : Optional[Any] ):
'''simple docstring'''
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
def __init__( self : str , _A : List[str]=0 , _A : List[Any]=0 , _A : int=False ):
'''simple docstring'''
super().__init__()
UpperCAmelCase__ : Dict = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
UpperCAmelCase__ : Dict = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
UpperCAmelCase__ : List[Any] = True
def lowercase_ ( self : Any , _A : List[Any]=None ):
'''simple docstring'''
if self.first_batch:
print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
UpperCAmelCase__ : Any = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
def __init__( self : Optional[int] , _A : List[str]=0 , _A : Optional[int]=0 , _A : Any=False ):
'''simple docstring'''
super().__init__()
UpperCAmelCase__ : Dict = torch.nn.Parameter(torch.tensor(_A ).float() )
UpperCAmelCase__ : Optional[Any] = torch.nn.Parameter(torch.tensor(_A ).float() )
UpperCAmelCase__ : str = True
def lowercase_ ( self : str , _A : List[Any]=None ):
'''simple docstring'''
if self.first_batch:
print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" )
UpperCAmelCase__ : int = False
return x * self.a + self.b
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict:
from datasets import load_dataset
from transformers import AutoTokenizer
UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
UpperCAmelCase__ : Dict = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''}
UpperCAmelCase__ : str = load_dataset('''csv''' , data_files=lowerCAmelCase__ )
UpperCAmelCase__ : Dict = datasets['''train'''].unique('''label''' )
UpperCAmelCase__ : Union[str, Any] = {v: i for i, v in enumerate(lowerCAmelCase__ )}
def tokenize_function(lowerCAmelCase__ ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase__ : Any = tokenizer(
examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' )
if "label" in examples:
UpperCAmelCase__ : Union[str, Any] = [label_to_id[l] for l in examples['''label''']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase__ : Optional[int] = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , )
def collate_fn(lowerCAmelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase__ : Optional[Any] = DataLoader(tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 )
UpperCAmelCase__ : Tuple = DataLoader(tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 )
return train_dataloader, eval_dataloader
| 75 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''▁'''
__UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__UpperCAmelCase = {
'''facebook/xglm-564M''': 2_048,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None:
UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
UpperCamelCase : Any = 7
UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCamelCase : int = 1
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
UpperCamelCase : Optional[int] = len(self.sp_model )
UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
UpperCamelCase : int = self.__dict__.copy()
UpperCamelCase : Union[str, Any] = None
UpperCamelCase : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCamelCase : Any = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
UpperCamelCase : Any = {}
UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
UpperCamelCase : Optional[int] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ ))
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def snake_case_ ( self ) -> int:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def snake_case_ ( self ) -> int:
UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip()
return out_string
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi:
UpperCamelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 40 | 0 |
"""simple docstring"""
a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __UpperCAmelCase ( ):
__lowercase : Any = input('''Enter message: ''' )
__lowercase : Union[str, Any] = input('''Enter key [alphanumeric]: ''' )
__lowercase : List[Any] = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
__lowercase : Union[str, Any] = '''encrypt'''
__lowercase : Any = encrypt_message(__UpperCamelCase , __UpperCamelCase )
elif mode.lower().startswith('''d''' ):
__lowercase : int = '''decrypt'''
__lowercase : Dict = decrypt_message(__UpperCamelCase , __UpperCamelCase )
print(f"""\n{mode.title()}ed message:""" )
print(__UpperCamelCase )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
return translate_message(__UpperCamelCase , __UpperCamelCase , '''encrypt''' )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
return translate_message(__UpperCamelCase , __UpperCamelCase , '''decrypt''' )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
__lowercase : Optional[Any] = []
__lowercase : Union[str, Any] = 0
__lowercase : Optional[int] = key.upper()
for symbol in message:
__lowercase : Optional[Any] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(__UpperCamelCase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(__UpperCamelCase ):
__lowercase : List[Any] = 0
else:
translated.append(__UpperCamelCase )
return "".join(__UpperCamelCase )
if __name__ == "__main__":
main()
| 76 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCAmelCase = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__UpperCAmelCase = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : int = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : str = ["input_ids", "attention_mask"]
UpperCAmelCase__ : Dict = RobertaTokenizer
def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]:
super().__init__(
SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) )
UpperCamelCase : List[str] = add_prefix_space
UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = add_prefix_space
UpperCamelCase : Optional[Any] = 'post_processor'
UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
if tokenizer_component_instance:
UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase : Optional[Any] = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase : Optional[int] = tuple(state['cls'] )
UpperCamelCase : Any = False
if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
UpperCamelCase : Optional[int] = add_prefix_space
UpperCamelCase : List[Any] = True
if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets:
UpperCamelCase : Dict = trim_offsets
UpperCamelCase : Union[str, Any] = True
if changes_to_apply:
UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) )
UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ )
setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
@property
def snake_case_ ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value
UpperCamelCase : List[Any] = value
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding:
UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple:
UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 40 | 0 |
"""simple docstring"""
import torch
from diffusers import DiffusionPipeline
class a__ ( __magic_name__ ):
def __init__( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any):
"""simple docstring"""
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_)
def __call__( self : Optional[int]):
"""simple docstring"""
__UpperCAmelCase : List[str] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
__UpperCAmelCase : int = 1
__UpperCAmelCase : str = self.unet(UpperCamelCase_ , UpperCamelCase_).sample
__UpperCAmelCase : List[Any] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_).prev_sample
__UpperCAmelCase : str = scheduler_output - scheduler_output + torch.ones_like(UpperCamelCase_)
return result
| 77 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple:
super().__init__(features=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = torch_tensor_kwargs
import torch # noqa import torch at initialization
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column:
if all(
isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any:
import torch
if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ):
return value
elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ):
return value.tolist()
UpperCamelCase : str = {}
if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ):
UpperCamelCase : List[str] = {'dtype': torch.intaa}
elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ):
UpperCamelCase : int = {'dtype': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ):
UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ )
return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
import torch
# support for torch, tf, jax etc.
if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ):
UpperCamelCase : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ):
return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] )
return self._tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int:
return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ )
return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor":
UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] )
UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ )
return column
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping:
UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ )
for column_name in batch:
UpperCamelCase : str = self._consolidate(batch[column_name] )
return batch
| 40 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : int ) -> int:
'''simple docstring'''
assert isinstance(snake_case_ , snake_case_ ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase_ = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(snake_case_ )
else:
UpperCAmelCase_ = sylvester(number - 1 )
UpperCAmelCase_ = num - 1
UpperCAmelCase_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 78 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) )
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
UpperCamelCase : int = (
'Wrong input data\'s dimensions... '
F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}"""
)
raise ValueError(snake_case__ )
try:
if dataset.shape[1] != value_array.shape[1]:
UpperCamelCase : str = (
'Wrong input data\'s shape... '
F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"""
)
raise ValueError(snake_case__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
UpperCamelCase : Dict = (
'Input data have different datatype... '
F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}"""
)
raise TypeError(snake_case__ )
UpperCamelCase : List[Any] = []
for value in value_array:
UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] )
UpperCamelCase : Dict = dataset[0].tolist()
for dataset_value in dataset[1:]:
UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ )
if dist > temp_dist:
UpperCamelCase : str = temp_dist
UpperCamelCase : List[str] = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float:
return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {
"""salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""",
}
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = 'blip_2_vision_model'
def __init__( self , _lowerCAmelCase=1408 , _lowerCAmelCase=6144 , _lowerCAmelCase=39 , _lowerCAmelCase=16 , _lowerCAmelCase=224 , _lowerCAmelCase=14 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0_0_0_0_1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=1e-10 , _lowerCAmelCase=True , **_lowerCAmelCase , ):
super().__init__(**_lowerCAmelCase )
UpperCAmelCase__ : Tuple = hidden_size
UpperCAmelCase__ : int = intermediate_size
UpperCAmelCase__ : Optional[int] = num_hidden_layers
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : Union[str, Any] = patch_size
UpperCAmelCase__ : Dict = image_size
UpperCAmelCase__ : Optional[int] = initializer_range
UpperCAmelCase__ : Tuple = attention_dropout
UpperCAmelCase__ : Dict = layer_norm_eps
UpperCAmelCase__ : str = hidden_act
UpperCAmelCase__ : Tuple = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _lowerCAmelCase , **_lowerCAmelCase ):
cls._set_token_in_kwargs(_lowerCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ : str = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
UpperCAmelCase__ : List[Any] = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase )
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = 'blip_2_qformer'
def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=2 , _lowerCAmelCase=1408 , **_lowerCAmelCase , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
UpperCAmelCase__ : Any = vocab_size
UpperCAmelCase__ : Optional[int] = hidden_size
UpperCAmelCase__ : Optional[int] = num_hidden_layers
UpperCAmelCase__ : str = num_attention_heads
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : int = intermediate_size
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : int = max_position_embeddings
UpperCAmelCase__ : Optional[Any] = initializer_range
UpperCAmelCase__ : Optional[int] = layer_norm_eps
UpperCAmelCase__ : Dict = position_embedding_type
UpperCAmelCase__ : Tuple = cross_attention_frequency
UpperCAmelCase__ : Optional[Any] = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _lowerCAmelCase , **_lowerCAmelCase ):
cls._set_token_in_kwargs(_lowerCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ : Dict = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
UpperCAmelCase__ : Any = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase )
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = 'blip-2'
__lowerCamelCase = True
def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=32 , **_lowerCAmelCase ):
super().__init__(**_lowerCAmelCase )
if vision_config is None:
UpperCAmelCase__ : int = {}
logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" )
if qformer_config is None:
UpperCAmelCase__ : str = {}
logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" )
if text_config is None:
UpperCAmelCase__ : Dict = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
UpperCAmelCase__ : Any = BlipaVisionConfig(**_lowerCAmelCase )
UpperCAmelCase__ : str = BlipaQFormerConfig(**_lowerCAmelCase )
UpperCAmelCase__ : Optional[int] = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[text_model_type](**_lowerCAmelCase )
UpperCAmelCase__ : Tuple = self.text_config.tie_word_embeddings
UpperCAmelCase__ : str = self.text_config.is_encoder_decoder
UpperCAmelCase__ : Optional[Any] = num_query_tokens
UpperCAmelCase__ : Optional[Any] = self.vision_config.hidden_size
UpperCAmelCase__ : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
UpperCAmelCase__ : List[Any] = 1.0
UpperCAmelCase__ : Optional[Any] = 0.0_2
@classmethod
def __UpperCAmelCase ( cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCAmelCase , )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : str = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ : str = self.vision_config.to_dict()
UpperCAmelCase__ : Dict = self.qformer_config.to_dict()
UpperCAmelCase__ : List[Any] = self.text_config.to_dict()
UpperCAmelCase__ : List[Any] = self.__class__.model_type
return output
| 79 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__UpperCAmelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__UpperCAmelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
__UpperCAmelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
__UpperCAmelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
__UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image)
__UpperCAmelCase = np.expand_dims(test_image, axis=0)
__UpperCAmelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__UpperCAmelCase = '''Normal'''
if result[0][0] == 1:
__UpperCAmelCase = '''Abnormality detected'''
| 40 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : Any = {
"""facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""",
}
class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
__snake_case :List[Any] = 'convnextv2'
def __init__( self : List[Any] , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : str=224 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=None , **_lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
super().__init__(**_lowerCAmelCase )
__lowercase = num_channels
__lowercase = patch_size
__lowercase = num_stages
__lowercase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
__lowercase = [3, 3, 9, 3] if depths is None else depths
__lowercase = hidden_act
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = drop_path_rate
__lowercase = image_size
__lowercase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
| 80 |
import os
import pytest
from attr import dataclass
__UpperCAmelCase = '''us-east-1''' # defaults region
@dataclass
class lowerCAmelCase_ :
UpperCAmelCase__ : str
UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
UpperCAmelCase__ : Union[str, Any] = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000}
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def snake_case_ ( self ) -> str:
return F"""{self.framework}-transfromers-test"""
@property
def snake_case_ ( self ) -> str:
return F"""./tests/sagemaker/scripts/{self.framework}"""
@property
def snake_case_ ( self ) -> str:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]:
UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
| 40 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.