code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mobilenet_v1''' def __init__( self: List[Any] , UpperCamelCase_: Any=3 , UpperCamelCase_: int=224 , UpperCamelCase_: Optional[int]=1.0 , UpperCamelCase_: int=8 , UpperCamelCase_: str="relu6" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[Any]=0.999 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Union[str, Any]=0.001 , **UpperCamelCase_: Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__(**UpperCamelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = min_depth lowercase__ = hidden_act lowercase__ = tf_padding lowercase__ = classifier_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps class _a ( UpperCamelCase__ ): _lowercase : List[str] = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self: List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowerCamelCase_ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowerCamelCase_ ( self: Any ) -> float: """simple docstring""" return 1E-4
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): def __init__( self: Union[str, Any] , UpperCamelCase_: Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> str: """simple docstring""" super().__init__() lowercase__ = nn.ModuleList(UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[torch.Tensor, float, int] , UpperCamelCase_: torch.Tensor , UpperCamelCase_: List[torch.tensor] , UpperCamelCase_: List[float] , UpperCamelCase_: Optional[torch.Tensor] = None , UpperCamelCase_: Optional[torch.Tensor] = None , UpperCamelCase_: Optional[torch.Tensor] = None , UpperCamelCase_: Optional[Dict[str, Any]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , ) -> Union[ControlNetOutput, Tuple]: """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase_ , UpperCamelCase_ , self.nets ) ): lowercase__ , lowercase__ = controlnet( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) # merge samples if i == 0: lowercase__ , lowercase__ = down_samples, mid_sample else: lowercase__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase_ , UpperCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, os.PathLike] , UpperCamelCase_: bool = True , UpperCamelCase_: Callable = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , ) -> Any: """simple docstring""" lowercase__ = 0 lowercase__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase_ , is_main_process=UpperCamelCase_ , save_function=UpperCamelCase_ , safe_serialization=UpperCamelCase_ , variant=UpperCamelCase_ , ) idx += 1 lowercase__ = model_path_to_save + f'_{idx}' @classmethod def lowerCamelCase_ ( cls: int , UpperCamelCase_: Optional[Union[str, os.PathLike]] , **UpperCamelCase_: Any ) -> List[str]: """simple docstring""" lowercase__ = 0 lowercase__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowercase__ = pretrained_model_path while os.path.isdir(UpperCamelCase_ ): lowercase__ = ControlNetModel.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) controlnets.append(UpperCamelCase_ ) idx += 1 lowercase__ = pretrained_model_path + f'_{idx}' logger.info(f'{len(UpperCamelCase_ )} controlnets loaded from {pretrained_model_path}.' ) if len(UpperCamelCase_ ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(UpperCamelCase_ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(UpperCamelCase_ )
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = StableDiffusionControlNetImgaImgPipeline _lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _lowercase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self: str ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowercase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any=0 ) -> Union[str, Any]: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = 2 lowercase__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ) lowercase__ = floats_tensor(control_image.shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = StableDiffusionControlNetImgaImgPipeline _lowercase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCamelCase_: Optional[int] ): if isinstance(UpperCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) lowercase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = MultiControlNetModel([controlneta, controlneta] ) lowercase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any]=0 ) -> Union[str, Any]: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = 2 lowercase__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), ] lowercase__ = floats_tensor(control_image[0].shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) lowercase__ = 10.0 lowercase__ = 4 lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = steps lowercase__ = scale lowercase__ = pipe(**UpperCamelCase_ )[0] lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = steps lowercase__ = scale lowercase__ = pipe(**UpperCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = steps lowercase__ = scale lowercase__ = pipe(**UpperCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = steps lowercase__ = scale lowercase__ = pipe(**UpperCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase_ ( self: Dict ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: str ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ , controlnet=UpperCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ = '''evil space-punk bird''' lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__ = pipe( UpperCamelCase_ , UpperCamelCase_ , control_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import math import random from typing import Any from .hill_climbing import SearchProblem def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = math.inf , SCREAMING_SNAKE_CASE = -math.inf , SCREAMING_SNAKE_CASE = math.inf , SCREAMING_SNAKE_CASE = -math.inf , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 1_00 , SCREAMING_SNAKE_CASE = 0.01 , SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" lowercase__ = False lowercase__ = search_prob lowercase__ = start_temperate lowercase__ = [] lowercase__ = 0 lowercase__ = None while not search_end: lowercase__ = current_state.score() if best_state is None or current_score > best_state.score(): lowercase__ = current_state scores.append(SCREAMING_SNAKE_CASE ) iterations += 1 lowercase__ = None lowercase__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowercase__ = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor lowercase__ = neighbors.pop(SCREAMING_SNAKE_CASE ) lowercase__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowercase__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowercase__ = picked_neighbor else: lowercase__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowercase__ = picked_neighbor lowercase__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowercase__ = True else: lowercase__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" ) lowerCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" )
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = list(SCREAMING_SNAKE_CASE ) lowercase__ = list(SCREAMING_SNAKE_CASE ) lowercase__ = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 lowercase__ = '''_''' if count > 1: return False else: return "".join(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] while True: lowercase__ = ['''$'''] * len(SCREAMING_SNAKE_CASE ) lowercase__ = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): lowercase__ = compare_string(binary[i] , binary[j] ) if k is False: lowercase__ = '''*''' lowercase__ = '''*''' temp.append('''X''' ) for i in range(len(SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(SCREAMING_SNAKE_CASE ) == 0: return pi lowercase__ = list(set(SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] for minterm in minterms: lowercase__ = '''''' for _ in range(SCREAMING_SNAKE_CASE ): lowercase__ = str(minterm % 2 ) + string minterm //= 2 temp.append(SCREAMING_SNAKE_CASE ) return temp def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = list(SCREAMING_SNAKE_CASE ) lowercase__ = list(SCREAMING_SNAKE_CASE ) lowercase__ = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = [0] * len(SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): lowercase__ = 0 lowercase__ = -1 for j in range(len(SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 lowercase__ = j if count == 1: lowercase__ = 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ = 0 temp.append(prime_implicants[i] ) while True: lowercase__ = 0 lowercase__ = -1 lowercase__ = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ = chart[i].count(1 ) if count_n > max_n: lowercase__ = count_n lowercase__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ = 0 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for x in range(len(SCREAMING_SNAKE_CASE ) )] for x in range(len(SCREAMING_SNAKE_CASE ) )] for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ = prime_implicants[i].count('''_''' ) for j in range(len(SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , SCREAMING_SNAKE_CASE ): lowercase__ = 1 return chart def _a ( ): """simple docstring""" lowercase__ = int(input('''Enter the no. of variables\n''' ) ) lowercase__ = [ float(SCREAMING_SNAKE_CASE ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] lowercase__ = decimal_to_binary(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = check(SCREAMING_SNAKE_CASE ) print('''Prime Implicants are:''' ) print(SCREAMING_SNAKE_CASE ) lowercase__ = prime_implicant_chart(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = selection(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print('''Essential Prime Implicants are:''' ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''informer''' _lowercase : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self: Dict , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "student_t" , UpperCamelCase_: str = "nll" , UpperCamelCase_: int = 1 , UpperCamelCase_: List[int] = None , UpperCamelCase_: Optional[Union[str, bool]] = "mean" , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: int = 64 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "gelu" , UpperCamelCase_: float = 0.05 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: int = 100 , UpperCamelCase_: float = 0.02 , UpperCamelCase_: Tuple=True , UpperCamelCase_: str = "prob" , UpperCamelCase_: int = 5 , UpperCamelCase_: bool = True , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache # Informer lowercase__ = attention_type lowercase__ = sampling_factor lowercase__ = distil super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) lowercase__ = re.match(R'''^mobilenet_v1_([^_]*)_([^_]*)$''' , SCREAMING_SNAKE_CASE ) if matches: lowercase__ = float(matches[1] ) lowercase__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase__ = 10_01 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = '''huggingface/label-files''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} lowercase__ = '''background''' lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = get_mobilenet_va_config(SCREAMING_SNAKE_CASE ) # Load 🤗 model lowercase__ = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase__ = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": lowercase__ = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": lowercase__ = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: lowercase__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing to the hub...''' ) lowercase__ = '''google/''' + model_name image_processor.push_to_hub(SCREAMING_SNAKE_CASE ) model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } lowerCAmelCase = { 'google/pegasus-xsum': 512, } class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = PegasusTokenizer _lowercase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , UpperCamelCase_: int=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Tuple="<pad>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Tuple="<unk>" , UpperCamelCase_: Optional[int]="<mask_2>" , UpperCamelCase_: Dict="<mask_1>" , UpperCamelCase_: Any=None , UpperCamelCase_: int=103 , **UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError( f'additional_special_tokens should be of type {type(UpperCamelCase_ )}, but is' f' {type(UpperCamelCase_ )}' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(UpperCamelCase_ ) , self.offset - 1 ) ] if len(set(UpperCamelCase_ ) ) != len(UpperCamelCase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , pad_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , mask_token_sent=UpperCamelCase_ , offset=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase_ ( self: Any , UpperCamelCase_: List , UpperCamelCase_: Optional[List] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCamelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE ) lowercase__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) lowercase__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowercase__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowercase__ = f'layers_{str(SCREAMING_SNAKE_CASE )}' # Self-Attention lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase__ = flax_model.params['''encoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_global_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = tax_mlp_layer_norm lowercase__ = flax_model_encoder_layer_block # Only for layer 0: lowercase__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_encoder_global_rel_embedding # Assigning lowercase__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowercase__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase__ = f'layers_{str(SCREAMING_SNAKE_CASE )}' # Self-Attention lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowercase__ = tax_enc_dec_attention_module['''key''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''out''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''query''']['''kernel'''] lowercase__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase__ = flax_model.params['''decoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] lowercase__ = tax_attention_key lowercase__ = tax_attention_out lowercase__ = tax_attention_query lowercase__ = tax_attention_value lowercase__ = tax_pre_attention_layer_norm lowercase__ = tax_enc_dec_attention_key lowercase__ = tax_enc_dec_attention_out lowercase__ = tax_enc_dec_attention_query lowercase__ = tax_enc_dec_attention_value lowercase__ = tax_cross_layer_norm if split_mlp_wi: lowercase__ = tax_mlp_wi_a lowercase__ = tax_mlp_wi_a else: lowercase__ = tax_mlp_wi lowercase__ = tax_mlp_wo lowercase__ = txa_mlp_layer_norm lowercase__ = flax_model_decoder_layer_block # Decoder Normalization lowercase__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowercase__ = txa_decoder_norm # Only for layer 0: lowercase__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase__ = tax_decoder_rel_embedding # Token Embeddings lowercase__ = tax_model['''target''']['''token_embedder''']['''embedding'''] lowercase__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(SCREAMING_SNAKE_CASE ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } lowerCAmelCase = {'mobilebert-uncased': 512} lowerCAmelCase = {} class _a ( UpperCamelCase__ ): _lowercase : str = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = MobileBertTokenizer def __init__( self: int , UpperCamelCase_: Any=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Dict=True , UpperCamelCase_: List[str]="[UNK]" , UpperCamelCase_: List[str]="[SEP]" , UpperCamelCase_: Optional[Any]="[PAD]" , UpperCamelCase_: List[Any]="[CLS]" , UpperCamelCase_: int="[MASK]" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=None , **UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowercase__ = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**UpperCamelCase_ ) lowercase__ = do_lower_case def lowerCamelCase_ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: Any=None ) -> int: """simple docstring""" lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _a ( UpperCamelCase__ , UpperCamelCase__ ): _lowercase : int = '''pixel_values''' _lowercase : Optional[int] = False _lowercase : Optional[Any] = TimmBackboneConfig def __init__( self: Union[str, Any] , UpperCamelCase_: Tuple , **UpperCamelCase_: Optional[int] ) -> Optional[int]: """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(UpperCamelCase_ ) lowercase__ = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCamelCase_ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) lowercase__ = getattr(UpperCamelCase_ , '''use_pretrained_backbone''' , UpperCamelCase_ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. lowercase__ = config.out_indices if getattr(UpperCamelCase_ , '''out_indices''' , UpperCamelCase_ ) is not None else (-1,) lowercase__ = timm.create_model( config.backbone , pretrained=UpperCamelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCamelCase_ , **UpperCamelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase__ = self._backbone.return_layers lowercase__ = {layer['''module''']: str(UpperCamelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase_ ) @classmethod def lowerCamelCase_ ( cls: Any , UpperCamelCase_: List[str] , *UpperCamelCase_: List[str] , **UpperCamelCase_: Optional[Any] ) -> int: """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig lowercase__ = kwargs.pop('''config''' , TimmBackboneConfig() ) lowercase__ = kwargs.pop('''use_timm_backbone''' , UpperCamelCase_ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) lowercase__ = kwargs.pop('''num_channels''' , config.num_channels ) lowercase__ = kwargs.pop('''features_only''' , config.features_only ) lowercase__ = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) lowercase__ = kwargs.pop('''out_indices''' , config.out_indices ) lowercase__ = TimmBackboneConfig( backbone=UpperCamelCase_ , num_channels=UpperCamelCase_ , features_only=UpperCamelCase_ , use_pretrained_backbone=UpperCamelCase_ , out_indices=UpperCamelCase_ , ) return super()._from_config(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: List[Any] ) -> Any: """simple docstring""" pass def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Tuple=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Tuple=None , **UpperCamelCase_: Optional[int] ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase__ = self._all_layers lowercase__ = self._backbone(UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = self._return_layers lowercase__ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase__ = self._backbone(UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = None lowercase__ = tuple(UpperCamelCase_ ) lowercase__ = tuple(UpperCamelCase_ ) if hidden_states is not None else None if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: lowercase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase_ , hidden_states=UpperCamelCase_ , attentions=UpperCamelCase_ )
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = '''stabilityai/stable-diffusion-2''' lowercase__ , lowercase__ = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase__ = scheduler_params lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowercase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
from collections import deque from .hash_table import HashTable class _a ( UpperCamelCase__ ): def __init__( self: Dict , *UpperCamelCase_: Any , **UpperCamelCase_: Tuple ) -> Any: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" lowercase__ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(UpperCamelCase_ ) lowercase__ = self.values[key] def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" return ( sum(self.charge_factor - len(UpperCamelCase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str]=None ) -> Union[str, Any]: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(UpperCamelCase_ ) == 0 ): return key return super()._collision_resolution(UpperCamelCase_ , UpperCamelCase_ )
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class _a ( UpperCamelCase__ ): def __init__( self: Optional[Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: Any ) -> int: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , '''decord''' ) self.check_model_type(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: List[Any]=None ) -> Optional[Any]: """simple docstring""" lowercase__ = {} if frame_sampling_rate is not None: lowercase__ = frame_sampling_rate if num_frames is not None: lowercase__ = num_frames lowercase__ = {} if top_k is not None: lowercase__ = top_k return preprocess_params, {}, postprocess_params def __call__( self: List[Any] , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: List[Any] ) -> Dict: """simple docstring""" return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Union[str, Any]=1 ) -> int: """simple docstring""" if num_frames is None: lowercase__ = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowercase__ = BytesIO(requests.get(UpperCamelCase_ ).content ) lowercase__ = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) lowercase__ = 0 lowercase__ = num_frames * frame_sampling_rate - 1 lowercase__ = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) lowercase__ = videoreader.get_batch(UpperCamelCase_ ).asnumpy() lowercase__ = list(UpperCamelCase_ ) lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[Any] ) -> Any: """simple docstring""" lowercase__ = self.model(**UpperCamelCase_ ) return model_outputs def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: List[str]=5 ) -> str: """simple docstring""" if top_k > self.model.config.num_labels: lowercase__ = self.model.config.num_labels if self.framework == "pt": lowercase__ = model_outputs.logits.softmax(-1 )[0] lowercase__ , lowercase__ = probs.topk(UpperCamelCase_ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase__ = scores.tolist() lowercase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase__ = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" lowercase__ = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" lowercase__ = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : str = CTRLTokenizer _lowercase : Dict = False _lowercase : int = False def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase__ = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Dict , **UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> Optional[int]: """simple docstring""" lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt react readapt apt''' return input_text, output_text def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if "://" in dataset_path: lowercase__ = dataset_path.split('''://''' )[1] return dataset_path def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = not is_remote_filesystem(SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) ) else: fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase__ = None lowercase__ = None lowercase__ = threading.Lock()
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''luke''' def __init__( self: Any , UpperCamelCase_: Optional[int]=50_267 , UpperCamelCase_: List[Any]=500_000 , UpperCamelCase_: Optional[int]=768 , UpperCamelCase_: Any=256 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: str=12 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Tuple=512 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: Any=1E-1_2 , UpperCamelCase_: str=True , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: int=0 , UpperCamelCase_: Optional[Any]=2 , **UpperCamelCase_: int , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = entity_vocab_size lowercase__ = hidden_size lowercase__ = entity_emb_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = use_entity_aware_attention lowercase__ = classifier_dropout
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" lowercase__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) sd_pipe.set_scheduler('''sample_euler''' ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) sd_pipe.set_scheduler('''sample_euler''' ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) lowercase__ = '''A painting of a squirrel eating a burger''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=UpperCamelCase_ , ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for word_or_phrase in separated: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = 256 class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = ['''melgan'''] def __init__( self: List[Any] , UpperCamelCase_: SpectrogramNotesEncoder , UpperCamelCase_: SpectrogramContEncoder , UpperCamelCase_: TaFilmDecoder , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: """simple docstring""" super().__init__() # From MELGAN lowercase__ = math.log(1E-5 ) # Matches MelGAN training. lowercase__ = 4.0 # Largest value for most examples lowercase__ = 128 self.register_modules( notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str]=(-1.0, 1.0) , UpperCamelCase_: List[Any]=False ) -> Any: """simple docstring""" lowercase__ , lowercase__ = output_range if clip: lowercase__ = torch.clip(UpperCamelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int]=(-1.0, 1.0) , UpperCamelCase_: List[str]=False ) -> str: """simple docstring""" lowercase__ , lowercase__ = input_range lowercase__ = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs # Scale to [0, 1]. lowercase__ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int] ) -> Any: """simple docstring""" lowercase__ = input_tokens > 0 lowercase__ , lowercase__ = self.notes_encoder( encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) lowercase__ , lowercase__ = self.continuous_encoder( encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = noise_time if not torch.is_tensor(UpperCamelCase_ ): lowercase__ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: lowercase__ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__ = self.decoder( encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ ) return logits @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase_: List[List[int]] , UpperCamelCase_: Optional[torch.Generator] = None , UpperCamelCase_: int = 100 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "numpy" , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(UpperCamelCase_ )}.' ) lowercase__ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__ = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase_ ): if i == 0: lowercase__ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__ = ones lowercase__ = self.scale_features( UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ ) lowercase__ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ = self.decode( encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__ = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowercase__ = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] ) lowercase__ = mel[:1] lowercase__ = mel.cpu().float().numpy() lowercase__ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ ) logger.info('''Generated segment''' , UpperCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": lowercase__ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase_ )
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" lowercase__ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowercase__ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowercase__ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowercase__ = tf_top_k_top_p_filtering(UpperCamelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowercase__ = output[output != -float('''inf''' )] lowercase__ = tf.cast( tf.where(tf.not_equal(UpperCamelCase_ , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-1_2 ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @require_tf class _a ( unittest.TestCase , UpperCamelCase__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): _lowercase : List[Any] = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = 2 lowercase__ = 2 class _a ( tf.Module ): def __init__( self: List[Any] , UpperCamelCase_: List[str] ) -> Optional[int]: """simple docstring""" super(UpperCamelCase_ , self ).__init__() lowercase__ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} lowercase__ = [[2, 0], [102, 103]] lowercase__ = [[1, 0], [1, 1]] lowercase__ = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) lowercase__ = tf.saved_model.load(UpperCamelCase_ ).signatures['''serving_default'''] for batch_size in range(1 , len(UpperCamelCase_ ) + 1 ): lowercase__ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } lowercase__ = serving_func(**UpperCamelCase_ )['''sequences'''] lowercase__ = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = 1 lowercase__ = 2 class _a ( tf.Module ): def __init__( self: Tuple , UpperCamelCase_: Dict ) -> Tuple: """simple docstring""" super(UpperCamelCase_ , self ).__init__() lowercase__ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: List[str] ) -> Any: """simple docstring""" lowercase__ = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} lowercase__ = [[2], [102, 103]] lowercase__ = [[1], [1, 1]] lowercase__ = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'''serving_default''': dummy_model.serving} ) lowercase__ = tf.saved_model.load(UpperCamelCase_ ).signatures['''serving_default'''] for input_row in range(len(UpperCamelCase_ ) ): lowercase__ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } lowercase__ = serving_func(**UpperCamelCase_ )['''sequences'''] lowercase__ = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow @require_tensorflow_text def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=UpperCamelCase_ ) class _a ( tf.keras.layers.Layer ): def __init__( self: str ) -> Tuple: """simple docstring""" super().__init__() lowercase__ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase_ , '''spiece.model''' ) , '''rb''' ).read() ) lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def lowerCamelCase_ ( self: int , UpperCamelCase_: int , *UpperCamelCase_: List[Any] , **UpperCamelCase_: Dict ) -> Dict: """simple docstring""" lowercase__ = self.tokenizer.tokenize(UpperCamelCase_ ) lowercase__ , lowercase__ = text.pad_model_inputs( UpperCamelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowercase__ = self.model.generate(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) return self.tokenizer.detokenize(UpperCamelCase_ ) lowercase__ = CompleteSentenceTransformer() lowercase__ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) lowercase__ = complete_model(UpperCamelCase_ ) lowercase__ = tf.keras.Model(UpperCamelCase_ , UpperCamelCase_ ) keras_model.save(UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 10, '''temperature''': 0.7, } lowercase__ = 14 lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = '''Hello, my dog is cute and''' lowercase__ = tokenizer(UpperCamelCase_ , return_tensors='''tf''' ) lowercase__ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowercase__ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowercase__ = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowercase__ = [638, 198] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) lowercase__ = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowercase__ = '''Hugging Face is a technology company based in New York and Paris.''' lowercase__ = bart_tokenizer(UpperCamelCase_ , return_tensors='''tf''' ).input_ids lowercase__ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowercase__ = bart_model.generate(UpperCamelCase_ ).numpy() class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Optional[int] ) -> List[Any]: """simple docstring""" return super().call(UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) lowercase__ = bart_model.generate(UpperCamelCase_ , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(UpperCamelCase_ , UpperCamelCase_ ) ) class _a ( bart_model.model.encoder.__class__ ): def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Tuple , **UpperCamelCase_: int ) -> List[Any]: """simple docstring""" return super().call(UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = FakeEncoder(bart_model.config , bart_model.model.shared ) lowercase__ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowercase__ = bart_model.generate(UpperCamelCase_ ).numpy() with self.assertRaises(UpperCamelCase_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase_ , foo='''bar''' )
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = StableDiffusionInpaintPipeline _lowercase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _lowercase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowercase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase : List[Any] = frozenset([] ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) lowercase__ = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str=0 ) -> int: """simple docstring""" lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) lowercase__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) lowercase__ = sd_pipe(**UpperCamelCase_ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) lowercase__ = '''stabilityai/stable-diffusion-2-inpainting''' lowercase__ = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) lowercase__ = '''stabilityai/stable-diffusion-2-inpainting''' lowercase__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='''np''' , ) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''stabilityai/stable-diffusion-2-inpainting''' lowercase__ = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) lowercase__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : str = '''open-llama''' def __init__( self: Any , UpperCamelCase_: Union[str, Any]=100_000 , UpperCamelCase_: Optional[int]=4_096 , UpperCamelCase_: Tuple=11_008 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: Union[str, Any]=32 , UpperCamelCase_: List[str]="silu" , UpperCamelCase_: Tuple=2_048 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: List[str]=1E-6 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Any=0 , UpperCamelCase_: Tuple=1 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Dict=True , UpperCamelCase_: str=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Optional[Any]=None , **UpperCamelCase_: List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = rms_norm_eps lowercase__ = use_cache lowercase__ = kwargs.pop( '''use_memorry_efficient_attention''' , UpperCamelCase_ ) lowercase__ = hidden_dropout_prob lowercase__ = attention_dropout_prob lowercase__ = use_stable_embedding lowercase__ = shared_input_output_embedding lowercase__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'got {self.rope_scaling}' ) lowercase__ = self.rope_scaling.get('''type''' , UpperCamelCase_ ) lowercase__ = self.rope_scaling.get('''factor''' , UpperCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if not len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients lowercase__ , lowercase__ , lowercase__ = equationa lowercase__ , lowercase__ , lowercase__ = equationa # Calculate the determinants of the matrices lowercase__ = aa * ba - aa * ba lowercase__ = ca * ba - ca * ba lowercase__ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowercase__ = determinant_x / determinant lowercase__ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase = logging.get_logger(__name__) class _a ( enum.Enum ): _lowercase : Union[str, Any] = 0 _lowercase : List[str] = 1 @add_end_docstrings(UpperCamelCase__ ) class _a ( UpperCamelCase__ ): _lowercase : Any = '''generated''' def __init__( self: int , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , UpperCamelCase_: Tuple=None , UpperCamelCase_: Any=None , **UpperCamelCase_: Optional[int] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = {} if truncation is not None: lowercase__ = truncation lowercase__ = generate_kwargs lowercase__ = {} if return_tensors is not None and return_type is None: lowercase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase__ = return_type if clean_up_tokenization_spaces is not None: lowercase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ = self.tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) if len(UpperCamelCase_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase_ ( self: Dict , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int ) -> Optional[int]: """simple docstring""" return True def lowerCamelCase_ ( self: List[Any] , *UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any ) -> Tuple: """simple docstring""" lowercase__ = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , UpperCamelCase_ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase__ = ([prefix + arg for arg in args[0]],) lowercase__ = True elif isinstance(args[0] , UpperCamelCase_ ): lowercase__ = (prefix + args[0],) lowercase__ = False else: raise ValueError( f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) lowercase__ = self.tokenizer(*UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = super().__call__(*UpperCamelCase_ , **UpperCamelCase_ ) if ( isinstance(args[0] , UpperCamelCase_ ) and all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for el in args[0] ) and all(len(UpperCamelCase_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCamelCase_: Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = self._parse_and_tokenize(UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ ) return inputs def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[int] , **UpperCamelCase_: int ) -> List[Any]: """simple docstring""" if self.framework == "pt": lowercase__ , lowercase__ = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase__ , lowercase__ = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase__ = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase__ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(UpperCamelCase_ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase__ = self.model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = output_ids.shape[0] if self.framework == "pt": lowercase__ = output_ids.reshape(UpperCamelCase_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase__ = tf.reshape(UpperCamelCase_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int=ReturnType.TEXT , UpperCamelCase_: Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase__ = {f'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: lowercase__ = { f'{self.return_name}_text': self.tokenizer.decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , ) } records.append(UpperCamelCase_ ) return records @add_end_docstrings(UpperCamelCase__ ) class _a ( UpperCamelCase__ ): _lowercase : int = '''summary''' def __call__( self: Any , *UpperCamelCase_: Tuple , **UpperCamelCase_: str ) -> Tuple: """simple docstring""" return super().__call__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(UpperCamelCase__ ) class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''translation''' def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int ) -> Dict: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowerCamelCase_ ( self: List[Any] , *UpperCamelCase_: Optional[int] , UpperCamelCase_: int=TruncationStrategy.DO_NOT_TRUNCATE , UpperCamelCase_: Any=None , UpperCamelCase_: List[str]=None ) -> Any: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , UpperCamelCase_ ): return self.tokenizer._build_translation_inputs( *UpperCamelCase_ , return_tensors=self.framework , truncation=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ ) else: return super()._parse_and_tokenize(*UpperCamelCase_ , truncation=UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=None , **UpperCamelCase_: Dict ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = super()._sanitize_parameters(**UpperCamelCase_ ) if src_lang is not None: lowercase__ = src_lang if tgt_lang is not None: lowercase__ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase__ = kwargs.get('''task''' , self.task ) lowercase__ = task.split('''_''' ) if task and len(UpperCamelCase_ ) == 4: # translation, XX, to YY lowercase__ = items[1] lowercase__ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self: Optional[Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: Dict ) -> Tuple: """simple docstring""" return super().__call__(*UpperCamelCase_ , **UpperCamelCase_ )
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
import functools def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = len(SCREAMING_SNAKE_CASE ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE ) , 1 + min_distance(SCREAMING_SNAKE_CASE , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class _a ( tr.AbstractTransform ): def __init__( self: int , UpperCamelCase_: str = " " ) -> List[str]: """simple docstring""" lowercase__ = sentence_delimiter def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: str ) -> Tuple: """simple docstring""" return list(UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[str] ) -> int: """simple docstring""" lowercase__ = [] for sent_idx, sentence in enumerate(UpperCamelCase_ ): chars.extend(self.process_string(UpperCamelCase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase_ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' lowerCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any]=False ) -> List[str]: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( UpperCamelCase_ , UpperCamelCase_ , truth_transform=UpperCamelCase_ , hypothesis_transform=UpperCamelCase_ , )["wer"] lowercase__ = 0 lowercase__ = 0 for prediction, reference in zip(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = jiwer.compute_measures( UpperCamelCase_ , UpperCamelCase_ , truth_transform=UpperCamelCase_ , hypothesis_transform=UpperCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = XLMTokenizer _lowercase : str = False def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = '''lower newer''' lowercase__ = '''lower newer''' return input_text, output_text def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = XLMTokenizer(self.vocab_file , self.merges_file ) lowercase__ = '''lower''' lowercase__ = ['''low''', '''er</w>'''] lowercase__ = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = tokens + ['''<unk>'''] lowercase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowercase__ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) lowercase__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) lowercase__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if length <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
from random import randint, random def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 5 , ): """simple docstring""" lowercase__ = [[-1] * number_of_cells] # Create a highway without any car lowercase__ = 0 lowercase__ = max(SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: lowercase__ = ( randint(0 , SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = highway_now[car_index + 1 :] for cell in range(len(SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(SCREAMING_SNAKE_CASE , -1 ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty lowercase__ = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ = min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car lowercase__ = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident lowercase__ = min(next_highway[car_index] , SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down lowercase__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(highway[0] ) for i in range(SCREAMING_SNAKE_CASE ): lowercase__ = update(highway[i] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): lowercase__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ = speed highway.append(SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''trocr''' _lowercase : int = ['''past_key_values'''] _lowercase : Dict = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self: int , UpperCamelCase_: Tuple=50_265 , UpperCamelCase_: List[str]=1_024 , UpperCamelCase_: Dict=12 , UpperCamelCase_: Optional[Any]=16 , UpperCamelCase_: Tuple=4_096 , UpperCamelCase_: Tuple="gelu" , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Any=0.0 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Dict=True , UpperCamelCase_: Dict=False , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[str]=1 , UpperCamelCase_: Union[str, Any]=0 , UpperCamelCase_: Tuple=2 , **UpperCamelCase_: str , ) -> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = activation_function lowercase__ = max_position_embeddings lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = init_std lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = scale_embedding lowercase__ = use_learned_position_embeddings lowercase__ = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ): """simple docstring""" if attention_mask is None: lowercase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _a : def __init__( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: str=7 , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: str=99 , UpperCamelCase_: Any=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=4 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: int=32 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: Optional[int]=0.02 , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = initializer_range def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase__ = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowercase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowercase__ = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(UpperCamelCase_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(UpperCamelCase_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class _a ( unittest.TestCase ): _lowercase : List[str] = 99 def lowerCamelCase_ ( self: str ) -> List[Any]: """simple docstring""" lowercase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase__ = input_ids.shape[0] lowercase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase_ ( self: Dict ) -> str: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._get_config_and_data() lowercase__ = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowercase__ = lm_model(input_ids=UpperCamelCase_ ) lowercase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase__ = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowercase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowercase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowercase__ = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowercase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowercase__ = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowercase__ = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowercase__ = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _a ( UpperCamelCase__ , unittest.TestCase , UpperCamelCase__ ): _lowercase : Optional[Any] = True _lowercase : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowercase : Any = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = FlaxBlenderbotModelTester(self ) def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_: Dict , UpperCamelCase_: int=None , **UpperCamelCase_: Dict ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowercase__ = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowercase__ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowercase__ = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase__ = np.ones((1, 1) ) * model.config.eos_token_id lowercase__ = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowercase__ = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowercase__ = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowercase__ = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowercase__ = ['''Sam'''] lowercase__ = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowercase__ = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = '''Sam is a great name. It means "sun" in Gaelic.''' lowercase__ = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowercase__ = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format lowercase__ = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: Pipeline , UpperCamelCase_: PipelineDataFormat ) -> Tuple: """simple docstring""" lowercase__ = nlp lowercase__ = reader @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> Dict: """simple docstring""" lowercase__ = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=UpperCamelCase_ , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=UpperCamelCase_ , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=UpperCamelCase_ , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=UpperCamelCase_ , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=UpperCamelCase_ , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=UpperCamelCase_ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=UpperCamelCase_ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=UpperCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self._nlp, [] for entry in self._reader: lowercase__ = nlp(**UpperCamelCase_ ) if self._reader.is_multi_columns else nlp(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): outputs.append(UpperCamelCase_ ) else: outputs += output # Saving data if self._nlp.binary_output: lowercase__ = self._reader.save_binary(UpperCamelCase_ ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(UpperCamelCase_ )
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase = 5_0003 lowerCAmelCase = 5_0002 @require_sentencepiece @require_tokenizers class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = PLBartTokenizer _lowercase : Optional[Any] = None _lowercase : int = False def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PLBartTokenizer(UpperCamelCase_ , language_codes='''base''' , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = PLBartTokenizer(UpperCamelCase_ , language_codes='''base''' , keep_accents=UpperCamelCase_ ) lowercase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase__ = tokenizer.vocab_size lowercase__ = [tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) for x in range(end - 4 , UpperCamelCase_ )] self.assertListEqual(UpperCamelCase_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) lowercase__ = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase__ = tokenizer(UpperCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) , UpperCamelCase_ , ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = PLBartTokenizer(UpperCamelCase_ , language_codes='''multi''' , keep_accents=UpperCamelCase_ ) lowercase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase__ = tokenizer.vocab_size lowercase__ = [tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) for x in range(end - 7 , UpperCamelCase_ )] self.assertListEqual( UpperCamelCase_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) lowercase__ = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase__ = tokenizer(UpperCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) , UpperCamelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): _lowercase : Union[str, Any] = '''uclanlp/plbart-python-en_XX''' _lowercase : Any = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] _lowercase : Union[str, Any] = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] _lowercase : Tuple = [ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase_ ( cls: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) lowercase__ = 1 return cls def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) lowercase__ = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase__ = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) lowercase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , UpperCamelCase_ ) lowercase__ = 10 lowercase__ = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) lowercase__ = PLBartTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , return_tensors='''pt''' ) lowercase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , UpperCamelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" lowercase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowercase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) lowercase__ = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors='''pt''' ) lowercase__ = targets['''input_ids'''] lowercase__ = shift_tokens_right(UpperCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = s.rsplit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return new.join(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase__ = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase__ = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): lowercase__ = rreplace(SCREAMING_SNAKE_CASE , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): lowercase__ = rreplace(SCREAMING_SNAKE_CASE , '''.b''' , '''.bias''' , 1 ) lowercase__ = value.float() return upgrade @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): """simple docstring""" from dall_e import Encoder lowercase__ = Encoder() if os.path.exists(SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(SCREAMING_SNAKE_CASE ) else: lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = ckpt.state_dict() encoder.load_state_dict(SCREAMING_SNAKE_CASE ) if config_path is not None: lowercase__ = FlavaImageCodebookConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: lowercase__ = FlavaImageCodebookConfig() lowercase__ = FlavaImageCodebook(SCREAMING_SNAKE_CASE ).eval() lowercase__ = encoder.state_dict() lowercase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) lowercase__ = hf_model.state_dict() lowercase__ = count_parameters(SCREAMING_SNAKE_CASE ) lowercase__ = count_parameters(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) else: return hf_state_dict if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): def __init__( self: Dict , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Union[str, Any] ) -> None: """simple docstring""" warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = StableDiffusionSAGPipeline _lowercase : Optional[Any] = TEXT_TO_IMAGE_PARAMS _lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : List[str] = False def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any]=0 ) -> Any: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase__ = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__ = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__ = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase__ = None for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True elif name.split('''.''' )[0] == "proj": lowercase__ = fairseq_model.proj lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [line.split(''' ''' )[0] for line in lines] lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowercase__ = model[0].eval() # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE ) lowercase__ = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) lowercase__ = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowercase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowercase__ = False # add projection layer lowercase__ = nn.Parameter(projection_layer.weight ) lowercase__ = nn.Parameter(projection_layer.bias ) lowercase__ = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) , '''w''' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = '''speech_to_text_2''' lowercase__ = '''wav2vec2''' lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } lowerCAmelCase = { 'camembert-base': 512, } lowerCAmelCase = '▁' class _a ( UpperCamelCase__ ): _lowercase : str = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _lowercase : Tuple = CamembertTokenizer def __init__( self: List[Any] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Dict=None , UpperCamelCase_: str="<s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Tuple="<pad>" , UpperCamelCase_: Optional[Any]="<mask>" , UpperCamelCase_: Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase_: Union[str, Any] , ) -> List[Any]: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase_ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _a ( unittest.TestCase ): def __init__( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Dict=3 , UpperCamelCase_: Any=10 , UpperCamelCase_: Optional[int]=18 , UpperCamelCase_: List[Any]=30 , UpperCamelCase_: Tuple=400 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=None , UpperCamelCase_: Tuple=True , UpperCamelCase_: str=[0.5, 0.5, 0.5] , UpperCamelCase_: List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase_: Dict=None , ) -> Any: """simple docstring""" lowercase__ = size if size is not None else {'''shortest_edge''': 18} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = num_frames lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = crop_size def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = VivitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = VivitImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowercase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowercase__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowercase__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for video in video_inputs: self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowercase__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['MobileViTFeatureExtractor'] lowerCAmelCase = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _a ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None class _a ( datasets.ArrowBasedBuilder ): _lowercase : Optional[int] = PandasConfig def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[Any] ) -> Optional[int]: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowercase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase_ , (str, list, tuple) ): lowercase__ = data_files if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase__ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ = [dl_manager.iter_files(UpperCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase_ , gen_kwargs={'''files''': files} ) ) return splits def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ = table_cast(UpperCamelCase_ , self.config.features.arrow_schema ) return pa_table def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[str] ) -> Union[str, Any]: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(UpperCamelCase_ ) ): with open(UpperCamelCase_ , '''rb''' ) as f: lowercase__ = pa.Table.from_pandas(pd.read_pickle(UpperCamelCase_ ) ) yield i, self._cast_table(UpperCamelCase_ )
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
from __future__ import annotations from collections.abc import Generator def _a ( ): """simple docstring""" lowercase__ = {} lowercase__ = 2 while True: lowercase__ = factor_map.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if factor: lowercase__ = factor + prime while x in factor_map: x += factor lowercase__ = factor else: lowercase__ = prime yield prime prime += 1 def _a ( SCREAMING_SNAKE_CASE = 1E10 ): """simple docstring""" lowercase__ = sieve() lowercase__ = 1 while True: lowercase__ = next(SCREAMING_SNAKE_CASE ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE ) n += 2 if __name__ == "__main__": print(solution())
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( UpperCamelCase__ ): def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int]=13 , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: str=False , UpperCamelCase_: Any=False , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=99 , UpperCamelCase_: Tuple=0 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: List[str]=5 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Any=512 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[int]=4 , UpperCamelCase_: Dict="last" , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Union[str, Any]=None , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , langs=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Any , ) -> str: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , ) -> Dict: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: int , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ ) lowercase__ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , ) lowercase__ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , ) -> int: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: int , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowercase : str = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Any=False ) -> Tuple: """simple docstring""" lowercase__ = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=37 ) def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: str ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = torch.jit.trace( UpperCamelCase_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''traced_model.pt''' ) ) lowercase__ = torch.jit.load(os.path.join(UpperCamelCase_ , '''traced_model.pt''' ) , map_location=UpperCamelCase_ ) loaded(inputs_dict['''input_ids'''].to(UpperCamelCase_ ) , inputs_dict['''attention_mask'''].to(UpperCamelCase_ ) ) @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowercase__ = model(UpperCamelCase_ )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) lowercase__ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _a ( unittest.TestCase ): def __init__( self: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple=7 , UpperCamelCase_: int=3 , UpperCamelCase_: int=18 , UpperCamelCase_: Optional[Any]=30 , UpperCamelCase_: str=400 , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: List[str]=None , ) -> Tuple: """simple docstring""" lowercase__ = size if size is not None else {'''height''': 20, '''width''': 20} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = size lowercase__ = do_normalize lowercase__ = do_convert_rgb lowercase__ = [512, 1_024, 2_048, 4_096] lowercase__ = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' lowercase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = PixaStructImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_convert_rgb''' ) ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.image_processor_tester.prepare_dummy_image() lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = 2_048 lowercase__ = image_processor(UpperCamelCase_ , return_tensors='''pt''' , max_patches=UpperCamelCase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( UpperCamelCase_ , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 lowercase__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCamelCase_ ): lowercase__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches lowercase__ = '''Hello''' lowercase__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( UpperCamelCase_ , return_tensors='''pt''' , max_patches=UpperCamelCase_ , header_text=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self: List[Any] ) -> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( UpperCamelCase_ , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( UpperCamelCase_ , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = PixaStructImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = PixaStructImageProcessingTester(self , num_channels=4 ) lowercase__ = 3 @property def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_convert_rgb''' ) ) def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ = image_processor( UpperCamelCase_ , return_tensors='''pt''' , max_patches=UpperCamelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
from collections import defaultdict class _a : def __init__( self: str , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowercase__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] lowercase__ = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowercase__ = (1 << len(UpperCamelCase_ )) - 1 def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] ) -> List[str]: """simple docstring""" if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowercase__ = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. lowercase__ = total_ways_util return self.dp[mask][task_no] def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowerCAmelCase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowerCAmelCase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import math from numpy import inf from scipy.integrate import quad def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return array lowercase__ , lowercase__ = min(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) # Compute the variables lowercase__ = _max - _min + 1 lowercase__ , lowercase__ = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase__ = i - _min lowercase__ = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase__ = 0 for i in range(SCREAMING_SNAKE_CASE ): while holes_repeat[i] > 0: lowercase__ = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = input('Enter numbers separated by comma:\n') lowerCAmelCase = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[float('''inf''' ) for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": lowerCAmelCase = int(input('Enter number of vertices: ')) lowerCAmelCase = int(input('Enter number of edges: ')) lowerCAmelCase = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase = int(input('Enter source:')) lowerCAmelCase = int(input('Enter destination:')) lowerCAmelCase = float(input('Enter weight:')) lowerCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: int=13 , UpperCamelCase_: str=30 , UpperCamelCase_: str=2 , UpperCamelCase_: int=3 , UpperCamelCase_: Any=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Any=4 , UpperCamelCase_: List[Any]=37 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: str=10 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: str=None , ) -> Union[str, Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase__ = self.image_size // 2 lowercase__ = pixel_values[:, :, :image_size, :image_size] lowercase__ = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = TFViTForImageClassification(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase__ = self.image_size // 2 lowercase__ = pixel_values[:, :, :image_size, :image_size] lowercase__ = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTForImageClassification(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _lowercase : List[Any] = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _lowercase : List[str] = False _lowercase : int = False _lowercase : str = False def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" pass def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # forward pass lowercase__ = model(**UpperCamelCase_ ) # verify the logits lowercase__ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 )
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''time_series_transformer''' _lowercase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self: str , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "student_t" , UpperCamelCase_: str = "nll" , UpperCamelCase_: int = 1 , UpperCamelCase_: List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase_: Optional[Union[str, bool]] = "mean" , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: int = 0 , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "gelu" , UpperCamelCase_: int = 64 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: int = 100 , UpperCamelCase_: float = 0.02 , UpperCamelCase_: List[Any]=True , **UpperCamelCase_: List[str] , ) -> str: """simple docstring""" lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(UpperCamelCase_ ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase_ ( self: Optional[int] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowercase__ = flax_key_tuple[:-1] + ('''weight''',) lowercase__ = torch.permute(SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE ): # linear layer lowercase__ = flax_key_tuple[:-1] + ('''weight''',) lowercase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase__ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if "metadata" in layer: lowercase__ = layer.split('''metadata''' ) lowercase__ = ''''''.join(split_layer[0] )[:-1] lowercase__ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: lowercase__ = layer.split('''kvstore''' ) lowercase__ = ''''''.join(split_layer[0] )[:-1] lowercase__ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: lowercase__ = layer.split('''/''' ) lowercase__ = '''/'''.join(split_layer[:-1] ) lowercase__ = (split_layer[-1],) if "kvstore/path" in layer: lowercase__ = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: lowercase__ = '''file''' else: lowercase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) lowercase__ = {} for k, v in current_block.items(): lowercase__ = v lowercase__ = new_current_block torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): """simple docstring""" lowercase__ = convert_file_size_to_int(SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = {} lowercase__ = 0 lowercase__ = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: lowercase__ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE , sep='''/''' ) lowercase__ = {} for layer in checkpoint_info.keys(): lowercase__ , lowercase__ , lowercase__ = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: lowercase__ = content else: lowercase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowercase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowercase__ , lowercase__ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , SCREAMING_SNAKE_CASE ) lowercase__ = '''/'''.join(SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowercase__ = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block lowercase__ = {} lowercase__ = 0 lowercase__ = raw_weights.to(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowercase__ = {} lowercase__ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = weights_name.replace( '''.bin''' , f'-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin' ) # len(sharded_state_dicts):05d} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ = shard for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {'''total_size''': total_size} lowercase__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' , encoding='''utf-8''' ) as f: lowercase__ = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '''\n''' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _a ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowercase__ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) lowercase__ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) lowercase__ = TaTokenizer.from_pretrained('''t5-small''' ) lowercase__ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' lowercase__ = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids lowercase__ = model.generate(SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from collections.abc import Sequence def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0.0 for coeff in reversed(SCREAMING_SNAKE_CASE ): lowercase__ = result * x + coeff return result if __name__ == "__main__": lowerCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCAmelCase = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _a ( UpperCamelCase__ ): def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: float ) -> float: """simple docstring""" return 0.0 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 5_12 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE ) ) lowercase__ = 20 * np.logaa(SCREAMING_SNAKE_CASE ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds lowercase__ = get_bounds(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(SCREAMING_SNAKE_CASE ) plt.show() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 5_12 lowercase__ = [1] + [0] * (size - 1) lowercase__ = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs] lowercase__ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase__ = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(SCREAMING_SNAKE_CASE , -2 * pi ) ) plt.show()
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
import collections import os import re from pathlib import Path lowerCAmelCase = 'src/transformers' # Matches is_xxx_available() lowerCAmelCase = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase = re.compile(R'^\s*try:') # Catches a line with else: lowerCAmelCase = re.compile(R'^\s*else:') def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None lowercase__ = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase__ = f.readlines() lowercase__ = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase__ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowercase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): lowercase__ = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] lowercase__ = re.findall(R'''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowercase__ = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowercase__ = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: lowercase__ = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: lowercase__ = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(''', ''' ) lowercase__ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowercase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase__ = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase__ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowercase__ = lines[line_index] lowercase__ = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" def find_duplicates(SCREAMING_SNAKE_CASE ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase__ = [] for key in import_dict_objects.keys(): lowercase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowercase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase__ = '''base imports''' if key == '''none''' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _a ( ): """simple docstring""" lowercase__ = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) lowercase__ = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: lowercase__ = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE ) ) def _a ( ): """simple docstring""" lowercase__ = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('''*.py''' ) ) ) == 0: continue lowercase__ = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) lowercase__ = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase__ = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) lowercase__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules lowerCAmelCase = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def _a ( ): """simple docstring""" from transformers.utils import direct_transformers_import lowercase__ = direct_transformers_import(SCREAMING_SNAKE_CASE ) lowercase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' ) as f: lowercase__ = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , SCREAMING_SNAKE_CASE ) ) ) lowercase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '''\n'''.join(f'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = '''backbone.''' if is_semantic else '''''' lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', '''beit.embeddings.cls_token'''), (f'{prefix}patch_embed.proj.weight', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'{prefix}patch_embed.proj.bias', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'{prefix}pos_embed', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): lowercase__ = '''backbone.''' if is_semantic else '''''' # queries, keys and values lowercase__ = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) lowercase__ = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = q_bias lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase__ = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) lowercase__ = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) lowercase__ = gamma_a lowercase__ = gamma_a def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = False if '''rvlcdip''' in checkpoint_url else True lowercase__ = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE , use_mask_token=SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase__ = 10_24 lowercase__ = 40_96 lowercase__ = 24 lowercase__ = 16 # labels if "rvlcdip" in checkpoint_url: lowercase__ = 16 lowercase__ = '''huggingface/label-files''' lowercase__ = '''rvlcdip-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase__ = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE ) lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowercase__ = encoding['''pixel_values'''] lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # verify logits lowercase__ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase__ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: lowercase__ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) lowerCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
from __future__ import annotations from typing import Any class _a : def __init__( self: int , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = num_of_nodes lowercase__ = [] lowercase__ = {} def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int ) -> None: """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int ) -> int: """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCamelCase_ ( self: str , UpperCamelCase_: int ) -> None: """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase__ = self.find_component(UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: list[int] , UpperCamelCase_: int , UpperCamelCase_: int ) -> None: """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCamelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowercase__ = self.find_component(UpperCamelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> None: """simple docstring""" lowercase__ = [] lowercase__ = 0 lowercase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = self.m_component[u] lowercase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = self.m_component[u] lowercase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 lowercase__ = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def _a ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def _a ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: int = 32 , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , UpperCamelCase_: bool = True , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Union[str, Any]=30 , UpperCamelCase_: Optional[int]=400 , UpperCamelCase_: List[str]=3 , ) -> Tuple: """simple docstring""" lowercase__ = parent lowercase__ = do_resize lowercase__ = size if size is not None else {'''shortest_edge''': 288} lowercase__ = size_divisor lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = do_center_crop lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_pad lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=False ) -> str: """simple docstring""" if not batched: lowercase__ = self.size['''shortest_edge'''] lowercase__ = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] lowercase__ = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase__ , lowercase__ = size, scale * w else: lowercase__ , lowercase__ = scale * h, size lowercase__ = int((1_333 / 800) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowercase__ = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = newh * scale lowercase__ = neww * scale lowercase__ , lowercase__ = int(newh + 0.5 ), int(neww + 0.5 ) lowercase__ , lowercase__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=8 ): """simple docstring""" lowercase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _a ( UpperCamelCase__ ): def __init__( self: str , UpperCamelCase_: MultilingualCLIP , UpperCamelCase_: XLMRobertaTokenizer , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase_: VQModel , ) -> str: """simple docstring""" super().__init__() self.register_modules( text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) lowercase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: List[str] ) -> List[str]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int]=None , ) -> List[str]: """simple docstring""" lowercase__ = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings lowercase__ = self.tokenizer( UpperCamelCase_ , padding='''max_length''' , truncation=UpperCamelCase_ , max_length=77 , return_attention_mask=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' , ) lowercase__ = text_inputs.input_ids lowercase__ = self.tokenizer(UpperCamelCase_ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowercase__ = text_input_ids.to(UpperCamelCase_ ) lowercase__ = text_inputs.attention_mask.to(UpperCamelCase_ ) lowercase__ , lowercase__ = self.text_encoder( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowercase__ = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = text_encoder_hidden_states.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = text_mask.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''''''] * batch_size elif type(UpperCamelCase_ ) is not type(UpperCamelCase_ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase_ )} !=' f' {type(UpperCamelCase_ )}.' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [negative_prompt] elif batch_size != len(UpperCamelCase_ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase_ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: lowercase__ = negative_prompt lowercase__ = self.tokenizer( UpperCamelCase_ , padding='''max_length''' , max_length=77 , truncation=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' , ) lowercase__ = uncond_input.input_ids.to(UpperCamelCase_ ) lowercase__ = uncond_input.attention_mask.to(UpperCamelCase_ ) lowercase__ , lowercase__ = self.text_encoder( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = negative_prompt_embeds.shape[1] lowercase__ = negative_prompt_embeds.repeat(1 , UpperCamelCase_ ) lowercase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ ) lowercase__ = uncond_text_encoder_hidden_states.shape[1] lowercase__ = uncond_text_encoder_hidden_states.repeat(1 , UpperCamelCase_ , 1 ) lowercase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) lowercase__ = uncond_text_mask.repeat_interleave(UpperCamelCase_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int=0 ) -> str: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase__ , lowercase__ = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) if self.safety_checker is not None: lowercase__ , lowercase__ = cpu_offload_with_hook(self.safety_checker , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. lowercase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase_ ( self: Tuple ) -> Optional[int]: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Optional[Union[str, List[str]]] = None , UpperCamelCase_: int = 512 , UpperCamelCase_: int = 512 , UpperCamelCase_: int = 100 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Tuple: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ , lowercase__ , lowercase__ = self._encode_prompt( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.unet.config.in_channels lowercase__ , lowercase__ = get_new_h_w(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent lowercase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} lowercase__ = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ , lowercase__ = variance_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , ).prev_sample # post-processing lowercase__ = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowercase__ = image * 0.5 + 0.5 lowercase__ = image.clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
from collections.abc import Callable import numpy as np def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = int(np.ceil((x_end - xa) / step_size ) ) lowercase__ = np.zeros((n + 1,) ) lowercase__ = ya lowercase__ = xa for k in range(SCREAMING_SNAKE_CASE ): lowercase__ = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( UpperCamelCase__ ): _lowercase : str = '''new-model''' if is_tf_available(): class _a ( UpperCamelCase__ ): _lowercase : int = NewModelConfig @require_tf class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = '''bert-base-cased''' lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" lowercase__ = '''bert-base-cased''' lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForPreTraining.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForCausalLM.from_pretrained(UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForCausalLM.from_pretrained(UpperCamelCase_ , output_loading_info=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForMaskedLM.from_pretrained(UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForMaskedLM.from_pretrained(UpperCamelCase_ , output_loading_info=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ , output_loading_info=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @slow @require_tensorflow_probability def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowercase__ = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCamelCase_ ) lowercase__ , lowercase__ = TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCamelCase_ , output_loading_info=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 14_410 ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = TFAutoModelWithLMHead.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=UpperCamelCase_ ) , 14_410 ) def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = copy.deepcopy(model.config ) lowercase__ = ['''FunnelBaseModel'''] lowercase__ = TFAutoModel.from_config(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase_ ) lowercase__ = TFAutoModel.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" try: AutoConfig.register('''new-model''' , UpperCamelCase_ ) lowercase__ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(UpperCamelCase_ ): auto_class.register(UpperCamelCase_ , UpperCamelCase_ ) auto_class.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): auto_class.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ = BertModelTester(self ).get_config() lowercase__ = NewModelConfig(**tiny_config.to_dict() ) lowercase__ = auto_class.from_config(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase_ ) lowercase__ = auto_class.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase__ = TFAutoModel.from_pretrained('''bert-base''' ) def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase__ = TFAutoModel.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" with self.assertRaisesRegex( UpperCamelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): lowercase__ = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex(UpperCamelCase_ , '''Use `from_pt=True` to load this model''' ): lowercase__ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowerCamelCase_ ( self: str ) -> List[Any]: """simple docstring""" lowercase__ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase__ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint lowercase__ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: lowercase__ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) lowercase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['''lr'''] lowercase__ = int(config['''num_epochs'''] ) lowercase__ = int(config['''seed'''] ) lowercase__ = int(config['''batch_size'''] ) lowercase__ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE ): lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = output.loss accelerator.backward(SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ = parser.parse_args() lowercase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
from torch import nn def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = tf.data.AUTOTUNE def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=SCREAMING_SNAKE_CASE , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=SCREAMING_SNAKE_CASE , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=SCREAMING_SNAKE_CASE , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=SCREAMING_SNAKE_CASE , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=SCREAMING_SNAKE_CASE , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=SCREAMING_SNAKE_CASE , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=SCREAMING_SNAKE_CASE , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=SCREAMING_SNAKE_CASE , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=SCREAMING_SNAKE_CASE , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=SCREAMING_SNAKE_CASE , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=SCREAMING_SNAKE_CASE , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=SCREAMING_SNAKE_CASE , default=5_12 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=SCREAMING_SNAKE_CASE , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=SCREAMING_SNAKE_CASE , help='''Model ID to upload to on the Hugging Face Hub.''' ) lowercase__ = parser.parse_args() return args def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" try: if args.tpu_name: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(SCREAMING_SNAKE_CASE ) tf.tpu.experimental.initialize_tpu_system(SCREAMING_SNAKE_CASE ) return tpu def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 for file in file_list: lowercase__ = file.split('''/''' )[-1] lowercase__ = re.search(R'''-\d+-(\d+)\.tfrecord''' , SCREAMING_SNAKE_CASE ).group(1 ) lowercase__ = int(SCREAMING_SNAKE_CASE ) num_samples += sample_count return num_samples def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = count_samples(SCREAMING_SNAKE_CASE ) lowercase__ = tf.data.Dataset.from_tensor_slices(SCREAMING_SNAKE_CASE ) if shuffle: lowercase__ = dataset.shuffle(len(SCREAMING_SNAKE_CASE ) ) lowercase__ = tf.data.TFRecordDataset(SCREAMING_SNAKE_CASE , num_parallel_reads=SCREAMING_SNAKE_CASE ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase__ = dataset.apply(tf.data.experimental.assert_cardinality(SCREAMING_SNAKE_CASE ) ) lowercase__ = dataset.map(SCREAMING_SNAKE_CASE , num_parallel_calls=SCREAMING_SNAKE_CASE ) if shuffle: assert shuffle_buffer_size is not None lowercase__ = dataset.shuffle(args.shuffle_buffer_size ) lowercase__ = dataset.batch(SCREAMING_SNAKE_CASE , drop_remainder=SCREAMING_SNAKE_CASE ) lowercase__ = dataset.map(SCREAMING_SNAKE_CASE , num_parallel_calls=SCREAMING_SNAKE_CASE ) lowercase__ = dataset.prefetch(SCREAMING_SNAKE_CASE ) return dataset def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not args.no_tpu: lowercase__ = initialize_tpu(SCREAMING_SNAKE_CASE ) lowercase__ = tf.distribute.TPUStrategy(SCREAMING_SNAKE_CASE ) else: lowercase__ = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) lowercase__ = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase__ = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase__ = tokenizer.vocab_size lowercase__ = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase__ = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase__ = count_samples(SCREAMING_SNAKE_CASE ) lowercase__ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase__ = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase__ = TFAutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase__ , lowercase__ = create_optimizer( num_train_steps=SCREAMING_SNAKE_CASE , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=SCREAMING_SNAKE_CASE , metrics=['''accuracy'''] ) def decode_fn(SCREAMING_SNAKE_CASE ): lowercase__ = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase__ = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=args.mlm_probability , mlm=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) def mask_with_collator(SCREAMING_SNAKE_CASE ): # TF really needs an isin() function lowercase__ = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) lowercase__ , lowercase__ = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(SCREAMING_SNAKE_CASE ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=SCREAMING_SNAKE_CASE , ) return batch lowercase__ = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase__ = prepare_dataset( SCREAMING_SNAKE_CASE , decode_fn=SCREAMING_SNAKE_CASE , mask_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase__ = prepare_dataset( SCREAMING_SNAKE_CASE , decode_fn=SCREAMING_SNAKE_CASE , mask_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE , ) lowercase__ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=SCREAMING_SNAKE_CASE ) ) model.fit( SCREAMING_SNAKE_CASE , validation_data=SCREAMING_SNAKE_CASE , epochs=args.num_epochs , callbacks=SCREAMING_SNAKE_CASE , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCAmelCase = parse_args() main(args)
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "weight" in name: lowercase__ = '''weight''' elif "bias" in name: lowercase__ = '''bias''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SEWConfig() if is_finetuned: lowercase__ = model.wav_encoder.wav_model.cfg else: lowercase__ = model.cfg lowercase__ = fs_config.conv_bias lowercase__ = eval(fs_config.conv_feature_layers ) lowercase__ = [x[0] for x in conv_layers] lowercase__ = [x[1] for x in conv_layers] lowercase__ = [x[2] for x in conv_layers] lowercase__ = '''gelu''' lowercase__ = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' lowercase__ = 0.0 lowercase__ = fs_config.activation_fn.name lowercase__ = fs_config.encoder_embed_dim lowercase__ = 0.02 lowercase__ = fs_config.encoder_ffn_embed_dim lowercase__ = 1E-5 lowercase__ = fs_config.encoder_layerdrop lowercase__ = fs_config.encoder_attention_heads lowercase__ = fs_config.conv_pos_groups lowercase__ = fs_config.conv_pos lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = fs_config.encoder_layers lowercase__ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase__ = model.cfg lowercase__ = fs_config.final_dropout lowercase__ = fs_config.layerdrop lowercase__ = fs_config.activation_dropout lowercase__ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase__ = fs_config.attention_dropout lowercase__ = fs_config.dropout_input lowercase__ = fs_config.dropout lowercase__ = fs_config.mask_channel_length lowercase__ = fs_config.mask_channel_prob lowercase__ = fs_config.mask_length lowercase__ = fs_config.mask_prob lowercase__ = '''Wav2Vec2FeatureExtractor''' lowercase__ = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): """simple docstring""" if is_finetuned: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase__ = SEWConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: lowercase__ = convert_config(model[0] , SCREAMING_SNAKE_CASE ) lowercase__ = model[0].eval() lowercase__ = True if config.feat_extract_norm == '''layer''' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) if is_finetuned: if dict_path: lowercase__ = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) lowercase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) lowercase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = SEWForCTC(SCREAMING_SNAKE_CASE ) else: lowercase__ = SEWModel(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : @staticmethod def lowerCamelCase_ ( *UpperCamelCase_: Any , **UpperCamelCase_: Union[str, Any] ) -> int: """simple docstring""" pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): @require_torch def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" lowercase__ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ = image_classifier(UpperCamelCase_ , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCamelCase_ ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], ] , ) @require_tf def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ = image_classifier(UpperCamelCase_ , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase_ )}, ], ] , ) @slow @require_torch def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ = image_classifier(UpperCamelCase_ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def lowerCamelCase_ ( self: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ = image_classifier(UpperCamelCase_ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
43
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase = logging.getLogger() def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase__ = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' ) as f: lowercase__ = json.load(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'can\'t find {path}' ) return results def _a ( ): """simple docstring""" lowercase__ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( UpperCamelCase__ ): @classmethod def lowerCamelCase_ ( cls: int ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase__ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls: Optional[Any] ) -> Dict: """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = 7 if get_gpu_count() > 1 else 2 lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self: Optional[int] ) -> Dict: """simple docstring""" lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCamelCase_ ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase__ = get_results(UpperCamelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''image_classification_no_trainer''' ) ) )
43
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = args.log_outputs lowercase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase__ = load_metric('''wer''' ) lowercase__ = load_metric('''cer''' ) # compute metrics lowercase__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase__ = f'WER: {wer_result}\nCER: {cer_result}' print(SCREAMING_SNAKE_CASE ) with open(f'{dataset_id}_eval_results.txt' , '''w''' ) as f: f.write(SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase__ = f'log_{dataset_id}_predictions.txt' lowercase__ = f'log_{dataset_id}_targets.txt' with open(SCREAMING_SNAKE_CASE , '''w''' ) as p, open(SCREAMING_SNAKE_CASE , '''w''' ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): p.write(f'{i}' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f'{i}' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(SCREAMING_SNAKE_CASE , with_indices=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase__ = re.sub(SCREAMING_SNAKE_CASE , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase__ = ''' '''.join(text.split(SCREAMING_SNAKE_CASE ) ) return text def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase__ = feature_extractor.sampling_rate # resample audio lowercase__ = dataset.cast_column('''audio''' , Audio(sampling_rate=SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: lowercase__ = 0 if torch.cuda.is_available() else -1 lowercase__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE ): lowercase__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase__ = prediction['''text'''] lowercase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase__ = dataset.map(SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) lowerCAmelCase = parser.parse_args() main(args)
43
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = 'T5Config' class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''mt5''' _lowercase : str = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''mt5''' _lowercase : Optional[Any] = MTaConfig class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''mt5''' _lowercase : Optional[Any] = MTaConfig
43
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowercase__ = MaskFormerConfig(backbone_config=SCREAMING_SNAKE_CASE ) lowercase__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowercase__ = 8_47 lowercase__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowercase__ = 1_50 lowercase__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowercase__ = 1_71 lowercase__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowercase__ = 1_33 lowercase__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowercase__ = 19 lowercase__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowercase__ = 65 lowercase__ = '''mapillary-vistas-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} return config def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight') ) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: hidden_size, :] lowercase__ = in_proj_bias[:config.hidden_size] lowercase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowercase__ = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ = in_proj_weight[-hidden_size :, :] lowercase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: hidden_size, :] lowercase__ = in_proj_bias[:config.hidden_size] lowercase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowercase__ = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ = in_proj_weight[-hidden_size :, :] lowercase__ = in_proj_bias[-hidden_size :] # fmt: on def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = get_maskformer_config(SCREAMING_SNAKE_CASE ) # load original state_dict with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: lowercase__ = pickle.load(SCREAMING_SNAKE_CASE ) lowercase__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # update to torch tensors for key, value in state_dict.items(): lowercase__ = torch.from_numpy(SCREAMING_SNAKE_CASE ) # load 🤗 model lowercase__ = MaskFormerForInstanceSegmentation(SCREAMING_SNAKE_CASE ) model.eval() for name, param in model.named_parameters(): print(SCREAMING_SNAKE_CASE , param.shape ) lowercase__ , lowercase__ = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(SCREAMING_SNAKE_CASE ) == 0, f'Unexpected keys: {unexpected_keys}' # verify results lowercase__ = prepare_img() if "vistas" in model_name: lowercase__ = 65 elif "cityscapes" in model_name: lowercase__ = 6_55_35 else: lowercase__ = 2_55 lowercase__ = True if '''ade''' in model_name else False lowercase__ = MaskFormerImageProcessor(ignore_index=SCREAMING_SNAKE_CASE , reduce_labels=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) lowercase__ = model(**SCREAMING_SNAKE_CASE ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowercase__ = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) image_processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
43
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" for param in module.parameters(): lowercase__ = False def _a ( ): """simple docstring""" lowercase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def _a ( ): """simple docstring""" lowercase__ = datetime.now() lowercase__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
43
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : str = FunnelTokenizer _lowercase : Optional[int] = FunnelTokenizerFast _lowercase : int = True _lowercase : Union[str, Any] = True def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" super().setUp() lowercase__ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCamelCase_ ( self: Union[str, Any] , **UpperCamelCase_: List[str] ) -> Tuple: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , **UpperCamelCase_: List[str] ) -> str: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = '''UNwant\u00E9d,running''' lowercase__ = '''unwanted, running''' return input_text, output_text def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file ) lowercase__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: lowercase__ = tokenizer('''UNwant\u00E9d,running''' ) lowercase__ = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) lowercase__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
from __future__ import annotations from fractions import Fraction def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = 11 lowercase__ = int('''1''' + '''0''' * digit_len ) for num in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 lowercase__ = 10 return solutions def _a ( SCREAMING_SNAKE_CASE = 2 ): """simple docstring""" lowercase__ = 1.0 for fraction in fraction_list(SCREAMING_SNAKE_CASE ): lowercase__ = Fraction(SCREAMING_SNAKE_CASE ) result *= frac.denominator / frac.numerator return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
43
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): # This function is recursive """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE )] if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _a ( UpperCamelCase__ ): _lowercase : Any = '''big_bird''' def __init__( self: List[str] , UpperCamelCase_: List[Any]=50_358 , UpperCamelCase_: Dict=768 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: Tuple="gelu_new" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=4_096 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: int=1E-1_2 , UpperCamelCase_: Dict=True , UpperCamelCase_: Tuple=0 , UpperCamelCase_: Any=1 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: List[str]=66 , UpperCamelCase_: Any="block_sparse" , UpperCamelCase_: int=True , UpperCamelCase_: Dict=False , UpperCamelCase_: List[Any]=64 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: Union[str, Any] , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , sep_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_cache lowercase__ = rescale_embeddings lowercase__ = attention_type lowercase__ = use_bias lowercase__ = block_size lowercase__ = num_random_blocks lowercase__ = classifier_dropout class _a ( UpperCamelCase__ ): @property def lowerCamelCase_ ( self: str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
43
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( UpperCamelCase__ ): _lowercase : Union[PIL.Image.Image, np.ndarray] class _a ( UpperCamelCase__ ): def __init__( self: Dict , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple=0 ) -> int: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Tuple , UpperCamelCase_: str , ) -> Any: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowercase__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) lowercase__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] lowercase__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: lowercase__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): lowercase__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): lowercase__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowercase__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) lowercase__ = self._execution_device lowercase__ = batch_size * num_images_per_prompt lowercase__ = guidance_scale > 1.0 lowercase__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.prior.config.num_embeddings lowercase__ = self.prior.config.embedding_dim lowercase__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowercase__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance lowercase__ , lowercase__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowercase__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) lowercase__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() lowercase__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCamelCase_ ) lowercase__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) lowercase__ = images.cpu().numpy() if output_type == "pil": lowercase__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
43
1
lowerCAmelCase = 0 # The first color of the flag. lowerCAmelCase = 1 # The second color of the flag. lowerCAmelCase = 2 # The third color of the flag. lowerCAmelCase = (red, white, blue) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if not sequence: return [] if len(SCREAMING_SNAKE_CASE ) == 1: return list(SCREAMING_SNAKE_CASE ) lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 1 lowercase__ = 0 while mid <= high: if sequence[mid] == colors[0]: lowercase__ , lowercase__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowercase__ , lowercase__ = sequence[high], sequence[mid] high -= 1 else: lowercase__ = f'The elements inside the sequence must contains only {colors} values' raise ValueError(SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = input('Enter numbers separated by commas:\n').strip() lowerCAmelCase = [int(item.strip()) for item in user_input.split(',')] print(f"""{dutch_national_flag_sort(unsorted)}""")
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase = 6_3_7_8_1_3_7.0 lowerCAmelCase = 6_3_5_6_7_5_2.3_1_4_2_4_5 lowerCAmelCase = 637_8137 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) lowercase__ = radians(SCREAMING_SNAKE_CASE ) lowercase__ = radians(SCREAMING_SNAKE_CASE ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE ) * cos(SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
43
def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit lowercase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
43
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def is_in_circle(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. lowercase__ = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 1.0 ): """simple docstring""" def identity_function(SCREAMING_SNAKE_CASE ) -> float: return x lowercase__ = area_under_curve_estimator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print('''******************''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def function_to_integrate(SCREAMING_SNAKE_CASE ) -> float: return sqrt(4.0 - x * x ) lowercase__ = area_under_curve_estimator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
43
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length, 2) , SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(SCREAMING_SNAKE_CASE ), sequence_length) , SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ord(SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowercase__ = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat.startswith('''P''' ): return True return False @dataclass class _a ( UpperCamelCase__ ): _lowercase : PreTrainedTokenizerBase _lowercase : Union[bool, str, PaddingStrategy] = True _lowercase : Optional[int] = None _lowercase : Optional[int] = None _lowercase : int = -100 _lowercase : str = "pt" def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[Any]: """simple docstring""" import torch lowercase__ = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['''entity_ids'''] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(UpperCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase_ )) + list(UpperCamelCase_ ) for label in labels ] lowercase__ = [feature['''ner_tags'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , -1 , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = [feature['''original_entity_spans'''] for feature in features] lowercase__ = padding_tensor(UpperCamelCase_ , (-1, -1) , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = {k: torch.tensor(UpperCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
43
1
import heapq def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(SCREAMING_SNAKE_CASE , [-1 * len(SCREAMING_SNAKE_CASE ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase__ = heapq.heappop(SCREAMING_SNAKE_CASE )[1][0] chosen_vertices.add(SCREAMING_SNAKE_CASE ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase__ = elem[1][1].index(SCREAMING_SNAKE_CASE ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(SCREAMING_SNAKE_CASE ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
43
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: int , *UpperCamelCase_: str , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ) -> Dict[str, float]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase__ = gen_kwargs lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowercase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = gen_kwargs.copy() lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = time.time() lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics lowercase__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
43
1
lowerCAmelCase = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
43
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase = HfArgumentParser(InitializationArguments) lowerCAmelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
43
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _a ( SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=1_00 , SCREAMING_SNAKE_CASE=10_26 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__ = generate_datasets( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , number=SCREAMING_SNAKE_CASE , min_len=10_26 , trim=SCREAMING_SNAKE_CASE ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowercase__ = load_gpta('''gpt2''' ).to(SCREAMING_SNAKE_CASE ) print('''computing perplexity on objective set''' ) lowercase__ = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).item() print('''perplexity on objective set:''' , SCREAMING_SNAKE_CASE ) # collect igf pairs and save to file demo.jbl collect_objective_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=15 , SCREAMING_SNAKE_CASE=1_28 , SCREAMING_SNAKE_CASE=1_00 , SCREAMING_SNAKE_CASE="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model lowercase__ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowercase__ = SecondaryLearner(SCREAMING_SNAKE_CASE ) # Train secondary learner lowercase__ = train_secondary_learner( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_epochs=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , eval_freq=1_00 , igf_model_path=SCREAMING_SNAKE_CASE , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=10_00 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=recopy_gpta , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE="gpt2_finetuned.pt" , ): """simple docstring""" lowercase__ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowercase__ = RandomSampler(SCREAMING_SNAKE_CASE ) lowercase__ = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE ) lowercase__ = max_steps // (len(SCREAMING_SNAKE_CASE )) + 1 lowercase__ = 0 lowercase__ = torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ = recopy_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.train() if secondary_learner is not None: secondary_learner.to(SCREAMING_SNAKE_CASE ) secondary_learner.eval() lowercase__ = [] lowercase__ = 0 lowercase__ = [] lowercase__ = [] # Compute the performance of the transformer model at the beginning lowercase__ = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) test_perps.append(SCREAMING_SNAKE_CASE ) print('''Test perplexity, step''' , SCREAMING_SNAKE_CASE , ''':''' , SCREAMING_SNAKE_CASE ) for epoch in range(int(SCREAMING_SNAKE_CASE ) ): for step, example in enumerate(SCREAMING_SNAKE_CASE ): torch.cuda.empty_cache() lowercase__ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__ = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) lowercase__ = True if secondary_learner is not None: lowercase__ = secondary_learner.forward( torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE ).unsqueeze(0 ) )[0].item() observed_qs.append(float(SCREAMING_SNAKE_CASE ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__ = -1 if predicted_q < threshold: lowercase__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__ = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) test_perps.append(SCREAMING_SNAKE_CASE ) print('''Test perplexity, step''' , SCREAMING_SNAKE_CASE , ''':''' , SCREAMING_SNAKE_CASE ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=SCREAMING_SNAKE_CASE , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=SCREAMING_SNAKE_CASE , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=SCREAMING_SNAKE_CASE , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=SCREAMING_SNAKE_CASE , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=SCREAMING_SNAKE_CASE , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=SCREAMING_SNAKE_CASE , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=SCREAMING_SNAKE_CASE , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=SCREAMING_SNAKE_CASE , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=SCREAMING_SNAKE_CASE , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=SCREAMING_SNAKE_CASE , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=SCREAMING_SNAKE_CASE , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowercase__ = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowercase__ = training_secondary_learner( SCREAMING_SNAKE_CASE , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowercase__ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__ = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE , secondary_learner=SCREAMING_SNAKE_CASE , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
import re def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: lowercase__ = split_input(SCREAMING_SNAKE_CASE ) if upper: lowercase__ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase__ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return to_simple_case(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" try: lowercase__ = to_simple_case(SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
43
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ = '''xvjiarui/stable-diffusion-2-inpainting''' lowercase__ , lowercase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowercase__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = num_samples * [init_image] lowercase__ = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ = pipeline.prepare_inputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # shard inputs and rng lowercase__ = replicate(UpperCamelCase_ ) lowercase__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = shard(UpperCamelCase_ ) lowercase__ = pipeline( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , jit=UpperCamelCase_ ) lowercase__ = output.images.reshape(UpperCamelCase_ , 512 , 512 , 3 ) lowercase__ = images[0, 253:256, 253:256, -1] lowercase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
43
1
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return len(set(SCREAMING_SNAKE_CASE ) ) == len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _a ( UpperCamelCase__ ): def __init__( self: int , UpperCamelCase_: pyspark.sql.DataFrame , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = "arrow" , **UpperCamelCase_: List[Any] , ) -> Any: """simple docstring""" super().__init__( split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = load_from_cache_file lowercase__ = file_format lowercase__ = Spark( df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
43
class _a : def __init__( self: Tuple , UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" lowercase__ = val lowercase__ = None lowercase__ = None def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" if self.val: if val < self.val: if self.left is None: lowercase__ = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowercase__ = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowercase__ = val def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return arr lowercase__ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase__ = [] inorder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
43
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): def __init__( self: Union[str, Any] , *UpperCamelCase_: Tuple , **UpperCamelCase_: str ) -> None: """simple docstring""" warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print(f'Optimal value : {minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
1
import comet # From: unbabel-comet import torch import datasets lowerCAmelCase = datasets.logging.get_logger(__name__) lowerCAmelCase = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' lowerCAmelCase = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' lowerCAmelCase = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int ) -> int: """simple docstring""" if self.config_name == "default": lowercase__ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: lowercase__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" if gpus is None: lowercase__ = 1 if torch.cuda.is_available() else 0 lowercase__ = {'''src''': sources, '''mt''': predictions, '''ref''': references} lowercase__ = [dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) for t in zip(*data.values() )] lowercase__ , lowercase__ = self.scorer.predict(UpperCamelCase_ , gpus=UpperCamelCase_ , progress_bar=UpperCamelCase_ ) return {"mean_score": mean_score, "scores": scores}
43
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '▁' lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowerCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowerCAmelCase = {'vinai/bartpho-syllable': 1024} class _a ( UpperCamelCase__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: int , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase_ ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Any ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> Dict: """simple docstring""" lowercase__ = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase_ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(UpperCamelCase_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
43
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
43
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
1