code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json'''}
__snake_case = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
__snake_case = {'''mgp-str''': 2_7}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self: Any,A_: Union[str, Any],A_: int="[GO]",A_: List[Any]="[GO]",A_: Tuple="[s]",A_: Dict="[GO]",**A_: Union[str, Any] ):
'''simple docstring'''
super().__init__(
unk_token=A_,bos_token=A_,eos_token=A_,pad_token=A_,**A_,)
with open(A_,encoding='utf-8' ) as vocab_handle:
__UpperCamelCase = json.load(A_ )
__UpperCamelCase = {v: k for k, v in self.vocab.items()}
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return len(self.vocab )
def snake_case_ ( self: Any ):
'''simple docstring'''
return dict(self.vocab,**self.added_tokens_encoder )
def snake_case_ ( self: Union[str, Any],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = []
for s in text:
char_tokens.extend(A_ )
return char_tokens
def snake_case_ ( self: Dict,A_: str ):
'''simple docstring'''
return self.vocab.get(A_,self.vocab.get(self.unk_token ) )
def snake_case_ ( self: str,A_: str ):
'''simple docstring'''
return self.decoder.get(A_ )
def snake_case_ ( self: str,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) )
return
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
with open(A_,'w',encoding='utf-8' ) as f:
f.write(json.dumps(self.vocab,indent=2,sort_keys=A_,ensure_ascii=A_ ) + '\n' )
return (vocab_file,)
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''post_extract_proj''': '''feature_projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.upsample.0''': '''encoder.upsample.projection''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''layer_norm''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
for attribute in key.split('.' ):
__UpperCamelCase = getattr(_lowercase , _lowercase )
if weight_type is not None:
__UpperCamelCase = getattr(_lowercase , _lowercase ).shape
else:
__UpperCamelCase = hf_pointer.shape
assert hf_shape == value.shape, (
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _A ( _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
_lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , )
__UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
__UpperCamelCase = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(_lowercase )[0].split('.' )[-2]
__UpperCamelCase = mapped_key.replace('*' , _lowercase )
if "weight_g" in name:
__UpperCamelCase = 'weight_g'
elif "weight_v" in name:
__UpperCamelCase = 'weight_v'
elif "weight" in name:
__UpperCamelCase = 'weight'
elif "bias" in name:
__UpperCamelCase = 'bias'
else:
__UpperCamelCase = None
set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
continue
if not is_used:
unused_weights.append(_lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = full_name.split('conv_layers.' )[-1]
__UpperCamelCase = name.split('.' )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
__UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
__UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
__UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
__UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = SEWConfig()
if is_finetuned:
__UpperCamelCase = model.wav_encoder.wav_model.cfg
else:
__UpperCamelCase = model.cfg
__UpperCamelCase = fs_config.conv_bias
__UpperCamelCase = eval(fs_config.conv_feature_layers )
__UpperCamelCase = [x[0] for x in conv_layers]
__UpperCamelCase = [x[1] for x in conv_layers]
__UpperCamelCase = [x[2] for x in conv_layers]
__UpperCamelCase = 'gelu'
__UpperCamelCase = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group'
__UpperCamelCase = 0.0
__UpperCamelCase = fs_config.activation_fn.name
__UpperCamelCase = fs_config.encoder_embed_dim
__UpperCamelCase = 0.02
__UpperCamelCase = fs_config.encoder_ffn_embed_dim
__UpperCamelCase = 1e-5
__UpperCamelCase = fs_config.encoder_layerdrop
__UpperCamelCase = fs_config.encoder_attention_heads
__UpperCamelCase = fs_config.conv_pos_groups
__UpperCamelCase = fs_config.conv_pos
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = fs_config.encoder_layers
__UpperCamelCase = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
__UpperCamelCase = model.cfg
__UpperCamelCase = fs_config.final_dropout
__UpperCamelCase = fs_config.layerdrop
__UpperCamelCase = fs_config.activation_dropout
__UpperCamelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
__UpperCamelCase = fs_config.attention_dropout
__UpperCamelCase = fs_config.dropout_input
__UpperCamelCase = fs_config.dropout
__UpperCamelCase = fs_config.mask_channel_length
__UpperCamelCase = fs_config.mask_channel_prob
__UpperCamelCase = fs_config.mask_length
__UpperCamelCase = fs_config.mask_prob
__UpperCamelCase = 'Wav2Vec2FeatureExtractor'
__UpperCamelCase = 'Wav2Vec2CTCTokenizer'
return config
@torch.no_grad()
def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ) -> Optional[Any]:
"""simple docstring"""
if is_finetuned:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
__UpperCamelCase = SEWConfig.from_pretrained(_lowercase )
else:
__UpperCamelCase = convert_config(model[0] , _lowercase )
__UpperCamelCase = model[0].eval()
__UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , )
if is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(_lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(_lowercase , 'vocab.json' )
if not os.path.isdir(_lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowercase ) )
return
os.makedirs(_lowercase , exist_ok=_lowercase )
with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(target_dict.indices , _lowercase )
__UpperCamelCase = WavaVecaCTCTokenizer(
_lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowercase , )
__UpperCamelCase = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase )
processor.save_pretrained(_lowercase )
__UpperCamelCase = SEWForCTC(_lowercase )
else:
__UpperCamelCase = SEWModel(_lowercase )
feature_extractor.save_pretrained(_lowercase )
recursively_load_weights(_lowercase , _lowercase , _lowercase )
hf_model.save_pretrained(_lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
__snake_case = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
import inspect
import unittest
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
__UpperCamelCase = inspect.getmembers(A_,inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
__UpperCamelCase = 'k-diffusion'
elif backend == "invisible_watermark":
__UpperCamelCase = 'invisible-watermark'
assert backend in deps, F'''{backend} is not in the deps table!'''
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
def _A ( _lowercase = 10**9 ) -> int:
"""simple docstring"""
__UpperCamelCase = 1
__UpperCamelCase = 2
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
from __future__ import annotations
def _A ( _lowercase , _lowercase ) -> list[list[int]]:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = 0
__UpperCamelCase = sum(_lowercase )
create_state_space_tree(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
return result
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> None:
"""simple docstring"""
if sum(_lowercase ) > max_sum or (remaining_nums_sum + sum(_lowercase )) < max_sum:
return
if sum(_lowercase ) == max_sum:
result.append(_lowercase )
return
for index in range(_lowercase , len(_lowercase ) ):
create_state_space_tree(
_lowercase , _lowercase , index + 1 , [*path, nums[index]] , _lowercase , remaining_nums_sum - nums[index] , )
__snake_case = [3, 3_4, 4, 1_2, 5, 2]
__snake_case = 9
__snake_case = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-random-t5'
__UpperCamelCase = AutoTokenizer.from_pretrained(A_ )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A_ )
__UpperCamelCase = tokenizer('This is me',return_tensors='pt' )
__UpperCamelCase = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCamelCase = model.generate(**A_ )
__UpperCamelCase = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A_ )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A_ )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCamelCase = model_reloaded.generate(**A_ )
self.assertTrue(torch.allclose(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = 'hf-internal-testing/tiny-random-t5'
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A_ )
__UpperCamelCase = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(A_ ):
model.save_pretrained(A_ )
__UpperCamelCase = model.reverse_bettertransformer()
model.save_pretrained(A_ )
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCamelCase :
def __init__( self: Dict,A_: List[str],A_: List[Any]=3,A_: Union[str, Any]=32,A_: List[str]=3,A_: List[str]=10,A_: Any=[10, 20, 30, 40],A_: List[str]=[1, 1, 2, 1],A_: Optional[int]=True,A_: Tuple=True,A_: str="relu",A_: Any=3,A_: Tuple=None,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = image_size
__UpperCamelCase = num_channels
__UpperCamelCase = embeddings_size
__UpperCamelCase = hidden_sizes
__UpperCamelCase = depths
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = hidden_act
__UpperCamelCase = num_labels
__UpperCamelCase = scope
__UpperCamelCase = len(A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size],self.num_labels )
__UpperCamelCase = self.get_config()
return config, pixel_values, labels
def snake_case_ ( self: Dict ):
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,image_size=self.image_size,)
def snake_case_ ( self: str,A_: Union[str, Any],A_: int,A_: str ):
'''simple docstring'''
__UpperCamelCase = TFResNetModel(config=A_ )
__UpperCamelCase = model(A_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),)
def snake_case_ ( self: Tuple,A_: Dict,A_: Union[str, Any],A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFResNetForImageClassification(A_ )
__UpperCamelCase = model(A_,labels=A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __lowerCamelCase (_a , _a , unittest.TestCase ):
_lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowercase = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = TFResNetModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,has_text_modality=A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
pass
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(A_ )
__UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase = [*signature.parameters.keys()]
__UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1],A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
def check_hidden_states_output(A_: Union[str, Any],A_: Optional[Any],A_: Union[str, Any] ):
__UpperCamelCase = model_class(A_ )
__UpperCamelCase = model(**self._prepare_for_class(A_,A_ ) )
__UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(A_ ),expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],)
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__UpperCamelCase = layer_type
__UpperCamelCase = True
check_hidden_states_output(A_,A_,A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCamelCase = True
check_hidden_states_output(A_,A_,A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFResNetModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def _A ( ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class __lowerCamelCase (unittest.TestCase ):
@cached_property
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=A_,return_tensors='tf' )
# forward pass
__UpperCamelCase = model(**A_ )
# verify the logits
__UpperCamelCase = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape,A_ )
__UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(),A_,atol=1E-4 ) )
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
from statistics import mean, stdev
def _A ( _lowercase , _lowercase = 3 ) -> list:
"""simple docstring"""
__UpperCamelCase = min(_lowercase )
__UpperCamelCase = max(_lowercase )
# normalize data
return [round((x - x_min) / (x_max - x_min) , _lowercase ) for x in data]
def _A ( _lowercase , _lowercase = 3 ) -> list:
"""simple docstring"""
__UpperCamelCase = mean(_lowercase )
__UpperCamelCase = stdev(_lowercase )
# standardize data
return [round((x - mu) / (sigma) , _lowercase ) for x in data]
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__snake_case = '''\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
'''
__snake_case = '''\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
'''
__snake_case = '''
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLSum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric(\'rouge\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
[\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results["rouge1"].mid.fmeasure)
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase (datasets.Metric ):
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'predictions': datasets.Value('string',id='sequence' ),
'references': datasets.Value('string',id='sequence' ),
} ),codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'],reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
],)
def snake_case_ ( self: Any,A_: Any,A_: Union[str, Any],A_: Optional[int]=None,A_: Optional[Any]=True,A_: Tuple=False ):
'''simple docstring'''
if rouge_types is None:
__UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
__UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=A_,use_stemmer=A_ )
if use_aggregator:
__UpperCamelCase = scoring.BootstrapAggregator()
else:
__UpperCamelCase = []
for ref, pred in zip(A_,A_ ):
__UpperCamelCase = scorer.score(A_,A_ )
if use_aggregator:
aggregator.add_scores(A_ )
else:
scores.append(A_ )
if use_aggregator:
__UpperCamelCase = aggregator.aggregate()
else:
__UpperCamelCase = {}
for key in scores[0]:
__UpperCamelCase = [score[key] for score in scores]
return result
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'''
},
'''merges_file''': {
'''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'''
},
}
__snake_case = {'''allegro/herbert-base-cased''': 5_1_4}
__snake_case = {}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_INIT_CONFIGURATION
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = HerbertTokenizer
def __init__( self: str,A_: str=None,A_: Optional[int]=None,A_: Union[str, Any]=None,A_: Union[str, Any]="<s>",A_: str="<unk>",A_: Optional[Any]="<pad>",A_: Optional[int]="<mask>",A_: Optional[int]="</s>",**A_: Dict,):
'''simple docstring'''
super().__init__(
A_,A_,tokenizer_file=A_,cls_token=A_,unk_token=A_,pad_token=A_,mask_token=A_,sep_token=A_,**A_,)
def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.cls_token_id]
__UpperCamelCase = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ )
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1]
def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self: Any,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(A_,name=A_ )
return tuple(A_ )
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
__snake_case = {
'''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ErnieForCausalLM''',
'''ErnieForMaskedLM''',
'''ErnieForMultipleChoice''',
'''ErnieForNextSentencePrediction''',
'''ErnieForPreTraining''',
'''ErnieForQuestionAnswering''',
'''ErnieForSequenceClassification''',
'''ErnieForTokenClassification''',
'''ErnieModel''',
'''ErniePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _A ( _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
if openai_config_file == "":
__UpperCamelCase = OpenAIGPTConfig()
else:
__UpperCamelCase = OpenAIGPTConfig.from_json_file(_lowercase )
__UpperCamelCase = OpenAIGPTModel(_lowercase )
# Load weights from numpy
load_tf_weights_in_openai_gpt(_lowercase , _lowercase , _lowercase )
# Save pytorch-model
__UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
__UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , _lowercase )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(_lowercase , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--openai_checkpoint_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the TensorFlow checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--openai_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
__snake_case = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
def _A ( _lowercase ) -> str:
"""simple docstring"""
if number > 0:
raise ValueError('input must be a negative integer' )
__UpperCamelCase = len(bin(_lowercase )[3:] )
__UpperCamelCase = bin(abs(_lowercase ) - (1 << binary_number_length) )[3:]
__UpperCamelCase = (
(
'1'
+ '0' * (binary_number_length - len(_lowercase ))
+ twos_complement_number
)
if number < 0
else '0'
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class __lowerCamelCase :
def __init__( self: str,A_: Optional[Any],A_: Any,A_: Optional[Any],A_: Dict,A_: Union[str, Any],A_: Optional[int]=0.2,A_: Optional[Any]=0.2 ):
'''simple docstring'''
__UpperCamelCase = bp_numa
__UpperCamelCase = bp_numa
__UpperCamelCase = bp_numa
__UpperCamelCase = conva_get[:2]
__UpperCamelCase = conva_get[2]
__UpperCamelCase = size_pa
__UpperCamelCase = rate_w
__UpperCamelCase = rate_t
__UpperCamelCase = [
np.mat(-1 * np.random.rand(self.conva[0],self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
__UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 )
__UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa,self.num_bpa ) + 0.5 )
__UpperCamelCase = -2 * np.random.rand(self.conva[1] ) + 1
__UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1
__UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1
def snake_case_ ( self: Union[str, Any],A_: int ):
'''simple docstring'''
__UpperCamelCase = {
'num_bp1': self.num_bpa,
'num_bp2': self.num_bpa,
'num_bp3': self.num_bpa,
'conv1': self.conva,
'step_conv1': self.step_conva,
'size_pooling1': self.size_poolinga,
'rate_weight': self.rate_weight,
'rate_thre': self.rate_thre,
'w_conv1': self.w_conva,
'wkj': self.wkj,
'vji': self.vji,
'thre_conv1': self.thre_conva,
'thre_bp2': self.thre_bpa,
'thre_bp3': self.thre_bpa,
}
with open(A_,'wb' ) as f:
pickle.dump(A_,A_ )
print(F'''Model saved: {save_path}''' )
@classmethod
def snake_case_ ( cls: Union[str, Any],A_: int ):
'''simple docstring'''
with open(A_,'rb' ) as f:
__UpperCamelCase = pickle.load(A_ ) # noqa: S301
__UpperCamelCase = model_dic.get('conv1' )
conv_get.append(model_dic.get('step_conv1' ) )
__UpperCamelCase = model_dic.get('size_pooling1' )
__UpperCamelCase = model_dic.get('num_bp1' )
__UpperCamelCase = model_dic.get('num_bp2' )
__UpperCamelCase = model_dic.get('num_bp3' )
__UpperCamelCase = model_dic.get('rate_weight' )
__UpperCamelCase = model_dic.get('rate_thre' )
# create model instance
__UpperCamelCase = CNN(A_,A_,A_,A_,A_,A_,A_ )
# modify model parameter
__UpperCamelCase = model_dic.get('w_conv1' )
__UpperCamelCase = model_dic.get('wkj' )
__UpperCamelCase = model_dic.get('vji' )
__UpperCamelCase = model_dic.get('thre_conv1' )
__UpperCamelCase = model_dic.get('thre_bp2' )
__UpperCamelCase = model_dic.get('thre_bp3' )
return conv_ins
def snake_case_ ( self: Optional[Any],A_: str ):
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def snake_case_ ( self: Tuple,A_: Tuple ):
'''simple docstring'''
return round(A_,3 )
def snake_case_ ( self: Dict,A_: Tuple,A_: Any,A_: Union[str, Any],A_: Optional[Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = convs[0]
__UpperCamelCase = convs[1]
__UpperCamelCase = np.shape(A_ )[0]
# get the data slice of original image data, data_focus
__UpperCamelCase = []
for i_focus in range(0,size_data - size_conv + 1,A_ ):
for j_focus in range(0,size_data - size_conv + 1,A_ ):
__UpperCamelCase = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(A_ )
# calculate the feature map of every single kernel, and saved as list of matrix
__UpperCamelCase = []
__UpperCamelCase = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(A_ ):
__UpperCamelCase = []
for i_focus in range(len(A_ ) ):
__UpperCamelCase = (
np.sum(np.multiply(data_focus[i_focus],w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(A_ ) )
__UpperCamelCase = np.asmatrix(A_ ).reshape(
A_,A_ )
data_featuremap.append(A_ )
# expanding the data slice to One dimenssion
__UpperCamelCase = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(A_ ) )
__UpperCamelCase = np.asarray(A_ )
return focus_list, data_featuremap
def snake_case_ ( self: List[str],A_: List[str],A_: Dict,A_: Any="average_pool" ):
'''simple docstring'''
__UpperCamelCase = len(featuremaps[0] )
__UpperCamelCase = int(size_map / size_pooling )
__UpperCamelCase = []
for i_map in range(len(A_ ) ):
__UpperCamelCase = featuremaps[i_map]
__UpperCamelCase = []
for i_focus in range(0,A_,A_ ):
for j_focus in range(0,A_,A_ ):
__UpperCamelCase = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(A_ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(A_ ) )
__UpperCamelCase = np.asmatrix(A_ ).reshape(A_,A_ )
featuremap_pooled.append(A_ )
return featuremap_pooled
def snake_case_ ( self: List[str],A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = []
for i in range(len(A_ ) ):
__UpperCamelCase = np.shape(data[i] )
__UpperCamelCase = data[i].reshape(1,shapes[0] * shapes[1] )
__UpperCamelCase = data_listed.getA().tolist()[0]
data_expanded.extend(A_ )
__UpperCamelCase = np.asarray(A_ )
return data_expanded
def snake_case_ ( self: Any,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = np.asarray(A_ )
__UpperCamelCase = np.shape(A_ )
__UpperCamelCase = data_mat.reshape(1,shapes[0] * shapes[1] )
return data_expanded
def snake_case_ ( self: int,A_: str,A_: int,A_: Optional[int],A_: Any,A_: str ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = 0
for i_map in range(A_ ):
__UpperCamelCase = np.ones((size_map, size_map) )
for i in range(0,A_,A_ ):
for j in range(0,A_,A_ ):
__UpperCamelCase = pd_pool[
i_pool
]
__UpperCamelCase = i_pool + 1
__UpperCamelCase = np.multiply(
A_,np.multiply(out_map[i_map],(1 - out_map[i_map]) ) )
pd_all.append(A_ )
return pd_all
def snake_case_ ( self: Tuple,A_: Union[str, Any],A_: str,A_: int,A_: Union[str, Any],A_: str,A_: Tuple=bool ):
'''simple docstring'''
print('----------------------Start Training-------------------------' )
print((' - - Shape: Train_Data ', np.shape(A_ )) )
print((' - - Shape: Teach_Data ', np.shape(A_ )) )
__UpperCamelCase = 0
__UpperCamelCase = []
__UpperCamelCase = 1_0000
while rp < n_repeat and mse >= error_accuracy:
__UpperCamelCase = 0
print(F'''-------------Learning Time {rp}--------------''' )
for p in range(len(A_ ) ):
# print('------------Learning Image: %d--------------'%p)
__UpperCamelCase = np.asmatrix(datas_train[p] )
__UpperCamelCase = np.asarray(datas_teach[p] )
__UpperCamelCase, __UpperCamelCase = self.convolute(
A_,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,)
__UpperCamelCase = self.pooling(A_,self.size_poolinga )
__UpperCamelCase = np.shape(A_ )
__UpperCamelCase = self._expand(A_ )
__UpperCamelCase = data_bp_input
__UpperCamelCase = np.dot(A_,self.vji.T ) - self.thre_bpa
__UpperCamelCase = self.sig(A_ )
__UpperCamelCase = np.dot(A_,self.wkj.T ) - self.thre_bpa
__UpperCamelCase = self.sig(A_ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
__UpperCamelCase = np.multiply(
(data_teach - bp_outa),np.multiply(A_,(1 - bp_outa) ) )
__UpperCamelCase = np.multiply(
np.dot(A_,self.wkj ),np.multiply(A_,(1 - bp_outa) ) )
__UpperCamelCase = np.dot(A_,self.vji )
__UpperCamelCase = pd_i_all / (self.size_poolinga * self.size_poolinga)
__UpperCamelCase = pd_conva_pooled.T.getA().tolist()
__UpperCamelCase = self._calculate_gradient_from_pool(
A_,A_,shape_featuremapa[0],shape_featuremapa[1],self.size_poolinga,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
__UpperCamelCase = self._expand_mat(pd_conva_all[k_conv] )
__UpperCamelCase = self.rate_weight * np.dot(A_,A_ )
__UpperCamelCase = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
__UpperCamelCase = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
__UpperCamelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
__UpperCamelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight
__UpperCamelCase = self.thre_bpa - pd_k_all * self.rate_thre
__UpperCamelCase = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
__UpperCamelCase = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
__UpperCamelCase = rp + 1
__UpperCamelCase = error_count / patterns
all_mse.append(A_ )
def draw_error():
__UpperCamelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(A_,'+-' )
plt.plot(A_,'r--' )
plt.xlabel('Learning Times' )
plt.ylabel('All_mse' )
plt.grid(A_,alpha=0.5 )
plt.show()
print('------------------Training Complished---------------------' )
print((' - - Training epoch: ', rp, F''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def snake_case_ ( self: Optional[Any],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = []
print('-------------------Start Testing-------------------------' )
print((' - - Shape: Test_Data ', np.shape(A_ )) )
for p in range(len(A_ ) ):
__UpperCamelCase = np.asmatrix(datas_test[p] )
__UpperCamelCase, __UpperCamelCase = self.convolute(
A_,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,)
__UpperCamelCase = self.pooling(A_,self.size_poolinga )
__UpperCamelCase = self._expand(A_ )
__UpperCamelCase = data_bp_input
__UpperCamelCase = bp_outa * self.vji.T - self.thre_bpa
__UpperCamelCase = self.sig(A_ )
__UpperCamelCase = bp_outa * self.wkj.T - self.thre_bpa
__UpperCamelCase = self.sig(A_ )
produce_out.extend(bp_outa.getA().tolist() )
__UpperCamelCase = [list(map(self.do_round,A_ ) ) for each in produce_out]
return np.asarray(A_ )
def snake_case_ ( self: Tuple,A_: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = np.asmatrix(A_ )
__UpperCamelCase, __UpperCamelCase = self.convolute(
A_,self.conva,self.w_conva,self.thre_conva,conv_step=self.step_conva,)
__UpperCamelCase = self.pooling(A_,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''')
class __lowerCamelCase :
def __init__( self: Dict,A_: Optional[int],A_: Dict,A_: bool = True,A_: bool = False ):
'''simple docstring'''
__UpperCamelCase = scheduler
__UpperCamelCase = optimizers if isinstance(A_,(list, tuple) ) else [optimizers]
__UpperCamelCase = split_batches
__UpperCamelCase = step_with_optimizer
__UpperCamelCase = GradientState()
def snake_case_ ( self: Optional[int],*A_: int,**A_: str ):
'''simple docstring'''
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*A_,**A_ )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*A_,**A_ )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__UpperCamelCase = AcceleratorState().num_processes
for _ in range(A_ ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler,'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*A_,**A_ )
else:
self.scheduler.step(*A_,**A_ )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return self.scheduler.get_last_lr()
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return self.scheduler.state_dict()
def snake_case_ ( self: Optional[int],A_: Tuple ):
'''simple docstring'''
self.scheduler.load_state_dict(A_ )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.scheduler.get_lr()
def snake_case_ ( self: Optional[int],*A_: Union[str, Any],**A_: List[Any] ):
'''simple docstring'''
return self.scheduler.print_lr(*A_,**A_ )
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __lowerCamelCase (_a ):
_lowercase = (DPMSolverSDEScheduler,)
_lowercase = 10
def snake_case_ ( self: Tuple,**A_: List[str] ):
'''simple docstring'''
__UpperCamelCase = {
'num_train_timesteps': 1100,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
'noise_sampler_seed': 0,
}
config.update(**A_ )
return config
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1],[0.0_0_0_2, 0.0_0_2, 0.0_2] ):
self.check_over_configs(beta_start=A_,beta_end=A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=A_ )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A_ )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**A_ )
scheduler.set_timesteps(self.num_inference_steps )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__UpperCamelCase = sample.to(A_ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3
else:
assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' )
__UpperCamelCase = scheduler_class(**A_ )
scheduler.set_timesteps(self.num_inference_steps )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
__UpperCamelCase = sample.to(A_ )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2
assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3
else:
assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**A_ )
scheduler.set_timesteps(self.num_inference_steps,device=A_ )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3
else:
assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**A_,use_karras_sigmas=A_ )
scheduler.set_timesteps(self.num_inference_steps,device=A_ )
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma
__UpperCamelCase = sample.to(A_ )
for t in scheduler.timesteps:
__UpperCamelCase = scheduler.scale_model_input(A_,A_ )
__UpperCamelCase = model(A_,A_ )
__UpperCamelCase = scheduler.step(A_,A_,A_ )
__UpperCamelCase = output.prev_sample
__UpperCamelCase = torch.sum(torch.abs(A_ ) )
__UpperCamelCase = torch.mean(torch.abs(A_ ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
else:
assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2
assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
__snake_case = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
__snake_case = logging.getLogger()
def _A ( ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('-f' )
__UpperCamelCase = parser.parse_args()
return args.f
def _A ( _lowercase , _lowercase="eval" ) -> Dict:
"""simple docstring"""
__UpperCamelCase = os.path.join(_lowercase , f'''{split}_results.json''' )
if os.path.exists(_lowercase ):
with open(_lowercase , 'r' ) as f:
return json.load(_lowercase )
raise ValueError(f'''can\'t find {path}''' )
__snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCamelCase (_a ):
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(A_,'argv',A_ ):
run_flax_glue.main()
__UpperCamelCase = get_results(A_ )
self.assertGreaterEqual(result['eval_accuracy'],0.7_5 )
@slow
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
'''.split()
with patch.object(A_,'argv',A_ ):
run_clm_flax.main()
__UpperCamelCase = get_results(A_ )
self.assertLess(result['eval_perplexity'],100 )
@slow
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
'''.split()
with patch.object(A_,'argv',A_ ):
run_summarization_flax.main()
__UpperCamelCase = get_results(A_,split='test' )
self.assertGreaterEqual(result['test_rouge1'],10 )
self.assertGreaterEqual(result['test_rouge2'],2 )
self.assertGreaterEqual(result['test_rougeL'],7 )
self.assertGreaterEqual(result['test_rougeLsum'],7 )
@slow
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
'''.split()
with patch.object(A_,'argv',A_ ):
run_mlm_flax.main()
__UpperCamelCase = get_results(A_ )
self.assertLess(result['eval_perplexity'],42 )
@slow
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
'''.split()
with patch.object(A_,'argv',A_ ):
run_ta_mlm_flax.main()
__UpperCamelCase = get_results(A_ )
self.assertGreaterEqual(result['eval_accuracy'],0.4_2 )
@slow
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 7 if get_gpu_count() > 1 else 2
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
'''.split()
with patch.object(A_,'argv',A_ ):
run_flax_ner.main()
__UpperCamelCase = get_results(A_ )
self.assertGreaterEqual(result['eval_accuracy'],0.7_5 )
self.assertGreaterEqual(result['eval_f1'],0.3 )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F'''
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
'''.split()
with patch.object(A_,'argv',A_ ):
run_qa.main()
__UpperCamelCase = get_results(A_ )
self.assertGreaterEqual(result['eval_f1'],30 )
self.assertGreaterEqual(result['eval_exact'],30 )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
def _A ( _lowercase = 1_00_00_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = set(range(3 , _lowercase , 2 ) )
primes.add(2 )
for p in range(3 , _lowercase , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) )
__UpperCamelCase = [float(_lowercase ) for n in range(limit + 1 )]
for p in primes:
for n in range(_lowercase , limit + 1 , _lowercase ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
__snake_case = logging.get_logger(__name__)
@dataclass
class __lowerCamelCase :
def __init__( self: Dict,A_: Dict=False,A_: int=False,A_: Optional[int]=6.0,A_: Tuple=None,A_: Any=False,A_: Union[str, Any]=False,A_: Tuple=None,A_: Union[str, Any]="fp4",A_: Optional[int]=False,**A_: str,):
'''simple docstring'''
__UpperCamelCase = load_in_abit
__UpperCamelCase = load_in_abit
__UpperCamelCase = llm_inta_threshold
__UpperCamelCase = llm_inta_skip_modules
__UpperCamelCase = llm_inta_enable_fpaa_cpu_offload
__UpperCamelCase = llm_inta_has_fpaa_weight
__UpperCamelCase = bnb_abit_quant_type
__UpperCamelCase = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
__UpperCamelCase = torch.floataa
elif isinstance(A_,A_ ):
__UpperCamelCase = getattr(A_,A_ )
elif isinstance(A_,torch.dtype ):
__UpperCamelCase = bnb_abit_compute_dtype
else:
raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' )
self.post_init()
def snake_case_ ( self: List[str] ):
'''simple docstring'''
if not isinstance(self.llm_inta_threshold,A_ ):
raise ValueError('llm_int8_threshold must be a float' )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules,A_ ):
raise ValueError('llm_int8_skip_modules must be a list of strings' )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload,A_ ):
raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' )
if not isinstance(self.llm_inta_has_fpaa_weight,A_ ):
raise ValueError('llm_int8_has_fp16_weight must be a boolean' )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype,torch.dtype ):
raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' )
if not isinstance(self.bnb_abit_quant_type,A_ ):
raise ValueError('bnb_4bit_quant_type must be a string' )
if not isinstance(self.bnb_abit_use_double_quant,A_ ):
raise ValueError('bnb_4bit_use_double_quant must be a boolean' )
if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse(
'0.39.0' ):
raise ValueError(
'4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' )
def snake_case_ ( self: Dict ):
'''simple docstring'''
return self.load_in_abit or self.load_in_abit
def snake_case_ ( self: int ):
'''simple docstring'''
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def snake_case_ ( cls: str,A_: Optional[Any],A_: Optional[int],**A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = cls(**A_ )
__UpperCamelCase = []
for key, value in kwargs.items():
if hasattr(A_,A_ ):
setattr(A_,A_,A_ )
to_remove.append(A_ )
for key in to_remove:
kwargs.pop(A_,A_ )
if return_unused_kwargs:
return config, kwargs
else:
return config
def snake_case_ ( self: Dict,A_: Union[str, os.PathLike] ):
'''simple docstring'''
with open(A_,'w',encoding='utf-8' ) as writer:
__UpperCamelCase = self.to_dict()
__UpperCamelCase = json.dumps(A_,indent=2,sort_keys=A_ ) + '\n'
writer.write(A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1]
return output
def __repr__( self: Dict ):
'''simple docstring'''
return F'''{self.__class__.__name__} {self.to_json_string()}'''
def snake_case_ ( self: Optional[Any],A_: bool = True ):
'''simple docstring'''
if use_diff is True:
__UpperCamelCase = self.to_diff_dict()
else:
__UpperCamelCase = self.to_dict()
return json.dumps(A_,indent=2,sort_keys=A_ ) + "\n"
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.to_dict()
# get the default config dict
__UpperCamelCase = BitsAndBytesConfig().to_dict()
__UpperCamelCase = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
__UpperCamelCase = value
return serializable_config_dict
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
__snake_case = ['''bert-base-uncased''', '''bert-base-cased''']
__snake_case = '''hf-internal-testing/tiny-bert-tf-only'''
if is_tf_available():
class __lowerCamelCase (tf.keras.Model ):
def __init__( self: Any,A_: List[str] ):
'''simple docstring'''
super().__init__()
__UpperCamelCase = tokenizer
__UpperCamelCase = AutoConfig.from_pretrained(A_ )
__UpperCamelCase = TFAutoModel.from_config(A_ )
def snake_case_ ( self: int,A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.tokenizer(A_ )
__UpperCamelCase = self.bert(**A_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
super().setUp()
__UpperCamelCase = [
BertTokenizer.from_pretrained(A_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__UpperCamelCase = [TFBertTokenizer.from_pretrained(A_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(A_,use_fast_bert_tokenizer=A_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__UpperCamelCase = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
__UpperCamelCase = list(zip(self.test_sentences,self.test_sentences[::-1] ) )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers,self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCamelCase = tokenizer(A_,return_tensors='tf',padding='longest' )
__UpperCamelCase = tf_tokenizer(A_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key],tf.intaa ) == tf_outputs[key] ) )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCamelCase = tf_tokenizer(self.paired_sentences )
__UpperCamelCase = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences],text_pair=[sentence[1] for sentence in self.paired_sentences],)
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key],tf.intaa ) == separated_outputs[key] ) )
@slow
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCamelCase = tf.function(A_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCamelCase = tf.constant(A_ )
__UpperCamelCase = compiled_tokenizer(A_ )
__UpperCamelCase = tf_tokenizer(A_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def snake_case_ ( self: int ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCamelCase = ModelToSave(tokenizer=A_ )
__UpperCamelCase = tf.convert_to_tensor(self.test_sentences )
__UpperCamelCase = model(A_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__UpperCamelCase = Path(A_ ) / 'saved.model'
model.save(A_ )
__UpperCamelCase = tf.keras.models.load_model(A_ )
__UpperCamelCase = loaded_model(A_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ),1E-5 )
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''',
}
# fmt: off
__snake_case = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
__snake_case = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class __lowerCamelCase (_a ):
_lowercase = """whisper"""
_lowercase = ["""past_key_values"""]
_lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self: Union[str, Any],A_: List[str]=5_1865,A_: Tuple=80,A_: List[Any]=6,A_: Dict=4,A_: Dict=6,A_: List[str]=4,A_: List[str]=1536,A_: int=1536,A_: List[str]=0.0,A_: Any=0.0,A_: List[str]=5_0257,A_: Tuple=True,A_: Dict=True,A_: Optional[Any]="gelu",A_: Tuple=256,A_: Dict=0.0,A_: List[Any]=0.0,A_: Dict=0.0,A_: int=0.0_2,A_: List[Any]=False,A_: List[str]=1500,A_: int=448,A_: Dict=5_0256,A_: Dict=5_0256,A_: List[str]=5_0256,A_: Dict=None,A_: List[Any]=[220, 5_0256],A_: Dict=False,A_: str=256,A_: Tuple=False,A_: List[Any]=0.0_5,A_: Dict=10,A_: Optional[int]=2,A_: List[str]=0.0,A_: Optional[Any]=10,A_: Union[str, Any]=0,A_: Dict=7,**A_: List[Any],):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = num_mel_bins
__UpperCamelCase = d_model
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = max_source_positions
__UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
__UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
__UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,is_encoder_decoder=A_,decoder_start_token_id=A_,suppress_tokens=A_,begin_suppress_tokens=A_,**A_,)
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
__UpperCamelCase = {0: 'batch'}
else:
__UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(A_,direction='inputs' )
return common_inputs
def snake_case_ ( self: Tuple,A_: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],A_: int = -1,A_: int = -1,A_: bool = False,A_: Optional["TensorType"] = None,A_: int = 2_2050,A_: float = 5.0,A_: int = 220,):
'''simple docstring'''
__UpperCamelCase = OrderedDict()
__UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self,preprocessor=preprocessor.feature_extractor,batch_size=A_,framework=A_,sampling_rate=A_,time_duration=A_,frequency=A_,)
__UpperCamelCase = encoder_inputs['input_features'].shape[2]
__UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer,A_,A_,A_,A_ )
__UpperCamelCase = encoder_inputs.pop('input_features' )
__UpperCamelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
__UpperCamelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return 1E-3
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__snake_case = pytest.mark.integration
__snake_case = {'''comet'''}
__snake_case = importlib.util.find_spec('''fairseq''') is not None
__snake_case = {'''code_eval'''}
__snake_case = os.name == '''nt'''
__snake_case = {'''bertscore''', '''frugalscore''', '''perplexity'''}
__snake_case = importlib.util.find_spec('''transformers''') is not None
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
@wraps(_lowercase )
def wrapper(self , _lowercase ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self , _lowercase )
return wrapper
def _A ( _lowercase ) -> List[str]:
"""simple docstring"""
@wraps(_lowercase )
def wrapper(self , _lowercase ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self , _lowercase )
return wrapper
def _A ( _lowercase ) -> List[str]:
"""simple docstring"""
@wraps(_lowercase )
def wrapper(self , _lowercase ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self , _lowercase )
return wrapper
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
_a , _a , _a )
@local
class __lowerCamelCase (parameterized.TestCase ):
_lowercase = {}
_lowercase = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def snake_case_ ( self: int,A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = '[...]'
__UpperCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics',A_ ) ).module_path )
__UpperCamelCase = datasets.load.import_main_class(metric_module.__name__,dataset=A_ )
# check parameters
__UpperCamelCase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(A_,metric_module.__name__ ):
with self.use_local_metrics():
try:
__UpperCamelCase = doctest.testmod(A_,verbose=A_,raise_on_error=A_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed,0 )
self.assertGreater(results.attempted,1 )
@slow
def snake_case_ ( self: Optional[Any],A_: List[str] ):
'''simple docstring'''
__UpperCamelCase = '[...]'
__UpperCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics',A_ ) ).module_path )
# run doctest
with self.use_local_metrics():
__UpperCamelCase = doctest.testmod(A_,verbose=A_,raise_on_error=A_ )
self.assertEqual(results.failed,0 )
self.assertGreater(results.attempted,1 )
@contextmanager
def snake_case_ ( self: Dict,A_: Optional[Any],A_: Any ):
'''simple docstring'''
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](A_ ):
yield
else:
yield
@contextmanager
def snake_case_ ( self: Tuple ):
'''simple docstring'''
def load_local_metric(A_: List[Any],*A_: str,**A_: List[Any] ):
return load_metric(os.path.join('metrics',A_ ),*A_,**A_ )
with patch('datasets.load_metric' ) as mock_load_metric:
__UpperCamelCase = load_local_metric
yield
@classmethod
def snake_case_ ( cls: Any,A_: str ):
'''simple docstring'''
def wrapper(A_: Optional[Any] ):
__UpperCamelCase = contextmanager(A_ )
__UpperCamelCase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags
class __lowerCamelCase (_a ):
def snake_case_ ( self: List[str],A_: List[Any] ):
'''simple docstring'''
assert len(input_dict['input_ids'] ) == 2
return np.array([1.0_3, 1.0_4] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
__UpperCamelCase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
import torch
def bert_cos_score_idf(_lowercase , _lowercase , *_lowercase , **_lowercase ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(_lowercase ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
__UpperCamelCase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
def load_from_checkpoint(_lowercase ):
class __lowerCamelCase :
def snake_case_ ( self: Optional[int],A_: int,*A_: Optional[int],**A_: List[str] ):
'''simple docstring'''
assert len(A_ ) == 2
__UpperCamelCase = [0.1_9, 0.9_2]
return scores, sum(A_ ) / len(A_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
__UpperCamelCase = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
__UpperCamelCase = load_from_checkpoint
yield
def _A ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = load_metric(os.path.join('metrics' , 'seqeval' ) )
__UpperCamelCase = 'ERROR'
__UpperCamelCase = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(_lowercase , match=re.escape(_lowercase ) ):
metric.compute(predictions=[] , references=[] , scheme=_lowercase )
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
import requests
from bsa import BeautifulSoup
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = BeautifulSoup(requests.get(_lowercase , params=_lowercase ).content , 'html.parser' )
__UpperCamelCase = soup.find('div' , attrs={'class': 'gs_ri'} )
__UpperCamelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' )
return anchors[2].get_text()
if __name__ == "__main__":
__snake_case = {
'''title''': (
'''Precisely geometry controlled microsupercapacitors for ultrahigh areal '''
'''capacitance, volumetric capacitance, and energy density'''
),
'''journal''': '''Chem. Mater.''',
'''volume''': 3_0,
'''pages''': '''3979-3990''',
'''year''': 2_0_1_8,
'''hl''': '''en''',
}
print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase (_a ):
_lowercase = ["""pixel_values"""]
def __init__( self: List[str],A_: bool = True,A_: Dict[str, int] = None,A_: int = 0.9,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: bool = True,A_: Dict[str, int] = None,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: int,):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = size if size is not None else {'shortest_edge': 224}
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase = get_size_dict(A_,param_name='crop_size' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = crop_pct
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def snake_case_ ( self: Union[str, Any],A_: np.ndarray,A_: Dict[str, int],A_: Optional[float] = None,A_: PILImageResampling = PILImageResampling.BICUBIC,A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[Any],):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCamelCase = int(size['shortest_edge'] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCamelCase = int(size['height'] / crop_pct )
else:
__UpperCamelCase = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct ))
else:
raise ValueError('Invalid size for resize: {}'.format(A_ ) )
__UpperCamelCase = get_resize_output_image_size(A_,size=A_,default_to_square=A_ )
else:
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(A_,size=size['shortest_edge'],default_to_square=A_ )
elif "height" in size and "width" in size:
__UpperCamelCase = (size['height'], size['width'])
else:
raise ValueError('Invalid size for resize: {}'.format(A_ ) )
return resize(A_,size=A_,resample=A_,data_format=A_,**A_ )
def snake_case_ ( self: int,A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: str,):
'''simple docstring'''
__UpperCamelCase = get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ )
def snake_case_ ( self: Optional[Any],A_: np.ndarray,A_: Union[int, float],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[int],):
'''simple docstring'''
return rescale(A_,scale=A_,data_format=A_,**A_ )
def snake_case_ ( self: List[Any],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Any,):
'''simple docstring'''
return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ )
def snake_case_ ( self: Tuple,A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: int = None,A_: PILImageResampling = None,A_: bool = None,A_: Dict[str, int] = None,A_: bool = None,A_: float = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: int,):
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(A_,default_to_square=A_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(A_,param_name='crop_size' )
__UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_pct is None:
raise ValueError('Crop_pct must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=A_,size=A_,crop_pct=A_,resample=A_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=A_,size=A_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=A_,scale=A_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=A_,mean=A_,std=A_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(A_,A_ ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_,tensor_type=A_ )
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
__snake_case = ''''''
if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''):
class __lowerCamelCase (tr.AbstractTransform ):
def __init__( self: Tuple,A_: str = " " ):
'''simple docstring'''
__UpperCamelCase = sentence_delimiter
def snake_case_ ( self: Union[str, Any],A_: str ):
'''simple docstring'''
return list(A_ )
def snake_case_ ( self: Union[str, Any],A_: List[str] ):
'''simple docstring'''
__UpperCamelCase = []
for sent_idx, sentence in enumerate(A_ ):
chars.extend(self.process_string(A_ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(A_ ) - 1:
chars.append(self.sentence_delimiter )
return chars
__snake_case = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
__snake_case = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
__snake_case = '''\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
'''
__snake_case = '''\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct characters,
N is the number of characters in the reference (N=S+D+C).
CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
'''
__snake_case = '''
Computes CER score of transcribed segments against references.
Args:
references: list of references for each speech input.
predictions: list of transcribtions to score.
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
Returns:
(float): the character error rate
Examples:
>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> cer = datasets.load_metric("cer")
>>> cer_score = cer.compute(predictions=predictions, references=references)
>>> print(cer_score)
0.34146341463414637
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase (datasets.Metric ):
def snake_case_ ( self: int ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'predictions': datasets.Value('string',id='sequence' ),
'references': datasets.Value('string',id='sequence' ),
} ),codebase_urls=['https://github.com/jitsi/jiwer/'],reference_urls=[
'https://en.wikipedia.org/wiki/Word_error_rate',
'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates',
],)
def snake_case_ ( self: str,A_: int,A_: Optional[int],A_: List[Any]=False ):
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
A_,A_,truth_transform=A_,hypothesis_transform=A_,)["wer"]
__UpperCamelCase = 0
__UpperCamelCase = 0
for prediction, reference in zip(A_,A_ ):
__UpperCamelCase = jiwer.compute_measures(
A_,A_,truth_transform=A_,hypothesis_transform=A_,)
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
__snake_case = (7_2_0, 1_2_8_0) # Height, Width
__snake_case = (0.4, 0.6) # if height or width lower than this scale, drop it.
__snake_case = 1 / 1_0_0
__snake_case = ''''''
__snake_case = ''''''
__snake_case = ''''''
__snake_case = 2_5_0
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase = get_dataset(_lowercase , _lowercase )
for index in range(_lowercase ):
__UpperCamelCase = random.sample(range(len(_lowercase ) ) , 4 )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = update_image_and_anno(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , filter_scale=_lowercase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCamelCase = random_chars(32 )
__UpperCamelCase = path.split(os.sep )[-1].rsplit('.' , 1 )[0]
__UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'''
cva.imwrite(f'''{file_root}.jpg''' , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' )
__UpperCamelCase = []
for anno in new_annos:
__UpperCamelCase = anno[3] - anno[1]
__UpperCamelCase = anno[4] - anno[2]
__UpperCamelCase = anno[1] + width / 2
__UpperCamelCase = anno[2] + height / 2
__UpperCamelCase = f'''{anno[0]} {x_center} {y_center} {width} {height}'''
annos_list.append(_lowercase )
with open(f'''{file_root}.txt''' , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def _A ( _lowercase , _lowercase ) -> tuple[list, list]:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = []
for label_file in glob.glob(os.path.join(_lowercase , '*.txt' ) ):
__UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(_lowercase ) as in_file:
__UpperCamelCase = in_file.readlines()
__UpperCamelCase = os.path.join(_lowercase , f'''{label_name}.jpg''' )
__UpperCamelCase = []
for obj_list in obj_lists:
__UpperCamelCase = obj_list.rstrip('\n' ).split(' ' )
__UpperCamelCase = float(obj[1] ) - float(obj[3] ) / 2
__UpperCamelCase = float(obj[2] ) - float(obj[4] ) / 2
__UpperCamelCase = float(obj[1] ) + float(obj[3] ) / 2
__UpperCamelCase = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(_lowercase )
labels.append(_lowercase )
return img_paths, labels
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = 0.0 , ) -> tuple[list, list, str]:
"""simple docstring"""
__UpperCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
__UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
__UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
__UpperCamelCase = int(scale_x * output_size[1] )
__UpperCamelCase = int(scale_y * output_size[0] )
__UpperCamelCase = []
__UpperCamelCase = []
for i, index in enumerate(_lowercase ):
__UpperCamelCase = all_img_list[index]
path_list.append(_lowercase )
__UpperCamelCase = all_annos[index]
__UpperCamelCase = cva.imread(_lowercase )
if i == 0: # top-left
__UpperCamelCase = cva.resize(_lowercase , (divid_point_x, divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = bbox[1] * scale_x
__UpperCamelCase = bbox[2] * scale_y
__UpperCamelCase = bbox[3] * scale_x
__UpperCamelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
__UpperCamelCase = cva.resize(_lowercase , (output_size[1] - divid_point_x, divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = scale_x + bbox[1] * (1 - scale_x)
__UpperCamelCase = bbox[2] * scale_y
__UpperCamelCase = scale_x + bbox[3] * (1 - scale_x)
__UpperCamelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
__UpperCamelCase = cva.resize(_lowercase , (divid_point_x, output_size[0] - divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = bbox[1] * scale_x
__UpperCamelCase = scale_y + bbox[2] * (1 - scale_y)
__UpperCamelCase = bbox[3] * scale_x
__UpperCamelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
__UpperCamelCase = cva.resize(
_lowercase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = scale_x + bbox[1] * (1 - scale_x)
__UpperCamelCase = scale_y + bbox[2] * (1 - scale_y)
__UpperCamelCase = scale_x + bbox[3] * (1 - scale_x)
__UpperCamelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
__UpperCamelCase = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def _A ( _lowercase ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCamelCase = ascii_lowercase + digits
return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
import numpy
# List of input, output pairs
__snake_case = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
__snake_case = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
__snake_case = [2, 4, 1, 5]
__snake_case = len(train_data)
__snake_case = 0.009
def _A ( _lowercase , _lowercase="train" ) -> Union[str, Any]:
"""simple docstring"""
return calculate_hypothesis_value(_lowercase , _lowercase ) - output(
_lowercase , _lowercase )
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = 0
for i in range(len(_lowercase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _A ( _lowercase , _lowercase ) -> List[str]:
"""simple docstring"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _A ( _lowercase , _lowercase=m ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = 0
for i in range(_lowercase ):
if index == -1:
summation_value += _error(_lowercase )
else:
summation_value += _error(_lowercase ) * train_data[i][0][index]
return summation_value
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = summation_of_cost_derivative(_lowercase , _lowercase ) / m
return cost_derivative_value
def _A ( ) -> Any:
"""simple docstring"""
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__UpperCamelCase = 0.00_00_02
__UpperCamelCase = 0
__UpperCamelCase = 0
while True:
j += 1
__UpperCamelCase = [0, 0, 0, 0]
for i in range(0 , len(_lowercase ) ):
__UpperCamelCase = get_cost_derivative(i - 1 )
__UpperCamelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
_lowercase , _lowercase , atol=_lowercase , rtol=_lowercase , ):
break
__UpperCamelCase = temp_parameter_vector
print(('Number of iterations:', j) )
def _A ( ) -> Optional[Any]:
"""simple docstring"""
for i in range(len(_lowercase ) ):
print(('Actual output value:', output(_lowercase , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(_lowercase , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print('''\nTesting gradient descent for a linear hypothesis function.\n''')
test_gradient_descent()
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = torch.load(_lowercase , map_location='cpu' )
__UpperCamelCase = chkpt['model']
# We have the base model one level deeper than the original XLM repository
__UpperCamelCase = {}
for k, v in state_dict.items():
if "pred_layer" in k:
__UpperCamelCase = v
else:
__UpperCamelCase = v
__UpperCamelCase = chkpt['params']
__UpperCamelCase = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )}
__UpperCamelCase = chkpt['dico_word2id']
__UpperCamelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()}
# Save pytorch-model
__UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
__UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME
__UpperCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file']
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(_lowercase , _lowercase )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(_lowercase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(_lowercase , indent=2 ) + '\n' )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(_lowercase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(_lowercase , indent=2 ) + '\n' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _A ( _lowercase , _lowercase , _lowercase=0 ) -> Any:
"""simple docstring"""
if name is None:
__UpperCamelCase = None
else:
__UpperCamelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
__UpperCamelCase = fmt.format(_lowercase )
# Print and recurse (if needed).
if isinstance(_lowercase , _lowercase ):
if msg is not None:
print(_lowercase )
for k in val.keys():
recursive_print(_lowercase , val[k] , spaces + 2 )
elif isinstance(_lowercase , torch.Tensor ):
print(_lowercase , ':' , val.size() )
else:
print(_lowercase , ':' , _lowercase )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
__UpperCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
__UpperCamelCase = param.view(*_lowercase )
__UpperCamelCase = param.transpose(0 , 2 )
__UpperCamelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
__UpperCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
__UpperCamelCase = param.view(*_lowercase )
__UpperCamelCase = param.transpose(0 , 1 ).contiguous()
__UpperCamelCase = param.view(*_lowercase )
return param
def _A ( _lowercase , _lowercase , _lowercase ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = {}
# old versions did not store training args
__UpperCamelCase = input_state_dict.get('args' , _lowercase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
__UpperCamelCase = ds_args.padded_vocab_size
__UpperCamelCase = ds_args.max_position_embeddings
__UpperCamelCase = ds_args.hidden_size
__UpperCamelCase = ds_args.num_layers
__UpperCamelCase = ds_args.num_attention_heads
__UpperCamelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
__UpperCamelCase = config.n_head
# The hidden_size per head.
__UpperCamelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
__UpperCamelCase = input_state_dict['checkpoint_version']
else:
__UpperCamelCase = 0.0
# The model.
__UpperCamelCase = input_state_dict['model']
# The language model.
__UpperCamelCase = model['language_model']
# The embeddings.
__UpperCamelCase = lm['embedding']
# The word embeddings.
__UpperCamelCase = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
__UpperCamelCase = word_embeddings[: config.vocab_size, :]
__UpperCamelCase = word_embeddings
# The position embeddings.
__UpperCamelCase = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
__UpperCamelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
__UpperCamelCase = pos_embeddings
# The transformer.
__UpperCamelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
__UpperCamelCase = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
__UpperCamelCase = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
__UpperCamelCase = layer_re.match(_lowercase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
__UpperCamelCase = int(m.group(1 ) )
# The name of the operation.
__UpperCamelCase = m.group(2 )
# Is it a weight or a bias?
__UpperCamelCase = m.group(3 )
# The name of the layer.
__UpperCamelCase = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
__UpperCamelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
__UpperCamelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
__UpperCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , _lowercase , _lowercase )
__UpperCamelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
__UpperCamelCase = torch.tensor(-1e4 , dtype=torch.floataa )
__UpperCamelCase = masked_bias
__UpperCamelCase = fix_query_key_value_ordering(_lowercase , _lowercase , 3 , _lowercase , _lowercase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
__UpperCamelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
__UpperCamelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
__UpperCamelCase = fix_query_key_value_ordering(_lowercase , _lowercase , 3 , _lowercase , _lowercase )
# Store. No change of shape.
__UpperCamelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
__UpperCamelCase = megatron_to_transformers[op_name]
__UpperCamelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
__UpperCamelCase = megatron_to_transformers[op_name]
__UpperCamelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
__UpperCamelCase = transformer['final_layernorm.weight']
__UpperCamelCase = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
__UpperCamelCase = word_embeddings
# It should be done!
return output_state_dict
def _A ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=_lowercase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=_lowercase , help='An optional config json file describing the pre-trained model.' , )
__UpperCamelCase = parser.parse_args()
# Extract the basename.
__UpperCamelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
__UpperCamelCase = torch.load(_lowercase , map_location='cpu' )
else:
__UpperCamelCase = torch.load(args.path_to_checkpoint , map_location='cpu' )
__UpperCamelCase = input_state_dict.get('args' , _lowercase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
__UpperCamelCase = 'gelu_fast'
elif ds_args.openai_gelu:
__UpperCamelCase = 'gelu_new'
else:
__UpperCamelCase = 'gelu'
else:
# in the very early days this used to be "gelu_new"
__UpperCamelCase = 'gelu_new'
# Spell out all parameters in case the defaults change.
__UpperCamelCase = GPTaConfig(
vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=_lowercase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_lowercase , summary_activation=_lowercase , summary_proj_to_labels=_lowercase , summary_first_dropout=0.1 , scale_attn_weights=_lowercase , use_cache=_lowercase , bos_token_id=5_02_56 , eos_token_id=5_02_56 , )
else:
__UpperCamelCase = GPTaConfig.from_json_file(args.config_file )
__UpperCamelCase = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
__UpperCamelCase = convert_megatron_checkpoint(_lowercase , _lowercase , _lowercase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(_lowercase , _lowercase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
__UpperCamelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
__UpperCamelCase = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
__UpperCamelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
__UpperCamelCase = 'gpt2'
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = type(_lowercase ).__name__
__UpperCamelCase = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(_lowercase )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(_lowercase )
# Store the state_dict to file.
__UpperCamelCase = os.path.join(_lowercase , 'pytorch_model.bin' )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(_lowercase , _lowercase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __lowerCamelCase (_a , _a ):
@register_to_config
def __init__( self: List[Any],*,
A_: int = 4,A_: int = 768,A_: int,A_: Tuple,):
'''simple docstring'''
super().__init__()
__UpperCamelCase = nn.Parameter(torch.zeros(A_ ) )
# parameters for additional clip time embeddings
__UpperCamelCase = nn.Linear(A_,A_ )
__UpperCamelCase = nn.Linear(A_,A_ )
# parameters for encoder hidden states
__UpperCamelCase = clip_extra_context_tokens
__UpperCamelCase = nn.Linear(
A_,self.clip_extra_context_tokens * cross_attention_dim )
__UpperCamelCase = nn.Linear(A_,A_ )
__UpperCamelCase = nn.LayerNorm(A_ )
def snake_case_ ( self: int,*, A_: Optional[int],A_: Tuple,A_: str,A_: int ):
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__UpperCamelCase = image_embeddings.shape[0]
__UpperCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__UpperCamelCase = classifier_free_guidance_embeddings.expand(
A_,-1 )
__UpperCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings],dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__UpperCamelCase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__UpperCamelCase = self.embedding_proj(A_ )
__UpperCamelCase = self.clip_image_embeddings_project_to_time_embeddings(A_ )
__UpperCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__UpperCamelCase = self.clip_extra_context_tokens_proj(A_ )
__UpperCamelCase = clip_extra_context_tokens.reshape(A_,-1,self.clip_extra_context_tokens )
__UpperCamelCase = clip_extra_context_tokens.permute(0,2,1 )
__UpperCamelCase = self.encoder_hidden_states_proj(A_ )
__UpperCamelCase = self.text_encoder_hidden_states_norm(A_ )
__UpperCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states],dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__snake_case = ''''''
__snake_case = ''''''
__snake_case = ''''''
__snake_case = 1 # (0 is vertical, 1 is horizontal)
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase = get_dataset(_lowercase , _lowercase )
print('Processing...' )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = update_image_and_anno(_lowercase , _lowercase , _lowercase )
for index, image in enumerate(_lowercase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCamelCase = random_chars(32 )
__UpperCamelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0]
__UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}'''
cva.imwrite(f'''/{file_root}.jpg''' , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Success {index+1}/{len(_lowercase )} with {file_name}''' )
__UpperCamelCase = []
for anno in new_annos[index]:
__UpperCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}'''
annos_list.append(_lowercase )
with open(f'''/{file_root}.txt''' , 'w' ) as outfile:
outfile.write('\n'.join(line for line in annos_list ) )
def _A ( _lowercase , _lowercase ) -> tuple[list, list]:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = []
for label_file in glob.glob(os.path.join(_lowercase , '*.txt' ) ):
__UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0]
with open(_lowercase ) as in_file:
__UpperCamelCase = in_file.readlines()
__UpperCamelCase = os.path.join(_lowercase , f'''{label_name}.jpg''' )
__UpperCamelCase = []
for obj_list in obj_lists:
__UpperCamelCase = obj_list.rstrip('\n' ).split(' ' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(_lowercase )
labels.append(_lowercase )
return img_paths, labels
def _A ( _lowercase , _lowercase , _lowercase = 1 ) -> tuple[list, list, list]:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = []
for idx in range(len(_lowercase ) ):
__UpperCamelCase = []
__UpperCamelCase = img_list[idx]
path_list.append(_lowercase )
__UpperCamelCase = anno_list[idx]
__UpperCamelCase = cva.imread(_lowercase )
if flip_type == 1:
__UpperCamelCase = cva.flip(_lowercase , _lowercase )
for bbox in img_annos:
__UpperCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCamelCase = cva.flip(_lowercase , _lowercase )
for bbox in img_annos:
__UpperCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(_lowercase )
new_imgs_list.append(_lowercase )
return new_imgs_list, new_annos_lists, path_list
def _A ( _lowercase = 32 ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
__UpperCamelCase = ascii_lowercase + digits
return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__snake_case = random.Random()
if is_torch_available():
import torch
def _A ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Dict:
"""simple docstring"""
if rng is None:
__UpperCamelCase = global_rng
__UpperCamelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class __lowerCamelCase (unittest.TestCase ):
def __init__( self: List[Any],A_: int,A_: Optional[int]=7,A_: Tuple=400,A_: Optional[int]=2000,A_: str=1,A_: Dict=0.0,A_: Any=1_6000,A_: List[Any]=True,A_: List[Any]=True,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = min_seq_length
__UpperCamelCase = max_seq_length
__UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__UpperCamelCase = feature_size
__UpperCamelCase = padding_value
__UpperCamelCase = sampling_rate
__UpperCamelCase = return_attention_mask
__UpperCamelCase = do_normalize
def snake_case_ ( self: int ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def snake_case_ ( self: Any,A_: Tuple=False,A_: int=False ):
'''simple docstring'''
def _flatten(A_: Optional[int] ):
return list(itertools.chain(*A_ ) )
if equal_length:
__UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__UpperCamelCase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff )
]
if numpify:
__UpperCamelCase = [np.asarray(A_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = ASTFeatureExtractor
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = ASTFeatureExtractionTester(self )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__UpperCamelCase = [floats_list((1, x) )[0] for x in range(800,1400,200 )]
__UpperCamelCase = [np.asarray(A_ ) for speech_input in speech_inputs]
# Test not batched input
__UpperCamelCase = feat_extract(speech_inputs[0],return_tensors='np' ).input_values
__UpperCamelCase = feat_extract(np_speech_inputs[0],return_tensors='np' ).input_values
self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) )
# Test batched
__UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values
__UpperCamelCase = feat_extract(A_,padding=A_,return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A_,A_ ):
self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
__UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__UpperCamelCase = np.asarray(A_ )
__UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values
__UpperCamelCase = feat_extract(A_,return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(A_,A_ ):
self.assertTrue(np.allclose(A_,A_,atol=1E-3 ) )
@require_torch
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
import torch
__UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCamelCase = np.random.rand(100 ).astype(np.floataa )
__UpperCamelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__UpperCamelCase = feature_extractor.pad([{'input_values': inputs}],return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def snake_case_ ( self: Any,A_: Union[str, Any] ):
'''simple docstring'''
from datasets import load_dataset
__UpperCamelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' )
# automatic decoding with librispeech
__UpperCamelCase = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = torch.tensor(
[-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6,
-1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3,
-1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6,
-0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] )
# fmt: on
__UpperCamelCase = self._load_datasamples(1 )
__UpperCamelCase = ASTFeatureExtractor()
__UpperCamelCase = feature_extractor(A_,return_tensors='pt' ).input_values
self.assertEquals(input_values.shape,(1, 1024, 128) )
self.assertTrue(torch.allclose(input_values[0, 0, :30],A_,atol=1E-4 ) )
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Any,A_: Any ):
'''simple docstring'''
__UpperCamelCase = 3
__UpperCamelCase = 250
__UpperCamelCase = ids_tensor((batch_size, length),A_ )
__UpperCamelCase = torch.ones((batch_size, length),device=A_,dtype=torch.float ) / length
return input_ids, scores
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self._get_tensors(5 )
__UpperCamelCase = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(9 )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(10 )
self.assertTrue(criteria(A_,A_ ) )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = MaxLengthCriteria(max_length=10 )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(5 )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(9 )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(10 )
self.assertTrue(criteria(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = MaxNewTokensCriteria(start_length=5,max_new_tokens=5 )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(5 )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(9 )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase, __UpperCamelCase = self._get_tensors(10 )
self.assertTrue(criteria(A_,A_ ) )
__UpperCamelCase = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length,10 )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self._get_tensors(5 )
__UpperCamelCase = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(A_,A_ ) )
__UpperCamelCase = MaxTimeCriteria(max_time=0.1,initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(A_,A_ ) )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ),10 )
with self.assertWarns(A_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ),11 )
__UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList(),11 )
self.assertEqual(len(A_ ),1 )
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
__snake_case = None
__snake_case = '''<''' if sys.byteorder == '''little''' else '''>'''
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
__snake_case = [
np.dtype('''|b1'''),
np.dtype('''|u1'''),
np.dtype('''<u2'''),
np.dtype('''>u2'''),
np.dtype('''<i2'''),
np.dtype('''>i2'''),
np.dtype('''<u4'''),
np.dtype('''>u4'''),
np.dtype('''<i4'''),
np.dtype('''>i4'''),
np.dtype('''<f4'''),
np.dtype('''>f4'''),
np.dtype('''<f8'''),
np.dtype('''>f8'''),
]
@dataclass
class __lowerCamelCase :
_lowercase = True
_lowercase = None
# Automatically constructed
_lowercase = "PIL.Image.Image"
_lowercase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} )
_lowercase = field(default="""Image""" , init=_a , repr=_a )
def __call__( self: Any ):
'''simple docstring'''
return self.pa_type
def snake_case_ ( self: Dict,A_: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.' )
if isinstance(A_,A_ ):
__UpperCamelCase = np.array(A_ )
if isinstance(A_,A_ ):
return {"path": value, "bytes": None}
elif isinstance(A_,A_ ):
return {"path": None, "bytes": value}
elif isinstance(A_,np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(A_ )
elif isinstance(A_,PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(A_ )
elif value.get('path' ) is not None and os.path.isfile(value['path'] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get('path' )}
elif value.get('bytes' ) is not None or value.get('path' ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get('bytes' ), "path": value.get('path' )}
else:
raise ValueError(
F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def snake_case_ ( self: str,A_: dict,A_: Dict=None ):
'''simple docstring'''
if not self.decode:
raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support decoding images, please install \'Pillow\'.' )
if token_per_repo_id is None:
__UpperCamelCase = {}
__UpperCamelCase, __UpperCamelCase = value['path'], value['bytes']
if bytes_ is None:
if path is None:
raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(A_ ):
__UpperCamelCase = PIL.Image.open(A_ )
else:
__UpperCamelCase = path.split('::' )[-1]
try:
__UpperCamelCase = string_to_dict(A_,config.HUB_DATASETS_URL )['repo_id']
__UpperCamelCase = token_per_repo_id.get(A_ )
except ValueError:
__UpperCamelCase = None
with xopen(A_,'rb',use_auth_token=A_ ) as f:
__UpperCamelCase = BytesIO(f.read() )
__UpperCamelCase = PIL.Image.open(bytes_ )
else:
__UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
from .features import Value
return (
self
if self.decode
else {
"bytes": Value('binary' ),
"path": Value('string' ),
}
)
def snake_case_ ( self: Tuple,A_: Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
'''simple docstring'''
if pa.types.is_string(storage.type ):
__UpperCamelCase = pa.array([None] * len(A_ ),type=pa.binary() )
__UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage],['bytes', 'path'],mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() )
__UpperCamelCase = pa.StructArray.from_arrays([storage, path_array],['bytes', 'path'],mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('bytes' ) >= 0:
__UpperCamelCase = storage.field('bytes' )
else:
__UpperCamelCase = pa.array([None] * len(A_ ),type=pa.binary() )
if storage.type.get_field_index('path' ) >= 0:
__UpperCamelCase = storage.field('path' )
else:
__UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() )
__UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array],['bytes', 'path'],mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__UpperCamelCase = pa.array(
[encode_np_array(np.array(A_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()],type=pa.binary(),)
__UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() )
__UpperCamelCase = pa.StructArray.from_arrays(
[bytes_array, path_array],['bytes', 'path'],mask=bytes_array.is_null() )
return array_cast(A_,self.pa_type )
def snake_case_ ( self: int,A_: pa.StructArray ):
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(A_: int ):
with xopen(A_,'rb' ) as f:
__UpperCamelCase = f.read()
return bytes_
__UpperCamelCase = pa.array(
[
(path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None
for x in storage.to_pylist()
],type=pa.binary(),)
__UpperCamelCase = pa.array(
[os.path.basename(A_ ) if path is not None else None for path in storage.field('path' ).to_pylist()],type=pa.string(),)
__UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array],['bytes', 'path'],mask=bytes_array.is_null() )
return array_cast(A_,self.pa_type )
def _A ( ) -> List[str]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.' )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = BytesIO()
if image.format in list_image_compression_formats():
__UpperCamelCase = image.format
else:
__UpperCamelCase = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF'
image.save(_lowercase , format=_lowercase )
return buffer.getvalue()
def _A ( _lowercase ) -> dict:
"""simple docstring"""
if hasattr(_lowercase , 'filename' ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(_lowercase )}
def _A ( _lowercase ) -> dict:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.' )
__UpperCamelCase = array.dtype
__UpperCamelCase = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER
__UpperCamelCase = dtype.kind
__UpperCamelCase = dtype.itemsize
__UpperCamelCase = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__UpperCamelCase = np.dtype('|u1' )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__UpperCamelCase = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__UpperCamelCase = dtype_byteorder + dtype_kind + str(_lowercase )
__UpperCamelCase = np.dtype(_lowercase )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__UpperCamelCase = PIL.Image.fromarray(array.astype(_lowercase ) )
return {"path": None, "bytes": image_to_bytes(_lowercase )}
def _A ( _lowercase ) -> List[dict]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('To support encoding images, please install \'Pillow\'.' )
if objs:
__UpperCamelCase, __UpperCamelCase = first_non_null_value(_lowercase )
if isinstance(_lowercase , _lowercase ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(_lowercase , np.ndarray ):
__UpperCamelCase = no_op_if_value_is_null(_lowercase )
return [obj_to_image_dict_func(_lowercase ) for obj in objs]
elif isinstance(_lowercase , PIL.Image.Image ):
__UpperCamelCase = no_op_if_value_is_null(_lowercase )
return [obj_to_image_dict_func(_lowercase ) for obj in objs]
else:
return objs
else:
return objs
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
class __lowerCamelCase :
def __init__( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = None
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = self.head
while temp is not None:
print(temp.data,end=' ' )
__UpperCamelCase = temp.next
print()
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = Node(A_ )
__UpperCamelCase = self.head
__UpperCamelCase = new_node
def snake_case_ ( self: str,A_: Union[str, Any],A_: Optional[Any] ):
'''simple docstring'''
if node_data_a == node_data_a:
return
else:
__UpperCamelCase = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCamelCase = node_a.next
__UpperCamelCase = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCamelCase = node_a.next
if node_a is None or node_a is None:
return
__UpperCamelCase, __UpperCamelCase = node_a.data, node_a.data
if __name__ == "__main__":
__snake_case = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print('''After swapping''')
ll.print_list()
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
def _A ( _lowercase ) -> list:
"""simple docstring"""
__UpperCamelCase = len(_lowercase )
for i in range(1 , _lowercase ):
__UpperCamelCase = collection[i]
__UpperCamelCase = 0
__UpperCamelCase = i - 1
while low <= high:
__UpperCamelCase = (low + high) // 2
if val < collection[mid]:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
for j in range(_lowercase , _lowercase , -1 ):
__UpperCamelCase = collection[j - 1]
__UpperCamelCase = val
return collection
if __name__ == "__main__":
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(binary_insertion_sort(unsorted))
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
import re
from filelock import FileLock
try:
import nltk
__snake_case = True
except (ImportError, ModuleNotFoundError):
__snake_case = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def _A ( _lowercase ) -> str:
"""simple docstring"""
re.sub('<n>' , '' , _lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_lowercase ) )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 10
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4]
__UpperCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
__UpperCamelCase, __UpperCamelCase = process_story(A_ )
self.assertEqual(A_,[] )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = ''
__UpperCamelCase, __UpperCamelCase = process_story(A_ )
self.assertEqual(A_,[] )
self.assertEqual(A_,[] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
__UpperCamelCase, __UpperCamelCase = process_story(A_ )
__UpperCamelCase = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(A_,A_ )
__UpperCamelCase = ['It was the best of times.']
self.assertEqual(A_,A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3, 4] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(A_,0 ).numpy(),expected.numpy() )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(A_,23 ).numpy(),expected.numpy() )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(A_,1 ).numpy(),expected.numpy() )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = 101
__UpperCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
__UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
__UpperCamelCase = compute_token_type_ids(A_,A_ )
np.testing.assert_array_equal(A_,A_ )
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class __lowerCamelCase (_a ):
def __init__( self: Tuple,A_: str = "▁",A_: bool = True,A_: Union[str, AddedToken] = "<unk>",A_: Union[str, AddedToken] = "</s>",A_: Union[str, AddedToken] = "<pad>",):
'''simple docstring'''
__UpperCamelCase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__UpperCamelCase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__UpperCamelCase = token_dict['token']
__UpperCamelCase = Tokenizer(Unigram() )
__UpperCamelCase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ),' ' ),
normalizers.Lowercase(),
] )
__UpperCamelCase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=A_,add_prefix_space=A_ ),
pre_tokenizers.Digits(individual_digits=A_ ),
pre_tokenizers.Punctuation(),
] )
__UpperCamelCase = decoders.Metaspace(replacement=A_,add_prefix_space=A_ )
__UpperCamelCase = TemplateProcessing(
single=F'''$A {self.special_tokens['eos']['token']}''',special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])],)
__UpperCamelCase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(A_,A_ )
def snake_case_ ( self: List[Any],A_: Union[str, List[str]],A_: int = 8000,A_: bool = True,):
'''simple docstring'''
__UpperCamelCase = trainers.UnigramTrainer(
vocab_size=A_,special_tokens=self.special_tokens_list,show_progress=A_,)
if isinstance(A_,A_ ):
__UpperCamelCase = [files]
self._tokenizer.train(A_,trainer=A_ )
self.add_unk_id()
def snake_case_ ( self: str,A_: Union[Iterator[str], Iterator[Iterator[str]]],A_: int = 8000,A_: bool = True,):
'''simple docstring'''
__UpperCamelCase = trainers.UnigramTrainer(
vocab_size=A_,special_tokens=self.special_tokens_list,show_progress=A_,)
self._tokenizer.train_from_iterator(A_,trainer=A_ )
self.add_unk_id()
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = json.loads(self._tokenizer.to_str() )
__UpperCamelCase = self.special_tokens['unk']['id']
__UpperCamelCase = Tokenizer.from_str(json.dumps(A_ ) )
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class __lowerCamelCase :
def __init__( self: Optional[Any],A_: int,A_: str=3,A_: List[Any]=7,A_: List[str]=True,A_: List[str]=True,A_: Any=False,A_: int=True,A_: str=99,A_: List[str]=32,A_: Optional[Any]=5,A_: Optional[int]=4,A_: List[Any]=37,A_: List[str]="gelu",A_: Tuple=0.1,A_: Any=0.1,A_: str=512,A_: Any=16,A_: List[str]=2,A_: Dict=0.0_2,A_: Tuple=3,A_: Union[str, Any]=4,A_: Union[str, Any]=None,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size],self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size],self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return FalconConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=A_,initializer_range=self.initializer_range,pad_token_id=1,new_decoder_architecture=A_,)
def snake_case_ ( self: int,A_: Union[str, Any],A_: Union[str, Any],A_: int,A_: Any,A_: Tuple,A_: Any,A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = FalconModel(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_ )
__UpperCamelCase = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_ ( self: Dict,A_: Any,A_: Optional[Any],A_: List[str],A_: str,A_: Optional[Any],A_: Optional[Any],A_: Dict,A_: Optional[Any],A_: str,):
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = FalconModel(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(
A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,)
__UpperCamelCase = model(
A_,attention_mask=A_,encoder_hidden_states=A_,)
__UpperCamelCase = model(A_,attention_mask=A_ )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_ ( self: Union[str, Any],A_: Union[str, Any],A_: List[str],A_: Tuple,A_: List[Any],A_: Tuple,A_: int,A_: int,A_: Tuple,A_: Tuple,):
'''simple docstring'''
__UpperCamelCase = FalconForCausalLM(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def snake_case_ ( self: str,A_: int,A_: str,A_: Optional[int],A_: Optional[int],A_: List[str],A_: str,A_: Union[str, Any],A_: Tuple,A_: Dict,):
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = FalconForCausalLM(config=A_ )
model.to(A_ )
model.eval()
# first forward pass
__UpperCamelCase = model(
A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,use_cache=A_,)
__UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3),config.vocab_size )
__UpperCamelCase = ids_tensor((self.batch_size, 3),vocab_size=2 )
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens],dim=-1 )
__UpperCamelCase = torch.cat([input_mask, next_mask],dim=-1 )
__UpperCamelCase = model(
A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,output_hidden_states=A_,)['hidden_states'][0]
__UpperCamelCase = model(
A_,attention_mask=A_,encoder_hidden_states=A_,encoder_attention_mask=A_,past_key_values=A_,output_hidden_states=A_,)['hidden_states'][0]
# select random slice
__UpperCamelCase = ids_tensor((1,),output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A_,A_,atol=1E-3 ) )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
), (
__UpperCamelCase
),
) = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase (_a , _a , _a , unittest.TestCase ):
_lowercase = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
_lowercase = (FalconForCausalLM,) if is_torch_available() else ()
_lowercase = (
{
"""feature-extraction""": FalconModel,
"""text-classification""": FalconForSequenceClassification,
"""text-generation""": FalconForCausalLM,
"""question-answering""": FalconForQuestionAnswering,
"""token-classification""": FalconForTokenClassification,
"""zero-shot""": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowercase = False
_lowercase = False
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = FalconModelTester(self )
__UpperCamelCase = ConfigTester(self,config_class=A_,hidden_size=37 )
def snake_case_ ( self: Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase, *__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
__UpperCamelCase = alibi
self.model_tester.create_and_check_model(A_,*A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = input_ids.ne(1 ).to(A_ )
__UpperCamelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size )
__UpperCamelCase = FalconForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = 'single_label_classification'
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = input_ids.ne(1 ).to(A_ )
__UpperCamelCase = ids_tensor([self.model_tester.batch_size],self.model_tester.type_sequence_label_size )
__UpperCamelCase = FalconForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = FalconForCausalLM(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,use_cache=A_ )
__UpperCamelCase = input_ids.shape[0]
__UpperCamelCase = model._convert_to_rw_cache(result.past_key_values )
__UpperCamelCase = model._convert_cache_to_standard_format(A_,A_ )
for layer in range(len(A_ ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = 'multi_label_classification'
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = input_ids.ne(1 ).to(A_ )
__UpperCamelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels],self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCamelCase = FalconForSequenceClassification(A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(A_,attention_mask=A_,labels=A_ )
self.assertEqual(result.logits.shape,(self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
for model_class in self.all_generative_model_classes:
__UpperCamelCase, __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(A_,'use_cache' ):
return
__UpperCamelCase = model_class(A_ ).to(A_ )
if "use_cache" not in inputs:
__UpperCamelCase = True
__UpperCamelCase = model(**A_ )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
__UpperCamelCase = (
getattr(A_,'decoder_layers',A_ )
or getattr(A_,'num_decoder_layers',A_ )
or config.num_hidden_layers
)
__UpperCamelCase = getattr(A_,'num_kv_heads',config.num_attention_heads )
__UpperCamelCase = getattr(A_,'d_model',config.hidden_size )
__UpperCamelCase = embed_dim // num_attention_heads
__UpperCamelCase = outputs['past_key_values']
self.assertEqual(len(A_ ),A_ )
__UpperCamelCase, __UpperCamelCase = inputs['input_ids'].shape
for i in range(A_ ):
if config.new_decoder_architecture:
__UpperCamelCase = config.num_attention_heads
elif config.multi_query:
__UpperCamelCase = 1
self.assertEqual(len(past_kv[0] ),2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class __lowerCamelCase (unittest.TestCase ):
@slow
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' )
__UpperCamelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' )
model.eval()
model.to(A_ )
__UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ )
__UpperCamelCase = (
'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.'
)
__UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=19 )
__UpperCamelCase = tokenizer.batch_decode(A_ )[0]
self.assertEqual(A_,A_ )
@slow
def snake_case_ ( self: Dict ):
'''simple docstring'''
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
__UpperCamelCase = AutoTokenizer.from_pretrained(A_ )
__UpperCamelCase = FalconForCausalLM.from_pretrained(A_ )
model.eval()
model.to(A_ )
__UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**A_,do_sample=A_,max_new_tokens=4 )
model.generate(**A_,do_sample=A_,max_new_tokens=4 )
model.generate(**A_,num_beams=2,max_new_tokens=4 )
@slow
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
__UpperCamelCase = AutoTokenizer.from_pretrained(A_ )
__UpperCamelCase = FalconForCausalLM.from_pretrained(A_ )
model.eval()
model.to(device=A_ )
__UpperCamelCase = tokenizer('My favorite food is',return_tensors='pt' ).to(A_ )
# Test results are the same with and without cache
__UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=20,use_cache=A_ )
__UpperCamelCase = model.generate(**A_,do_sample=A_,max_new_tokens=20,use_cache=A_ )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = 1
__UpperCamelCase = 3
__UpperCamelCase = (32, 32)
__UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes,rng=random.Random(0 ) ).to(A_ )
return image
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=32,)
return model
@property
def snake_case_ ( self: int ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,)
return model
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,)
return CLIPTextModel(A_ )
@property
def snake_case_ ( self: Dict ):
'''simple docstring'''
def extract(*A_: Any,**A_: Dict ):
class __lowerCamelCase :
def __init__( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = torch.ones([0] )
def snake_case_ ( self: Optional[Any],A_: int ):
'''simple docstring'''
self.pixel_values.to(A_ )
return self
return Out()
return extract
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,)
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 'A painting of a squirrel eating a burger'
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np' )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np',return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,)
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 'A painting of a squirrel eating a burger'
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np' )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=6.0,num_inference_steps=2,output_type='np',return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-lms-pipe',safety_checker=A_ )
assert isinstance(A_,A_ )
assert isinstance(pipe.scheduler,A_ )
assert pipe.safety_checker is None
__UpperCamelCase = pipe('example prompt',num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(A_ )
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(A_ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCamelCase = pipe('example prompt',num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != 'cuda','This test requires a GPU' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=A_ )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
# put models in fp16
__UpperCamelCase = unet.half()
__UpperCamelCase = vae.half()
__UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=A_,scheduler=A_,vae=A_,text_encoder=A_,tokenizer=A_,safety_checker=A_,feature_extractor=self.dummy_extractor,)
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 'A painting of a squirrel eating a burger'
__UpperCamelCase = sd_pipe([prompt],num_inference_steps=2,output_type='np' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5',safety_checker=A_ )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = (
'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'
' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'
' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'
' children from bahnhof zoo, detailed '
)
__UpperCamelCase = 40_0366_0346
__UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCamelCase = torch.manual_seed(A_ )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,)
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCamelCase = torch.manual_seed(A_ )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,)
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5',safety_checker=A_ )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 'padme amidala taking a bath artwork, safe for work, no nudity'
__UpperCamelCase = 27_3497_1755
__UpperCamelCase = 7
__UpperCamelCase = torch.manual_seed(A_ )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,)
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCamelCase = torch.manual_seed(A_ )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,)
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = (
'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'
' leyendecker'
)
__UpperCamelCase = 10_4435_5234
__UpperCamelCase = 12
__UpperCamelCase = torch.manual_seed(A_ )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=0,)
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCamelCase = torch.manual_seed(A_ )
__UpperCamelCase = sd_pipe(
[prompt],generator=A_,guidance_scale=A_,num_inference_steps=50,output_type='np',width=512,height=512,sld_guidance_scale=2000,sld_warmup_steps=7,sld_threshold=0.0_2_5,sld_momentum_scale=0.5,sld_mom_beta=0.7,)
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
def get_masked_lm_array(_lowercase ):
__UpperCamelCase = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(_lowercase )
def get_encoder_array(_lowercase ):
__UpperCamelCase = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(_lowercase )
def get_encoder_layer_array(_lowercase , _lowercase ):
__UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(_lowercase )
def get_encoder_attention_layer_array(_lowercase , _lowercase , _lowercase ):
__UpperCamelCase = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__UpperCamelCase = tf.train.load_variable(_lowercase , _lowercase )
__UpperCamelCase = array.reshape(_lowercase )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(_lowercase )
print(f'''Loading model based on config from {config_path}...''' )
__UpperCamelCase = BertConfig.from_json_file(_lowercase )
__UpperCamelCase = BertForMaskedLM(_lowercase )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__UpperCamelCase = model.bert.encoder.layer[layer_index]
# Self-attention
__UpperCamelCase = layer.attention.self
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_query_dense/kernel' , self_attn.query.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_query_dense/bias' , self_attn.query.bias.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_key_dense/kernel' , self_attn.key.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_key_dense/bias' , self_attn.key.bias.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_value_dense/kernel' , self_attn.value.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_value_dense/bias' , self_attn.value.bias.data.shape )
# Self-attention Output
__UpperCamelCase = layer.attention.output
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_output_dense/kernel' , self_output.dense.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
_lowercase , '_output_dense/bias' , self_output.dense.bias.data.shape )
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_attention_layer_norm/gamma' )
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_attention_layer_norm/beta' )
# Intermediate
__UpperCamelCase = layer.intermediate
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_intermediate_dense/kernel' )
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_intermediate_dense/bias' )
# Output
__UpperCamelCase = layer.output
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_dense/kernel' )
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_dense/bias' )
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_layer_norm/gamma' )
__UpperCamelCase = get_encoder_layer_array(_lowercase , '_output_layer_norm/beta' )
# Embeddings
__UpperCamelCase = get_encoder_array('_position_embedding_layer/embeddings' )
__UpperCamelCase = get_encoder_array('_type_embedding_layer/embeddings' )
__UpperCamelCase = get_encoder_array('_embedding_norm_layer/gamma' )
__UpperCamelCase = get_encoder_array('_embedding_norm_layer/beta' )
# LM Head
__UpperCamelCase = model.cls.predictions.transform
__UpperCamelCase = get_masked_lm_array('dense/kernel' )
__UpperCamelCase = get_masked_lm_array('dense/bias' )
__UpperCamelCase = get_masked_lm_array('layer_norm/gamma' )
__UpperCamelCase = get_masked_lm_array('layer_norm/beta' )
__UpperCamelCase = get_masked_lm_array('embedding_table' )
# Pooling
__UpperCamelCase = BertPooler(config=_lowercase )
__UpperCamelCase = get_encoder_array('_pooler_layer/kernel' )
__UpperCamelCase = get_encoder_array('_pooler_layer/bias' )
# Export final model
model.save_pretrained(_lowercase )
# Integration test - should load without any errors ;)
__UpperCamelCase = BertForMaskedLM.from_pretrained(_lowercase )
print(new_model.eval() )
print('Model conversion was done sucessfully!' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model.''',
)
__snake_case = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__snake_case = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def _A ( _lowercase , _lowercase=None ) -> List[Any]:
"""simple docstring"""
require_version(deps[pkg] , _lowercase )
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''adapter_layer''': '''encoder.layers.*.adapter_layer''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
'''pooling_layer.linear''': '''projector''',
'''pooling_layer.projection''': '''classifier''',
}
__snake_case = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
'''projector''',
'''classifier''',
]
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = {}
with open(_lowercase , 'r' ) as file:
for line_number, line in enumerate(_lowercase ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
"""simple docstring"""
for attribute in key.split('.' ):
__UpperCamelCase = getattr(_lowercase , _lowercase )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowercase ):
__UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]]
__UpperCamelCase = 'param'
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(_lowercase , _lowercase ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split('.' ):
__UpperCamelCase = getattr(_lowercase , _lowercase )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
__UpperCamelCase = getattr(_lowercase , _lowercase )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowercase ):
__UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]]
__UpperCamelCase = 'param'
if weight_type is not None and weight_type != "param":
__UpperCamelCase = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = '.'.join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if 'lm_head' in full_key else value[0]
__snake_case = {
'''W_a''': '''linear_1.weight''',
'''W_b''': '''linear_2.weight''',
'''b_a''': '''linear_1.bias''',
'''b_b''': '''linear_2.bias''',
'''ln_W''': '''norm.weight''',
'''ln_b''': '''norm.bias''',
}
def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(_lowercase )[0].split('.' )[-2]
__UpperCamelCase = mapped_key.replace('*' , _lowercase )
if "weight_g" in name:
__UpperCamelCase = 'weight_g'
elif "weight_v" in name:
__UpperCamelCase = 'weight_v'
elif "bias" in name:
__UpperCamelCase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = 'weight'
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
else:
set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
return is_used
return is_used
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
_lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , )
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(_lowercase , _lowercase , _lowercase )
if not is_used:
unused_weights.append(_lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = full_name.split('conv_layers.' )[-1]
__UpperCamelCase = name.split('.' )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
__UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
__UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
__UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
__UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowercase )
@torch.no_grad()
def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase=False ) -> Dict:
"""simple docstring"""
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(_lowercase )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(_lowercase )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(_lowercase )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , )
feature_extractor.save_pretrained(_lowercase )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(_lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(_lowercase , 'vocab.json' )
if not os.path.isdir(_lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowercase ) )
return
os.makedirs(_lowercase , exist_ok=_lowercase )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(_lowercase , _lowercase )
__UpperCamelCase = WavaVecaCTCTokenizer(
_lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowercase , )
__UpperCamelCase = True if config.feat_extract_norm == 'layer' else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , )
__UpperCamelCase = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase )
processor.save_pretrained(_lowercase )
__UpperCamelCase = WavaVecaForCTC(_lowercase )
else:
__UpperCamelCase = WavaVecaForPreTraining(_lowercase )
if is_finetuned or is_seq_class:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task='audio_pretraining' )
__UpperCamelCase = fairseq.tasks.setup_task(_lowercase )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase )
__UpperCamelCase = model[0].eval()
recursively_load_weights(_lowercase , _lowercase , not is_finetuned )
hf_wavavec.save_pretrained(_lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
parser.add_argument(
'''--is_seq_class''',
action='''store_true''',
help='''Whether the model to convert is a fine-tuned sequence classification model or not''',
)
__snake_case = parser.parse_args()
__snake_case = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = ShapEImgaImgPipeline
_lowercase = ["""image"""]
_lowercase = ["""image"""]
_lowercase = [
"""num_images_per_prompt""",
"""num_inference_steps""",
"""generator""",
"""latents""",
"""guidance_scale""",
"""frame_size""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: Dict ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return 8
@property
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,image_size=64,projection_dim=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_channels=3,num_hidden_layers=5,patch_size=1,)
__UpperCamelCase = CLIPVisionModel(A_ )
return model
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = CLIPImageProcessor(
crop_size=224,do_center_crop=A_,do_normalize=A_,do_resize=A_,image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],resample=3,size=224,)
return image_processor
@property
def snake_case_ ( self: int ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'embedding_proj_norm_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
__UpperCamelCase = PriorTransformer(**A_ )
return model
@property
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
__UpperCamelCase = ShapERenderer(**A_ )
return model
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.dummy_prior
__UpperCamelCase = self.dummy_image_encoder
__UpperCamelCase = self.dummy_image_processor
__UpperCamelCase = self.dummy_renderer
__UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='exp',num_train_timesteps=1024,prediction_type='sample',use_karras_sigmas=A_,clip_sample=A_,clip_sample_range=1.0,)
__UpperCamelCase = {
'prior': prior,
'image_encoder': image_encoder,
'image_processor': image_processor,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Optional[Any],A_: str=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'image': input_image,
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__UpperCamelCase = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = torch_device == 'cpu'
__UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2,test_max_difference=A_,relax_max_difference=A_,)
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = 1
__UpperCamelCase = 2
__UpperCamelCase = self.get_dummy_inputs(A_ )
for key in inputs.keys():
if key in self.batch_params:
__UpperCamelCase = batch_size * [inputs[key]]
__UpperCamelCase = pipe(**A_,num_images_per_prompt=A_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' )
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_img2img_out.npy' )
__UpperCamelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(0 )
__UpperCamelCase = pipe(
A_,generator=A_,guidance_scale=3.0,num_inference_steps=64,frame_size=64,output_type='np',).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
__snake_case = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__snake_case = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
__snake_case = {
0: '''Sunday''',
1: '''Monday''',
2: '''Tuesday''',
3: '''Wednesday''',
4: '''Thursday''',
5: '''Friday''',
6: '''Saturday''',
}
def _A ( _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
assert len(str(_lowercase ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
__UpperCamelCase = year // 1_00
__UpperCamelCase = (5 * (century % 4) + 2) % 7
__UpperCamelCase = year % 1_00
__UpperCamelCase = centurian % 12
__UpperCamelCase = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__UpperCamelCase = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__UpperCamelCase = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'''
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __lowerCamelCase (_a ):
_lowercase = """roformer"""
def __init__( self: List[Any],A_: Union[str, Any]=5_0000,A_: List[str]=None,A_: List[Any]=768,A_: List[Any]=12,A_: List[str]=12,A_: Any=3072,A_: Tuple="gelu",A_: List[str]=0.1,A_: int=0.1,A_: str=1536,A_: Dict=2,A_: List[str]=0.0_2,A_: int=1E-12,A_: List[str]=0,A_: Optional[Any]=False,A_: str=True,**A_: Optional[int],):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size if embedding_size is None else embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = rotary_value
__UpperCamelCase = use_cache
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: str ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
def _A ( _lowercase ) -> bool:
"""simple docstring"""
return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') )
def _A ( _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = credit_card_number
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 2
for i in range(_lowercase , -1 , -2 ):
# double the value of every second digit
__UpperCamelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
__UpperCamelCase = cc_number[:i] + str(_lowercase ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(_lowercase ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def _A ( _lowercase ) -> bool:
"""simple docstring"""
__UpperCamelCase = f'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(f'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(_lowercase ) <= 16:
print(f'''{error_message} of its length.''' )
return False
if not validate_initial_digits(_lowercase ):
print(f'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(_lowercase ):
print(f'''{error_message} it fails the Luhn check.''' )
return False
print(f'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('''4111111111111111''')
validate_credit_card_number('''32323''')
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__snake_case = logging.get_logger(__name__)
@add_end_docstrings(_a )
class __lowerCamelCase (_a ):
def __init__( self: str,*A_: List[Any],**A_: Optional[int] ):
'''simple docstring'''
super().__init__(*A_,**A_ )
requires_backends(self,'vision' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def snake_case_ ( self: Dict,A_: Tuple=None ):
'''simple docstring'''
__UpperCamelCase = {}
if top_k is not None:
__UpperCamelCase = top_k
return {}, {}, postprocess_params
def __call__( self: List[Any],A_: Union[str, List[str], "Image.Image", List["Image.Image"]],**A_: Optional[int] ):
'''simple docstring'''
return super().__call__(A_,**A_ )
def snake_case_ ( self: Optional[Any],A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = load_image(A_ )
__UpperCamelCase = self.image_processor(images=A_,return_tensors=self.framework )
return model_inputs
def snake_case_ ( self: str,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.model(**A_ )
return model_outputs
def snake_case_ ( self: Optional[Any],A_: Dict,A_: Optional[int]=5 ):
'''simple docstring'''
if top_k > self.model.config.num_labels:
__UpperCamelCase = self.model.config.num_labels
if self.framework == "pt":
__UpperCamelCase = model_outputs.logits.softmax(-1 )[0]
__UpperCamelCase, __UpperCamelCase = probs.topk(A_ )
elif self.framework == "tf":
__UpperCamelCase = stable_softmax(model_outputs.logits,axis=-1 )[0]
__UpperCamelCase = tf.math.top_k(A_,k=A_ )
__UpperCamelCase, __UpperCamelCase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
__UpperCamelCase = scores.tolist()
__UpperCamelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A_,A_ )]
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__snake_case = '''\
@misc{wu2016googles,
title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
'''
__snake_case = '''\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the \'GLEU score\'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score\'s range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
'''
__snake_case = '''\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
\'google_bleu\': google_bleu score
Examples:
Example 1:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results["google_bleu"], 2))
0.44
Example 2:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',
... \'heed\', \'the\', \'cat\', \'commands\']
>>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',
... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',
... \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results["google_bleu"], 2))
0.61
Example 3:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',
... \'heed\', \'the\', \'cat\', \'commands\']
>>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',
... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',
... \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results["google_bleu"], 2))
0.53
Example 4:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',
... \'heed\', \'the\', \'cat\', \'commands\']
>>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',
... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',
... \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results["google_bleu"], 2))
0.4
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase (datasets.Metric ):
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),id='references' ),
} ),)
def snake_case_ ( self: Union[str, Any],A_: List[List[List[str]]],A_: List[List[str]],A_: int = 1,A_: int = 4,):
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=A_,hypotheses=A_,min_len=A_,max_len=A_ )
}
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
from PIL import Image
def _A ( _lowercase ) -> Image:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase = image.size
__UpperCamelCase = 0
__UpperCamelCase = image.load()
for i in range(_lowercase ):
for j in range(_lowercase ):
__UpperCamelCase = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(_lowercase ):
for i in range(_lowercase ):
__UpperCamelCase = 2_55 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
__snake_case = mean_threshold(Image.open('''path_to_image''').convert('''L'''))
image.save('''output_image_path''')
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def _A ( _lowercase ) -> str:
"""simple docstring"""
if "model" in orig_key:
__UpperCamelCase = orig_key.replace('model.' , '' )
if "norm1" in orig_key:
__UpperCamelCase = orig_key.replace('norm1' , 'attention.output.LayerNorm' )
if "norm2" in orig_key:
__UpperCamelCase = orig_key.replace('norm2' , 'output.LayerNorm' )
if "norm" in orig_key:
__UpperCamelCase = orig_key.replace('norm' , 'LayerNorm' )
if "transformer" in orig_key:
__UpperCamelCase = orig_key.split('.' )[0].split('_' )[-1]
__UpperCamelCase = orig_key.replace(f'''transformer_{layer_num}''' , f'''encoder.layer.{layer_num}''' )
if "mha.attn" in orig_key:
__UpperCamelCase = orig_key.replace('mha.attn' , 'attention.self' )
if "mha" in orig_key:
__UpperCamelCase = orig_key.replace('mha' , 'attention' )
if "W_q" in orig_key:
__UpperCamelCase = orig_key.replace('W_q' , 'self.query' )
if "W_k" in orig_key:
__UpperCamelCase = orig_key.replace('W_k' , 'self.key' )
if "W_v" in orig_key:
__UpperCamelCase = orig_key.replace('W_v' , 'self.value' )
if "ff1" in orig_key:
__UpperCamelCase = orig_key.replace('ff1' , 'intermediate.dense' )
if "ff2" in orig_key:
__UpperCamelCase = orig_key.replace('ff2' , 'output.dense' )
if "ff" in orig_key:
__UpperCamelCase = orig_key.replace('ff' , 'output.dense' )
if "mlm_class" in orig_key:
__UpperCamelCase = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' )
if "mlm" in orig_key:
__UpperCamelCase = orig_key.replace('mlm' , 'cls.predictions.transform' )
if "cls" not in orig_key:
__UpperCamelCase = 'yoso.' + orig_key
return orig_key
def _A ( _lowercase , _lowercase ) -> List[Any]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__UpperCamelCase = orig_state_dict.pop(_lowercase )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
__UpperCamelCase = val
__UpperCamelCase = orig_state_dict['cls.predictions.decoder.bias']
__UpperCamelCase = torch.arange(_lowercase ).expand((1, -1) ) + 2
return orig_state_dict
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = torch.load(_lowercase , map_location='cpu' )['model_state_dict']
__UpperCamelCase = YosoConfig.from_json_file(_lowercase )
__UpperCamelCase = YosoForMaskedLM(_lowercase )
__UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , _lowercase )
print(model.load_state_dict(_lowercase ) )
model.eval()
model.save_pretrained(_lowercase )
print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The json file for YOSO model config.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = generate_pascal_triangle(_lowercase )
for row_idx in range(_lowercase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=' ' )
else:
print(triangle[row_idx][col_idx] , end='' )
print()
def _A ( _lowercase ) -> list[list[int]]:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
__UpperCamelCase = []
for current_row_idx in range(_lowercase ):
__UpperCamelCase = populate_current_row(_lowercase , _lowercase )
triangle.append(_lowercase )
return triangle
def _A ( _lowercase , _lowercase ) -> list[int]:
"""simple docstring"""
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase, __UpperCamelCase = 1, 1
for current_col_idx in range(1 , _lowercase ):
calculate_current_element(
_lowercase , _lowercase , _lowercase , _lowercase )
return current_row
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> None:
"""simple docstring"""
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def _A ( _lowercase ) -> list[list[int]]:
"""simple docstring"""
if not isinstance(_lowercase , _lowercase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
__UpperCamelCase = [[1]]
for row_index in range(1 , _lowercase ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(_lowercase , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(_lowercase )
return result
def _A ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_lowercase , _lowercase ) -> None:
__UpperCamelCase = f'''{func.__name__}({value})'''
__UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(_lowercase , _lowercase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
__snake_case = os.path.join(git_repo_path, '''src''', '''diffusers''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = find_backend(' if not is_torch_available():' )
self.assertEqual(A_,'torch' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' )
self.assertEqual(A_,'torch_and_transformers' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__UpperCamelCase = find_backend(
' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' )
self.assertEqual(A_,'torch_and_transformers_and_onnx' )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch',A_ )
self.assertIn('torch_and_transformers',A_ )
self.assertIn('flax_and_transformers',A_ )
self.assertIn('torch_and_transformers_and_onnx',A_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('UNet2DModel',objects['torch'] )
self.assertIn('FlaxUNet2DConditionModel',objects['flax'] )
self.assertIn('StableDiffusionPipeline',objects['torch_and_transformers'] )
self.assertIn('FlaxStableDiffusionPipeline',objects['flax_and_transformers'] )
self.assertIn('LMSDiscreteScheduler',objects['torch_and_scipy'] )
self.assertIn('OnnxStableDiffusionPipeline',objects['torch_and_transformers_and_onnx'] )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = create_dummy_object('CONSTANT','\'torch\'' )
self.assertEqual(A_,'\nCONSTANT = None\n' )
__UpperCamelCase = create_dummy_object('function','\'torch\'' )
self.assertEqual(
A_,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
__UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n'
__UpperCamelCase = create_dummy_object('FakeClass','\'torch\'' )
self.assertEqual(A_,A_ )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n'
__UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'],A_ )
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''',
}
class __lowerCamelCase (_a , _a ):
_lowercase = """convnextv2"""
def __init__( self: int,A_: List[str]=3,A_: str=4,A_: int=4,A_: List[str]=None,A_: Any=None,A_: List[str]="gelu",A_: Any=0.0_2,A_: int=1E-12,A_: List[Any]=0.0,A_: List[Any]=224,A_: List[Any]=None,A_: List[Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = num_channels
__UpperCamelCase = patch_size
__UpperCamelCase = num_stages
__UpperCamelCase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
__UpperCamelCase = [3, 3, 9, 3] if depths is None else depths
__UpperCamelCase = hidden_act
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = drop_path_rate
__UpperCamelCase = image_size
__UpperCamelCase = ['stem'] + [F'''stage{idx}''' for idx in range(1,len(self.depths ) + 1 )]
__UpperCamelCase, __UpperCamelCase = get_aligned_output_features_output_indices(
out_features=A_,out_indices=A_,stage_names=self.stage_names )
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = LEDTokenizer
_lowercase = LEDTokenizerFast
_lowercase = True
def snake_case_ ( self: str ):
'''simple docstring'''
super().setUp()
__UpperCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__UpperCamelCase = {'unk_token': '<unk>'}
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file,'w',encoding='utf-8' ) as fp:
fp.write(json.dumps(A_ ) + '\n' )
with open(self.merges_file,'w',encoding='utf-8' ) as fp:
fp.write('\n'.join(A_ ) )
def snake_case_ ( self: Union[str, Any],**A_: Union[str, Any] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: List[Any],**A_: int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**A_ )
def snake_case_ ( self: int,A_: Tuple ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return LEDTokenizer.from_pretrained('allenai/led-base-16384' )
@cached_property
def snake_case_ ( self: Any ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' )
@require_torch
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__UpperCamelCase = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(A_,max_length=len(A_ ),padding=A_,return_tensors='pt' )
self.assertIsInstance(A_,A_ )
self.assertEqual((2, 9),batch.input_ids.shape )
self.assertEqual((2, 9),batch.attention_mask.shape )
__UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(A_,A_ )
@require_torch
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(A_,padding=A_,return_tensors='pt' )
self.assertIn('input_ids',A_ )
self.assertIn('attention_mask',A_ )
self.assertNotIn('labels',A_ )
self.assertNotIn('decoder_attention_mask',A_ )
@require_torch
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = [
'Summary of the text.',
'Another summary.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(text_target=A_,max_length=32,padding='max_length',return_tensors='pt' )
self.assertEqual(32,targets['input_ids'].shape[1] )
@require_torch
def snake_case_ ( self: Any ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(
['I am a small frog' * 1024, 'I am a small frog'],padding=A_,truncation=A_,return_tensors='pt' )
self.assertIsInstance(A_,A_ )
self.assertEqual(batch.input_ids.shape,(2, 5122) )
@require_torch
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = ['A long paragraph for summarization.']
__UpperCamelCase = [
'Summary of the text.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(A_,return_tensors='pt' )
__UpperCamelCase = tokenizer(text_target=A_,return_tensors='pt' )
__UpperCamelCase = inputs['input_ids']
__UpperCamelCase = targets['input_ids']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = ['Summary of the text.', 'Another summary.']
__UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCamelCase = tokenizer(A_,padding=A_ )
__UpperCamelCase = [[0] * len(A_ ) for x in encoded_output['input_ids']]
__UpperCamelCase = tokenizer.pad(A_ )
self.assertSequenceEqual(outputs['global_attention_mask'],A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
pass
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_,**A_ )
__UpperCamelCase = self.tokenizer_class.from_pretrained(A_,**A_ )
__UpperCamelCase = 'A, <mask> AllenNLP sentence.'
__UpperCamelCase = tokenizer_r.encode_plus(A_,add_special_tokens=A_,return_token_type_ids=A_ )
__UpperCamelCase = tokenizer_p.encode_plus(A_,add_special_tokens=A_,return_token_type_ids=A_ )
self.assertEqual(sum(tokens_r['token_type_ids'] ),sum(tokens_p['token_type_ids'] ) )
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ),sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ),)
__UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
__UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
self.assertSequenceEqual(tokens_p['input_ids'],[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'],[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] )
self.assertSequenceEqual(
A_,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
A_,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
from datetime import datetime
import requests
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url='
__UpperCamelCase = requests.get(base_url + url ).json()[0]['urls'][0]['src']
return requests.get(_lowercase ).content
if __name__ == "__main__":
__snake_case = input('''Enter Video/IGTV url: ''').strip()
__snake_case = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, '''wb''') as fp:
fp.write(download_video(url))
print(f"""Done. Video saved to disk as {file_name}.""")
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
__snake_case = '''scheduler_config.json'''
class __lowerCamelCase (_a ):
_lowercase = 1
_lowercase = 2
_lowercase = 3
_lowercase = 4
_lowercase = 5
@dataclass
class __lowerCamelCase (_a ):
_lowercase = 42
class __lowerCamelCase :
_lowercase = SCHEDULER_CONFIG_NAME
_lowercase = ["""dtype"""]
_lowercase = []
_lowercase = True
@classmethod
def snake_case_ ( cls: Any,A_: Dict[str, Any] = None,A_: Optional[str] = None,A_: Union[str, Any]=False,**A_: List[str],):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=A_,subfolder=A_,return_unused_kwargs=A_,**A_,)
__UpperCamelCase, __UpperCamelCase = cls.from_config(A_,return_unused_kwargs=A_,**A_ )
if hasattr(A_,'create_state' ) and getattr(A_,'has_state',A_ ):
__UpperCamelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def snake_case_ ( self: str,A_: Union[str, os.PathLike],A_: bool = False,**A_: Any ):
'''simple docstring'''
self.save_config(save_directory=A_,push_to_hub=A_,**A_ )
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def snake_case_ ( cls: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
__UpperCamelCase = importlib.import_module(__name__.split('.' )[0] )
__UpperCamelCase = [
getattr(A_,A_ ) for c in compatible_classes_str if hasattr(A_,A_ )
]
return compatible_classes
def _A ( _lowercase , _lowercase ) -> jnp.ndarray:
"""simple docstring"""
assert len(_lowercase ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_lowercase ) - x.ndim) ) , _lowercase )
def _A ( _lowercase , _lowercase=0.9_99 , _lowercase=jnp.floataa ) -> jnp.ndarray:
"""simple docstring"""
def alpha_bar(_lowercase ):
return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
__UpperCamelCase = []
for i in range(_lowercase ):
__UpperCamelCase = i / num_diffusion_timesteps
__UpperCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(_lowercase ) / alpha_bar(_lowercase ) , _lowercase ) )
return jnp.array(_lowercase , dtype=_lowercase )
@flax.struct.dataclass
class __lowerCamelCase :
_lowercase = 42
_lowercase = 42
_lowercase = 42
@classmethod
def snake_case_ ( cls: Any,A_: Tuple ):
'''simple docstring'''
__UpperCamelCase = scheduler.config
if config.trained_betas is not None:
__UpperCamelCase = jnp.asarray(config.trained_betas,dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
__UpperCamelCase = jnp.linspace(config.beta_start,config.beta_end,config.num_train_timesteps,dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__UpperCamelCase = (
jnp.linspace(
config.beta_start**0.5,config.beta_end**0.5,config.num_train_timesteps,dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps,dtype=scheduler.dtype )
else:
raise NotImplementedError(
F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' )
__UpperCamelCase = 1.0 - betas
__UpperCamelCase = jnp.cumprod(A_,axis=0 )
return cls(
alphas=A_,betas=A_,alphas_cumprod=A_,)
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = state.alphas_cumprod
__UpperCamelCase = alphas_cumprod[timesteps] ** 0.5
__UpperCamelCase = sqrt_alpha_prod.flatten()
__UpperCamelCase = broadcast_to_shape_from_left(_lowercase , original_samples.shape )
__UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
__UpperCamelCase = sqrt_one_minus_alpha_prod.flatten()
__UpperCamelCase = broadcast_to_shape_from_left(_lowercase , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase )
__UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase = get_sqrt_alpha_prod(_lowercase , _lowercase , _lowercase , _lowercase )
__UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
from __future__ import annotations
__snake_case = '''#'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = {}
def snake_case_ ( self: str,A_: str ):
'''simple docstring'''
__UpperCamelCase = self._trie
for char in text:
if char not in trie:
__UpperCamelCase = {}
__UpperCamelCase = trie[char]
__UpperCamelCase = True
def snake_case_ ( self: Union[str, Any],A_: str ):
'''simple docstring'''
__UpperCamelCase = self._trie
for char in prefix:
if char in trie:
__UpperCamelCase = trie[char]
else:
return []
return self._elements(A_ )
def snake_case_ ( self: Any,A_: dict ):
'''simple docstring'''
__UpperCamelCase = []
for c, v in d.items():
__UpperCamelCase = [' '] if c == END else [(c + s) for s in self._elements(A_ )]
result.extend(A_ )
return tuple(A_ )
__snake_case = Trie()
__snake_case = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''')
for word in words:
trie.insert_word(word)
def _A ( _lowercase ) -> tuple:
"""simple docstring"""
__UpperCamelCase = trie.find_word(_lowercase )
return tuple(string + word for word in suffixes )
def _A ( ) -> None:
"""simple docstring"""
print(autocomplete_using_trie('de' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
__snake_case = '''\
'''
__snake_case = '''
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
'''
__snake_case = '''
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
78.22
>>> print(round(results["perplexities"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = datasets.load_dataset("wikitext",
... "wikitext-2-raw-v1",
... split="test")["text"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
60.35
>>> print(round(results["perplexities"][0], 2))
81.12
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase (datasets.Metric ):
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
'input_texts': datasets.Value('string' ),
} ),reference_urls=['https://huggingface.co/docs/transformers/perplexity'],)
def snake_case_ ( self: int,A_: Dict,A_: int,A_: int = 16,A_: bool = True,A_: Union[str, Any]=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__UpperCamelCase = 'cuda'
else:
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(A_ )
__UpperCamelCase = model.to(A_ )
__UpperCamelCase = AutoTokenizer.from_pretrained(A_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(A_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__UpperCamelCase = model.config.max_length - 1
else:
__UpperCamelCase = model.config.max_length
__UpperCamelCase = tokenizer(
A_,add_special_tokens=A_,padding=A_,truncation=A_,max_length=A_,return_tensors='pt',return_attention_mask=A_,).to(A_ )
__UpperCamelCase = encodings['input_ids']
__UpperCamelCase = encodings['attention_mask']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__UpperCamelCase = []
__UpperCamelCase = CrossEntropyLoss(reduction='none' )
for start_index in logging.tqdm(range(0,len(A_ ),A_ ) ):
__UpperCamelCase = min(start_index + batch_size,len(A_ ) )
__UpperCamelCase = encoded_texts[start_index:end_index]
__UpperCamelCase = attn_masks[start_index:end_index]
if add_start_token:
__UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A_ )
__UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 )
__UpperCamelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(A_ ), attn_mask],dim=1 )
__UpperCamelCase = encoded_batch
with torch.no_grad():
__UpperCamelCase = model(A_,attention_mask=A_ ).logits
__UpperCamelCase = out_logits[..., :-1, :].contiguous()
__UpperCamelCase = labels[..., 1:].contiguous()
__UpperCamelCase = attn_mask[..., 1:].contiguous()
__UpperCamelCase = torch.expa(
(loss_fct(shift_logits.transpose(1,2 ),A_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(A_ )}
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |
from __future__ import annotations
from collections.abc import Callable
__snake_case = list[list[float | int]]
def _A ( _lowercase , _lowercase ) -> Matrix:
"""simple docstring"""
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = [[0 for _ in range(size + 1 )] for _ in range(_lowercase )]
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for row in range(_lowercase ):
for col in range(_lowercase ):
__UpperCamelCase = matrix[row][col]
__UpperCamelCase = vector[row][0]
__UpperCamelCase = 0
__UpperCamelCase = 0
while row < size and col < size:
# pivoting
__UpperCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowercase , _lowercase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__UpperCamelCase, __UpperCamelCase = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , _lowercase ):
__UpperCamelCase = augmented[rowa][col] / augmented[row][col]
__UpperCamelCase = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , _lowercase ):
for row in range(_lowercase ):
__UpperCamelCase = augmented[row][col] / augmented[col][col]
for cola in range(_lowercase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowercase )
]
def _A ( _lowercase ) -> Callable[[int], int]:
"""simple docstring"""
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = [[0 for _ in range(_lowercase )] for _ in range(_lowercase )]
__UpperCamelCase = [[0] for _ in range(_lowercase )]
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for x_val, y_val in enumerate(_lowercase ):
for col in range(_lowercase ):
__UpperCamelCase = (x_val + 1) ** (size - col - 1)
__UpperCamelCase = y_val
__UpperCamelCase = solve(_lowercase , _lowercase )
def interpolated_func(_lowercase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(_lowercase ) )
return interpolated_func
def _A ( _lowercase ) -> int:
"""simple docstring"""
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _A ( _lowercase = question_function , _lowercase = 10 ) -> int:
"""simple docstring"""
__UpperCamelCase = [func(_lowercase ) for x_val in range(1 , order + 1 )]
__UpperCamelCase = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__UpperCamelCase = 0
__UpperCamelCase = 42
__UpperCamelCase = 42
for poly in polynomials:
__UpperCamelCase = 1
while func(_lowercase ) == poly(_lowercase ):
x_val += 1
ret += poly(_lowercase )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
from ..utils import DummyObject, requires_backends
class __lowerCamelCase (metaclass=_a ):
_lowercase = ["""flax""", """transformers"""]
def __init__( self: List[Any],*A_: List[str],**A_: int ):
'''simple docstring'''
requires_backends(self,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: Tuple,*A_: List[Any],**A_: Optional[int] ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: Optional[Any],*A_: Optional[int],**A_: Tuple ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
class __lowerCamelCase (metaclass=_a ):
_lowercase = ["""flax""", """transformers"""]
def __init__( self: Optional[int],*A_: Tuple,**A_: str ):
'''simple docstring'''
requires_backends(self,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: Optional[int],*A_: Dict,**A_: Dict ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: Any,*A_: List[str],**A_: Union[str, Any] ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
class __lowerCamelCase (metaclass=_a ):
_lowercase = ["""flax""", """transformers"""]
def __init__( self: Tuple,*A_: Dict,**A_: List[Any] ):
'''simple docstring'''
requires_backends(self,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: Union[str, Any],*A_: List[Any],**A_: Any ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: Dict,*A_: Dict,**A_: Optional[Any] ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
class __lowerCamelCase (metaclass=_a ):
_lowercase = ["""flax""", """transformers"""]
def __init__( self: Dict,*A_: int,**A_: int ):
'''simple docstring'''
requires_backends(self,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: List[Any],*A_: int,**A_: int ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
@classmethod
def snake_case_ ( cls: List[str],*A_: Union[str, Any],**A_: List[str] ):
'''simple docstring'''
requires_backends(cls,['flax', 'transformers'] )
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
__snake_case = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
__snake_case = [ord(letter) for letter in string.ascii_lowercase]
__snake_case = {ord(char) for char in VALID_CHARS}
__snake_case = ["the", "be", "to", "of", "and", "in", "that", "have"]
def _A ( _lowercase , _lowercase ) -> str | None:
"""simple docstring"""
__UpperCamelCase = ""
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for keychar, cipherchar in zip(cycle(_lowercase ) , _lowercase ):
__UpperCamelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(_lowercase )
return decoded
def _A ( _lowercase ) -> list[str]:
"""simple docstring"""
__UpperCamelCase = []
for key in product(_lowercase , repeat=3 ):
__UpperCamelCase = try_key(_lowercase , _lowercase )
if encoded is not None:
possibles.append(_lowercase )
return possibles
def _A ( _lowercase , _lowercase ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def _A ( _lowercase = "p059_cipher.txt" ) -> int:
"""simple docstring"""
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = Path(_lowercase ).parent.joinpath(_lowercase ).read_text(encoding='utf-8' )
__UpperCamelCase = [int(_lowercase ) for number in data.strip().split(',' )]
__UpperCamelCase = filter_valid_chars(_lowercase )
for common_word in COMMON_WORDS:
__UpperCamelCase = filter_common_word(_lowercase , _lowercase )
if len(_lowercase ) == 1:
break
__UpperCamelCase = possibles[0]
return sum(ord(_lowercase ) for char in decoded_text )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
# flake8: noqa
# Lint as: python3
__snake_case = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__snake_case = {
'''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''],
'''tokenization_tapas''': ['''TapasTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TapasForMaskedLM''',
'''TapasForQuestionAnswering''',
'''TapasForSequenceClassification''',
'''TapasModel''',
'''TapasPreTrainedModel''',
'''load_tf_weights_in_tapas''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFTapasForMaskedLM''',
'''TFTapasForQuestionAnswering''',
'''TFTapasForSequenceClassification''',
'''TFTapasModel''',
'''TFTapasPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase = set({'(', '[', '{'} )
__UpperCamelCase = set({')', ']', '}'} )
__UpperCamelCase = {'{': '}', '[': ']', '(': ')'}
for i in range(len(_lowercase ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(_lowercase ) == 0 or (len(_lowercase ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(_lowercase ) == 0
def _A ( ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = input('Enter sequence of brackets: ' )
if is_balanced(_lowercase ):
print(_lowercase , 'is balanced' )
else:
print(_lowercase , 'is not balanced' )
if __name__ == "__main__":
main()
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
__snake_case = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
__snake_case = {
'''allenai/longformer-base-4096''': 4_0_9_6,
'''allenai/longformer-large-4096''': 4_0_9_6,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4_0_9_6,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4_0_9_6,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4_0_9_6,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _A ( ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
__UpperCamelCase = bs[:]
__UpperCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowercase )
cs.append(2**8 + n )
n += 1
__UpperCamelCase = [chr(_lowercase ) for n in cs]
return dict(zip(_lowercase , _lowercase ) )
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = set()
__UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCamelCase = char
return pairs
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ["""input_ids""", """attention_mask"""]
def __init__( self: str,A_: List[Any],A_: List[str],A_: List[Any]="replace",A_: Optional[int]="<s>",A_: Union[str, Any]="</s>",A_: List[Any]="</s>",A_: int="<s>",A_: List[Any]="<unk>",A_: List[str]="<pad>",A_: str="<mask>",A_: Dict=False,**A_: Tuple,):
'''simple docstring'''
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else bos_token
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else eos_token
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else sep_token
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else cls_token
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else unk_token
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else mask_token
super().__init__(
errors=A_,bos_token=A_,eos_token=A_,unk_token=A_,sep_token=A_,cls_token=A_,pad_token=A_,mask_token=A_,add_prefix_space=A_,**A_,)
with open(A_,encoding='utf-8' ) as vocab_handle:
__UpperCamelCase = json.load(A_ )
__UpperCamelCase = {v: k for k, v in self.encoder.items()}
__UpperCamelCase = errors # how to handle errors in decoding
__UpperCamelCase = bytes_to_unicode()
__UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(A_,encoding='utf-8' ) as merges_handle:
__UpperCamelCase = merges_handle.read().split('\n' )[1:-1]
__UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCamelCase = dict(zip(A_,range(len(A_ ) ) ) )
__UpperCamelCase = {}
__UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCamelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return len(self.encoder )
def snake_case_ ( self: Any ):
'''simple docstring'''
return dict(self.encoder,**self.added_tokens_encoder )
def snake_case_ ( self: Dict,A_: List[Any] ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__UpperCamelCase = tuple(A_ )
__UpperCamelCase = get_pairs(A_ )
if not pairs:
return token
while True:
__UpperCamelCase = min(A_,key=lambda A_ : self.bpe_ranks.get(A_,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCamelCase, __UpperCamelCase = bigram
__UpperCamelCase = []
__UpperCamelCase = 0
while i < len(A_ ):
try:
__UpperCamelCase = word.index(A_,A_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCamelCase = j
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCamelCase = tuple(A_ )
__UpperCamelCase = new_word
if len(A_ ) == 1:
break
else:
__UpperCamelCase = get_pairs(A_ )
__UpperCamelCase = ' '.join(A_ )
__UpperCamelCase = word
return word
def snake_case_ ( self: Tuple,A_: List[Any] ):
'''simple docstring'''
__UpperCamelCase = []
for token in re.findall(self.pat,A_ ):
__UpperCamelCase = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) )
return bpe_tokens
def snake_case_ ( self: Dict,A_: Union[str, Any] ):
'''simple docstring'''
return self.encoder.get(A_,self.encoder.get(self.unk_token ) )
def snake_case_ ( self: Union[str, Any],A_: int ):
'''simple docstring'''
return self.decoder.get(A_ )
def snake_case_ ( self: Tuple,A_: List[str] ):
'''simple docstring'''
__UpperCamelCase = ''.join(A_ )
__UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8',errors=self.errors )
return text
def snake_case_ ( self: List[str],A_: str,A_: Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(
A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_,'w',encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder,indent=2,sort_keys=A_,ensure_ascii=A_ ) + '\n' )
__UpperCamelCase = 0
with open(A_,'w',encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
__UpperCamelCase = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
__UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case_ ( self: str,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ )
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1]
def snake_case_ ( self: Optional[Any],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case_ ( self: List[str],A_: Optional[int],A_: Optional[int]=False,**A_: int ):
'''simple docstring'''
__UpperCamelCase = kwargs.pop('add_prefix_space',self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()):
__UpperCamelCase = ' ' + text
return (text, kwargs)
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
def _A ( _lowercase = 4_00_00_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = []
__UpperCamelCase, __UpperCamelCase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_lowercase )
__UpperCamelCase, __UpperCamelCase = b, a + b
return sum(_lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
__snake_case = logging.getLogger(__name__)
__snake_case = 5_0 # max width of layer names
__snake_case = 7_0 # max width of quantizer names
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_lowercase , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_lowercase , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_lowercase , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_lowercase , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_lowercase , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_lowercase , type=_lowercase , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_lowercase , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _A ( _lowercase ) -> str:
"""simple docstring"""
if args.calibrator == "max":
__UpperCamelCase = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
__UpperCamelCase = 'histogram'
elif args.calibrator == "mse":
__UpperCamelCase = 'histogram'
else:
raise ValueError(f'''Invalid calibrator {args.calibrator}''' )
__UpperCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=_lowercase )
__UpperCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_lowercase )
quant_nn.QuantLinear.set_default_quant_desc_weight(_lowercase )
def _A ( _lowercase , _lowercase , _lowercase=False , _lowercase=False ) -> Tuple:
"""simple docstring"""
logger.info('Configuring Model for Quantization' )
logger.info(f'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_lowercase , ['embeddings'] , which='weight' , _disabled=_lowercase )
if args.quant_disable:
set_quantizer_by_name(_lowercase , [''] , _disabled=_lowercase )
if args.quant_disable_keyword:
set_quantizer_by_name(_lowercase , args.quant_disable_keyword , _disabled=_lowercase )
if args.quant_disable_layer_module:
set_quantizer_by_name(_lowercase , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_lowercase )
if args.quant_enable_layer_module:
set_quantizer_by_name(_lowercase , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_lowercase )
if args.recalibrate_weights:
recalibrate_weights(_lowercase )
if args.fuse_qkv:
fuse_qkv(_lowercase , _lowercase )
if args.clip_gelu:
clip_gelu(_lowercase , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_lowercase )
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f'''{name:80}: {module}''' )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_lowercase )
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
def fusea(_lowercase , _lowercase , _lowercase ):
for mod in [qq, qk, qv]:
if not hasattr(_lowercase , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
__UpperCamelCase = qq._amax.detach().item()
__UpperCamelCase = qk._amax.detach().item()
__UpperCamelCase = qv._amax.detach().item()
__UpperCamelCase = max(_lowercase , _lowercase , _lowercase )
qq._amax.fill_(_lowercase )
qk._amax.fill_(_lowercase )
qv._amax.fill_(_lowercase )
logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(f'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
__UpperCamelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_lowercase )
__UpperCamelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _A ( _lowercase ) -> Any:
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(_lowercase , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
__UpperCamelCase = mod.weight.shape[0]
__UpperCamelCase = mod._weight_quantizer._amax.detach()
__UpperCamelCase = torch.ones(_lowercase , dtype=amax.dtype , device=amax.device ) * amax
print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _A ( _lowercase ) -> str:
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(_lowercase , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
__UpperCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
__UpperCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
__UpperCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowercase , keepdims=_lowercase ).detach()
logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
__UpperCamelCase = amax
def _A ( _lowercase , _lowercase=25 , _lowercase=1_80 , _lowercase=None ) -> Dict:
"""simple docstring"""
if ignore is None:
__UpperCamelCase = []
elif not isinstance(_lowercase , _lowercase ):
__UpperCamelCase = [ignore]
__UpperCamelCase = 0
for name, mod in model.named_modules():
if not hasattr(_lowercase , 'weight' ):
continue
__UpperCamelCase = max(_lowercase , len(_lowercase ) )
for name, mod in model.named_modules():
__UpperCamelCase = getattr(_lowercase , '_input_quantizer' , _lowercase )
__UpperCamelCase = getattr(_lowercase , '_weight_quantizer' , _lowercase )
if not hasattr(_lowercase , 'weight' ):
continue
if type(_lowercase ) in ignore:
continue
if [True for s in ignore if type(_lowercase ) is str and s in name]:
continue
__UpperCamelCase = f'''Act:{input_q.extra_repr()}'''
__UpperCamelCase = f'''Wgt:{weight_q.extra_repr()}'''
__UpperCamelCase = f'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_lowercase ) <= line_width:
logger.info(_lowercase )
else:
logger.info(f'''{name:{name_width}} {act_str}''' )
logger.info(f'''{' ':{name_width}} {wgt_str}''' )
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
for name, mod in model.named_modules():
if isinstance(_lowercase , pytorch_quantization.nn.TensorQuantizer ):
print(f'''{name:80} {mod}''' )
count += 1
print(f'''{count} TensorQuantizers found in model''' )
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = getattr(_lowercase , _lowercase , _lowercase )
if quantizer_mod is not None:
assert hasattr(_lowercase , _lowercase )
setattr(_lowercase , _lowercase , _lowercase )
else:
logger.warning(f'''{name} has no {quantizer}''' )
def _A ( _lowercase , _lowercase , _lowercase="both" , **_lowercase ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = f'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_lowercase , _lowercase , '_input_quantizer' , _lowercase , _lowercase )
if which in ["weight", "both"]:
set_quantizer(_lowercase , _lowercase , '_weight_quantizer' , _lowercase , _lowercase )
logger.info(_lowercase )
def _A ( _lowercase , _lowercase , **_lowercase ) -> str:
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(_lowercase , '_input_quantizer' ) or hasattr(_lowercase , '_weight_quantizer' ):
for n in names:
if re.search(_lowercase , _lowercase ):
set_quantizers(_lowercase , _lowercase , **_lowercase )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_lowercase , _lowercase ):
__UpperCamelCase = f'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
setattr(_lowercase , _lowercase , _lowercase )
logger.info(_lowercase )
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 1
__UpperCamelCase = 2
for i in range(2 , max_n + 1 ):
__UpperCamelCase = pre_numerator
__UpperCamelCase = 2 * i // 3 if i % 3 == 0 else 1
__UpperCamelCase = cur_numerator
__UpperCamelCase = e_cont * pre_numerator + temp
return sum_digits(_lowercase )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
def _A ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
"""simple docstring"""
__UpperCamelCase = set()
# Replace all the whitespace in our sentence
__UpperCamelCase = input_str.replace(' ' , '' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(_lowercase ) == 26
def _A ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
"""simple docstring"""
__UpperCamelCase = [False] * 26
for char in input_str:
if char.islower():
__UpperCamelCase = True
elif char.isupper():
__UpperCamelCase = True
return all(_lowercase )
def _A ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool:
"""simple docstring"""
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def _A ( ) -> None:
"""simple docstring"""
from timeit import timeit
__UpperCamelCase = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'
print(timeit('is_pangram()' , setup=_lowercase ) )
print(timeit('is_pangram_faster()' , setup=_lowercase ) )
print(timeit('is_pangram_fastest()' , setup=_lowercase ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''',
}
class __lowerCamelCase (_a ):
_lowercase = """mgp-str"""
def __init__( self: int,A_: Union[str, Any]=[32, 128],A_: List[str]=4,A_: Tuple=3,A_: Union[str, Any]=27,A_: Union[str, Any]=38,A_: Optional[int]=5_0257,A_: int=3_0522,A_: Any=768,A_: int=12,A_: List[str]=12,A_: Optional[int]=4.0,A_: Optional[Any]=True,A_: Tuple=False,A_: Tuple=1E-5,A_: Dict=0.0,A_: Any=0.0,A_: Tuple=0.0,A_: int=False,A_: Union[str, Any]=0.0_2,**A_: str,):
'''simple docstring'''
super().__init__(**A_ )
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = max_token_length
__UpperCamelCase = num_character_labels
__UpperCamelCase = num_bpe_labels
__UpperCamelCase = num_wordpiece_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = mlp_ratio
__UpperCamelCase = distilled
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = drop_rate
__UpperCamelCase = qkv_bias
__UpperCamelCase = attn_drop_rate
__UpperCamelCase = drop_path_rate
__UpperCamelCase = output_aa_attentions
__UpperCamelCase = initializer_range
| 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__snake_case = get_tests_dir('''fixtures''')
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = mock.Mock()
__UpperCamelCase = 500
__UpperCamelCase = {}
__UpperCamelCase = HTTPError
__UpperCamelCase = {}
# Download this model to make sure it's in the cache.
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request',return_value=A_ ) as mock_head:
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: Tuple ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: int ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},)
__UpperCamelCase = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
| 1 | 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__snake_case = 1_6
__snake_case = 3_2
def _A ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase )
__UpperCamelCase = load_dataset('glue' , 'mrpc' )
def tokenize_function(_lowercase ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_lowercase , max_length=_lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__UpperCamelCase = datasets.map(
_lowercase , batched=_lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=_lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_lowercase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(_lowercase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['train'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
__UpperCamelCase = DataLoader(
tokenized_datasets['validation'] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase )
return train_dataloader, eval_dataloader
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['lr']
__UpperCamelCase = int(config['num_epochs'] )
__UpperCamelCase = int(config['seed'] )
__UpperCamelCase = int(config['batch_size'] )
__UpperCamelCase = args.model_name_or_path
set_seed(_lowercase )
__UpperCamelCase, __UpperCamelCase = get_dataloaders(_lowercase , _lowercase , _lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase )
# Instantiate optimizer
__UpperCamelCase = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__UpperCamelCase = optimizer_cls(params=model.parameters() , lr=_lowercase )
if accelerator.state.deepspeed_plugin is not None:
__UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
__UpperCamelCase = 1
__UpperCamelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , )
else:
__UpperCamelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# We need to keep track of how many total steps we have iterated over
__UpperCamelCase = 0
# We also need to keep track of the stating epoch so files are named properly
__UpperCamelCase = 0
# Now we train the model
__UpperCamelCase = evaluate.load('glue' , 'mrpc' )
__UpperCamelCase = 0
__UpperCamelCase = {}
for epoch in range(_lowercase , _lowercase ):
model.train()
for step, batch in enumerate(_lowercase ):
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.loss
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(_lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__UpperCamelCase = 0
for step, batch in enumerate(_lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__UpperCamelCase, __UpperCamelCase = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(_lowercase ) - 1:
__UpperCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__UpperCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=_lowercase , references=_lowercase , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _lowercase )
__UpperCamelCase = eval_metric['accuracy']
if best_performance < eval_metric["accuracy"]:
__UpperCamelCase = eval_metric['accuracy']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f:
json.dump(_lowercase , _lowercase )
def _A ( ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' , type=_lowercase , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_lowercase , )
parser.add_argument(
'--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--performance_lower_bound' , type=_lowercase , default=_lowercase , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , )
parser.add_argument(
'--num_epochs' , type=_lowercase , default=3 , help='Number of train epochs.' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(_lowercase , _lowercase )
if __name__ == "__main__":
main()
| 1 | 1 |
from __future__ import annotations
from collections.abc import Callable
def _A ( _lowercase , _lowercase , _lowercase , _lowercase = 1_00 , ) -> float:
"""simple docstring"""
__UpperCamelCase = x_start
__UpperCamelCase = fnc(_lowercase )
__UpperCamelCase = 0.0
for _ in range(_lowercase ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCamelCase = (x_end - x_start) / steps + xa
__UpperCamelCase = fnc(_lowercase )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCamelCase = xa
__UpperCamelCase = fxa
return area
if __name__ == "__main__":
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return x**3 + x**2
print('''f(x) = x^3 + x^2''')
print('''The area between the curve, x = -5, x = 5 and the x axis is:''')
__snake_case = 1_0
while i <= 1_0_0_0_0_0:
print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""")
i *= 1_0
| 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __lowerCamelCase (_a ):
@slow
@require_torch
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' )
__UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' )
__UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(A_: Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 )
__UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(A_ ) == 512 for x in inputs.input_ids )
assert all(len(A_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(A_: str ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
train_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],)
val_dataset.set_format(
type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],)
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,)
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,)
# start training
trainer.train()
| 1 | 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 |
def _A ( _lowercase = 1_00 ) -> int:
"""simple docstring"""
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 1 | 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return 1 if input_a == input_a else 0
def _A ( ) -> None:
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 1 |
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def _A ( _lowercase , _lowercase=0 ) -> Dict:
"""simple docstring"""
return sorted(_lowercase , key=lambda _lowercase : x[column] )
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]:
"""simple docstring"""
for i in range(points_counts - 1 ):
for j in range(i + 1 , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple:
"""simple docstring"""
for i in range(min(6 , points_counts - 1 ) , _lowercase ):
for j in range(max(0 , i - 6 ) , _lowercase ):
__UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
__UpperCamelCase = current_dis
return min_dis
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]:
"""simple docstring"""
if points_counts <= 3:
return dis_between_closest_pair(_lowercase , _lowercase )
# recursion
__UpperCamelCase = points_counts // 2
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[:mid] , _lowercase )
__UpperCamelCase = closest_pair_of_points_sqr(
_lowercase , points_sorted_on_y[mid:] , points_counts - mid )
__UpperCamelCase = min(_lowercase , _lowercase )
__UpperCamelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(_lowercase )
__UpperCamelCase = dis_between_closest_in_strip(
_lowercase , len(_lowercase ) , _lowercase )
return min(_lowercase , _lowercase )
def _A ( _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = column_based_sort(_lowercase , column=0 )
__UpperCamelCase = column_based_sort(_lowercase , column=1 )
return (
closest_pair_of_points_sqr(
_lowercase , _lowercase , _lowercase )
) ** 0.5
if __name__ == "__main__":
__snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 1 | 1 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
def __init__( self: int,A_: Union[str, Any],A_: List[str]=99,A_: Dict=13,A_: Tuple=7,A_: Union[str, Any]=9,A_: str=True,A_: int=True,A_: Optional[Any]=False,A_: Union[str, Any]=32,A_: Optional[int]=5,A_: Optional[Any]=4,A_: Union[str, Any]=37,A_: List[Any]=8,A_: Optional[int]=0.1,A_: str=0.0_0_2,A_: List[Any]=1,A_: List[str]=0,A_: int=0,A_: Optional[int]=None,A_: str=None,):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = encoder_seq_length
__UpperCamelCase = decoder_seq_length
# For common tests
__UpperCamelCase = self.decoder_seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_attention_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = d_ff
__UpperCamelCase = relative_attention_num_buckets
__UpperCamelCase = dropout_rate
__UpperCamelCase = initializer_factor
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = decoder_start_token_id
__UpperCamelCase = None
__UpperCamelCase = decoder_layers
def snake_case_ ( self: Dict ):
'''simple docstring'''
return TaConfig.from_pretrained('google/umt5-base' )
def snake_case_ ( self: int,A_: Optional[Any],A_: Optional[int],A_: int,A_: Any=None,A_: Optional[Any]=None,A_: Optional[Any]=None,A_: Optional[Any]=None,A_: Any=None,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__UpperCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__UpperCamelCase = torch.ones(config.num_hidden_layers,config.num_attention_heads,device=A_ )
if decoder_head_mask is None:
__UpperCamelCase = torch.ones(config.num_decoder_layers,config.num_attention_heads,device=A_ )
if cross_attn_head_mask is None:
__UpperCamelCase = torch.ones(
config.num_decoder_layers,config.num_attention_heads,device=A_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length],self.vocab_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length],self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__UpperCamelCase = self.get_config()
__UpperCamelCase = config.num_attention_heads
__UpperCamelCase = self.prepare_inputs_dict(A_,A_,A_ )
return config, input_dict
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase, __UpperCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return TaConfig(
vocab_size=166,d_model=self.hidden_size,d_ff=self.d_ff,d_kv=self.hidden_size // self.num_attention_heads,num_layers=self.num_hidden_layers,num_decoder_layers=self.decoder_layers,num_heads=self.num_attention_heads,relative_attention_num_buckets=self.relative_attention_num_buckets,dropout_rate=self.dropout_rate,initializer_factor=self.initializer_factor,eos_token_id=self.eos_token_id,bos_token_id=self.pad_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.decoder_start_token_id,)
def snake_case_ ( self: List[str] ):
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size,d_model=self.hidden_size,d_ff=self.d_ff,d_kv=self.hidden_size // self.num_attention_heads,num_layers=self.num_hidden_layers,num_decoder_layers=self.decoder_layers,num_heads=self.num_attention_heads,relative_attention_num_buckets=self.relative_attention_num_buckets,dropout_rate=self.dropout_rate,initializer_factor=self.initializer_factor,eos_token_id=self.eos_token_id,bos_token_id=self.pad_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.decoder_start_token_id,)
def snake_case_ ( self: List[Any],A_: List[Any],A_: Tuple,A_: Any,A_: Tuple,A_: int,A_: Union[str, Any],):
'''simple docstring'''
__UpperCamelCase = UMTaModel(config=A_ )
model.to(A_ )
model.eval()
__UpperCamelCase = model(
input_ids=A_,decoder_input_ids=A_,attention_mask=A_,decoder_attention_mask=A_,)
__UpperCamelCase = model(input_ids=A_,decoder_input_ids=A_ )
__UpperCamelCase = result.last_hidden_state
__UpperCamelCase = result.past_key_values
__UpperCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size(),(self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size(),(self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(A_ ),config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ),4 )
def snake_case_ ( self: Dict,A_: Optional[Any],A_: int,A_: Dict,A_: Union[str, Any],A_: str,A_: List[str],):
'''simple docstring'''
__UpperCamelCase = UMTaModel(config=A_ ).get_decoder().to(A_ ).eval()
# first forward pass
__UpperCamelCase = model(A_,use_cache=A_ )
__UpperCamelCase = model(A_ )
__UpperCamelCase = model(A_,use_cache=A_ )
self.parent.assertTrue(len(A_ ) == len(A_ ) )
self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 )
__UpperCamelCase, __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 1),config.vocab_size )
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens],dim=-1 )
__UpperCamelCase = model(A_ )['last_hidden_state']
__UpperCamelCase = model(A_,past_key_values=A_ )['last_hidden_state']
# select random slice
__UpperCamelCase = ids_tensor((1,),output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(A_,A_,atol=1E-3 ) )
def snake_case_ ( self: str,A_: Dict,A_: Any,):
'''simple docstring'''
__UpperCamelCase = UMTaModel(config=A_ ).to(A_ ).half().eval()
__UpperCamelCase = model(**A_ )['last_hidden_state']
self.parent.assertFalse(torch.isnan(A_ ).any().item() )
@require_torch
class __lowerCamelCase (_a , _a , _a , unittest.TestCase ):
_lowercase = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_lowercase = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_lowercase = True
_lowercase = False
_lowercase = False
_lowercase = True
_lowercase = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_lowercase = [0.8, 0.9]
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = UMTaModelTester(self )
@unittest.skip('Test has a segmentation fault on torch 1.8.0' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
__UpperCamelCase = UMTaModel(config_and_inputs[0] ).to(A_ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
A_,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),F'''{tmpdirname}/t5_test.onnx''',export_params=A_,opset_version=9,input_names=['input_ids', 'decoder_input_ids'],)
@unittest.skipIf(torch_device == 'cpu','Cant do half precision' )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*A_ )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions']
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
__UpperCamelCase = config_and_inputs[0]
__UpperCamelCase = UMTaForConditionalGeneration(A_ ).eval()
model.to(A_ )
__UpperCamelCase = {
'head_mask': torch.zeros(config.num_layers,config.num_heads,device=A_ ),
'decoder_head_mask': torch.zeros(config.num_decoder_layers,config.num_heads,device=A_ ),
'cross_attn_head_mask': torch.zeros(config.num_decoder_layers,config.num_heads,device=A_ ),
}
for attn_name, (name, mask) in zip(A_,head_masking.items() ):
__UpperCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__UpperCamelCase = torch.ones(
config.num_decoder_layers,config.num_heads,device=A_ )
__UpperCamelCase = model.generate(
config_and_inputs[1]['input_ids'],num_beams=1,max_length=3,output_attentions=A_,return_dict_in_generate=A_,**A_,)
# We check the state of decoder_attentions and cross_attentions just from the last step
__UpperCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ),0.0 )
@unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase (unittest.TestCase ):
@slow
@unittest.skip(
'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small',return_dict=A_ ).to(A_ )
__UpperCamelCase = AutoTokenizer.from_pretrained('google/umt5-small',use_fast=A_,legacy=A_ )
__UpperCamelCase = [
'Bonjour monsieur <extra_id_0> bien <extra_id_1>.',
'No se como puedo <extra_id_0>.',
'This is the reason why we <extra_id_0> them.',
'The <extra_id_0> walks in <extra_id_1>, seats',
'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.',
]
__UpperCamelCase = tokenizer(A_,return_tensors='pt',padding=A_ ).input_ids
# fmt: off
__UpperCamelCase = torch.tensor(
[
[ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(A_,A_ )
__UpperCamelCase = model.generate(input_ids.to(A_ ) )
__UpperCamelCase = [
'<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>',
'<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
]
__UpperCamelCase = tokenizer.batch_decode(A_ )
self.assertEqual(A_,A_ )
| 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 | 1 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
__snake_case = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowerCamelCase (_a ):
def __init__( self: List[str],*A_: Optional[Any],A_: Tuple=None,A_: str=None,A_: str=None,**A_: List[Any] ):
'''simple docstring'''
super().__init__(*A_,**A_ )
__UpperCamelCase = eval_examples
__UpperCamelCase = post_process_function
__UpperCamelCase = quant_trainer_args
__UpperCamelCase = 128 # default number of calibration samples
def snake_case_ ( self: int,A_: Union[str, Any]=None ):
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.' )
__UpperCamelCase = calib_dataset if calib_dataset is not None else self.calib_dataset
__UpperCamelCase = self._remove_unused_columns(A_,description='Calibration' )
return DataLoader(
A_,batch_size=self.args.eval_batch_size,collate_fn=self.data_collator,drop_last=self.args.dataloader_drop_last,num_workers=self.args.dataloader_num_workers,pin_memory=self.args.dataloader_pin_memory,shuffle=A_,)
def snake_case_ ( self: Any,A_: Tuple=None ):
'''simple docstring'''
__UpperCamelCase = self.train_dataset if calib_dataset is None else calib_dataset
__UpperCamelCase = self.get_calib_dataloader(A_ )
__UpperCamelCase = self.model
quant_trainer.configure_model(A_,self.quant_trainer_args,calib=A_ )
model.eval()
quant_trainer.enable_calibration(A_ )
logger.info('***** Running calibration *****' )
logger.info(F''' Num examples = {self.calib_num}''' )
logger.info(F''' Batch size = {calib_dataloader.batch_size}''' )
for step, inputs in enumerate(A_ ):
# Prediction step
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self.prediction_step(A_,A_,prediction_loss_only=A_ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(A_,self.quant_trainer_args )
__UpperCamelCase = model
def snake_case_ ( self: List[str],A_: str=None,A_: int=None,A_: str=None,A_: str = "eval" ):
'''simple docstring'''
__UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset
__UpperCamelCase = self.get_eval_dataloader(A_ )
__UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCamelCase = self.compute_metrics
__UpperCamelCase = None
__UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__UpperCamelCase = eval_loop(
A_,description='Evaluation',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=A_,)
finally:
__UpperCamelCase = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
__UpperCamelCase = self.post_process_function(A_,A_,output.predictions )
__UpperCamelCase = self.compute_metrics(A_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__UpperCamelCase = metrics.pop(A_ )
self.log(A_ )
else:
__UpperCamelCase = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__UpperCamelCase = self.callback_handler.on_evaluate(self.args,self.state,self.control,A_ )
return metrics
def snake_case_ ( self: List[Any],A_: Optional[int],A_: Tuple,A_: Any=None,A_: str = "test" ):
'''simple docstring'''
__UpperCamelCase = self.get_test_dataloader(A_ )
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCamelCase = self.compute_metrics
__UpperCamelCase = None
__UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__UpperCamelCase = eval_loop(
A_,description='Prediction',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=A_,)
finally:
__UpperCamelCase = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
__UpperCamelCase = self.post_process_function(A_,A_,output.predictions,'predict' )
__UpperCamelCase = self.compute_metrics(A_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__UpperCamelCase = metrics.pop(A_ )
return PredictionOutput(predictions=predictions.predictions,label_ids=predictions.label_ids,metrics=A_ )
def snake_case_ ( self: Dict,A_: Optional[Any]="./" ):
'''simple docstring'''
__UpperCamelCase = self.eval_dataset
__UpperCamelCase = self.get_eval_dataloader(A_ )
__UpperCamelCase = next(iter(A_ ) )
# saving device - to make it consistent
__UpperCamelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
# convert to tuple
__UpperCamelCase = tuple(v.to(A_ ) for k, v in batch.items() )
logger.info('Converting model to be onnx compatible' )
from pytorch_quantization.nn import TensorQuantizer
__UpperCamelCase = True
__UpperCamelCase = self.model.to(A_ )
model.eval()
model.float()
__UpperCamelCase = model.module if hasattr(A_,'module' ) else model
quant_trainer.configure_model(A_,self.quant_trainer_args )
__UpperCamelCase = os.path.join(A_,'model.onnx' )
logger.info(F'''exporting model to {output_model_file}''' )
__UpperCamelCase = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
A_,A_,A_,export_params=A_,opset_version=13,do_constant_folding=A_,input_names=['input_ids', 'attention_mask', 'token_type_ids'],output_names=['output_start_logits', 'output_end_logits'],dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
},verbose=A_,)
logger.info('onnx export finished' )
| 1 |
def _A ( _lowercase ) -> int:
"""simple docstring"""
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(_lowercase ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
__snake_case = '''Create a default config file for Accelerate with only a few flags set.'''
def _A ( _lowercase="no" , _lowercase = default_json_config_file , _lowercase = False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = Path(_lowercase )
path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase )
if path.exists():
print(
f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' )
return False
__UpperCamelCase = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' )
__UpperCamelCase = {
'compute_environment': 'LOCAL_MACHINE',
'mixed_precision': mixed_precision,
}
if torch.cuda.is_available():
__UpperCamelCase = torch.cuda.device_count()
__UpperCamelCase = num_gpus
__UpperCamelCase = False
if num_gpus > 1:
__UpperCamelCase = 'MULTI_GPU'
else:
__UpperCamelCase = 'NO'
elif is_xpu_available() and use_xpu:
__UpperCamelCase = torch.xpu.device_count()
__UpperCamelCase = num_xpus
__UpperCamelCase = False
if num_xpus > 1:
__UpperCamelCase = 'MULTI_XPU'
else:
__UpperCamelCase = 'NO'
elif is_npu_available():
__UpperCamelCase = torch.npu.device_count()
__UpperCamelCase = num_npus
__UpperCamelCase = False
if num_npus > 1:
__UpperCamelCase = 'MULTI_NPU'
else:
__UpperCamelCase = 'NO'
else:
__UpperCamelCase = 0
__UpperCamelCase = True
__UpperCamelCase = 1
__UpperCamelCase = 'NO'
__UpperCamelCase = ClusterConfig(**_lowercase )
config.to_json_file(_lowercase )
return path
def _A ( _lowercase , _lowercase ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = parser.add_parser('default' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase )
parser.add_argument(
'--config_file' , default=_lowercase , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , dest='save_location' , )
parser.add_argument(
'--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_lowercase , help='Whether or not to use mixed precision training. '
'Choose between FP16 and BF16 (bfloat16) training. '
'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , )
parser.set_defaults(func=_lowercase )
return parser
def _A ( _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(f'''accelerate configuration saved at {config_file}''' )
| 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _A ( ) -> int:
"""simple docstring"""
__UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('RGB' )
return image
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = dct.pop(_lowercase )
__UpperCamelCase = val
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCamelCase = torch.cat((q_bias, torch.zeros_like(_lowercase , requires_grad=_lowercase ), v_bias) )
__UpperCamelCase = qkv_bias
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = 3_64 if 'coco' in model_name else 2_24
__UpperCamelCase = BlipaVisionConfig(image_size=_lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_lowercase ).to_dict()
elif "opt-6.7b" in model_name:
__UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_lowercase ).to_dict()
elif "t5-xl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__UpperCamelCase = BlipaConfig(vision_config=_lowercase , text_config=_lowercase )
return config, image_size
@torch.no_grad()
def _A ( _lowercase , _lowercase=None , _lowercase=False ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__UpperCamelCase = tokenizer('\n' , add_special_tokens=_lowercase ).input_ids[0]
__UpperCamelCase, __UpperCamelCase = get_blipa_config(_lowercase , eos_token_id=_lowercase )
__UpperCamelCase = BlipaForConditionalGeneration(_lowercase ).eval()
__UpperCamelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__UpperCamelCase, __UpperCamelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = load_model_and_preprocess(
name=_lowercase , model_type=_lowercase , is_eval=_lowercase , device=_lowercase )
original_model.eval()
print('Done!' )
# update state dict keys
__UpperCamelCase = original_model.state_dict()
__UpperCamelCase = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCamelCase = state_dict.pop(_lowercase )
if key.startswith('Qformer.bert' ):
__UpperCamelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__UpperCamelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
__UpperCamelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__UpperCamelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__UpperCamelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__UpperCamelCase = key.replace('t5' , 'language' )
__UpperCamelCase = val
# read in qv biases
read_in_q_v_bias(_lowercase , _lowercase )
__UpperCamelCase, __UpperCamelCase = hf_model.load_state_dict(_lowercase , strict=_lowercase )
assert len(_lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__UpperCamelCase = load_demo_image()
__UpperCamelCase = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase )
__UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_lowercase )
# create processor
__UpperCamelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_lowercase , image_std=_lowercase )
__UpperCamelCase = BlipaProcessor(image_processor=_lowercase , tokenizer=_lowercase )
__UpperCamelCase = processor(images=_lowercase , return_tensors='pt' ).pixel_values.to(_lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(_lowercase , _lowercase )
original_model.to(_lowercase )
hf_model.to(_lowercase )
with torch.no_grad():
if "opt" in model_name:
__UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__UpperCamelCase = hf_model(_lowercase , _lowercase ).logits
else:
__UpperCamelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCamelCase = hf_model(_lowercase , _lowercase , labels=_lowercase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__UpperCamelCase = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_lowercase )
assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__UpperCamelCase = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_lowercase )
else:
# cast to same type
__UpperCamelCase = logits.dtype
assert torch.allclose(original_logits.to(_lowercase ) , _lowercase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__UpperCamelCase = ''
__UpperCamelCase = tokenizer(_lowercase , return_tensors='pt' ).input_ids.to(_lowercase )
__UpperCamelCase = original_model.generate({'image': original_pixel_values} )
__UpperCamelCase = hf_model.generate(
_lowercase , _lowercase , do_sample=_lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _lowercase )
__UpperCamelCase = input_ids.shape[1]
__UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_lowercase )
__UpperCamelCase = [text.strip() for text in output_text]
print('HF generation:' , _lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_lowercase )
hf_model.save_pretrained(_lowercase )
if push_to_hub:
processor.push_to_hub(f'''nielsr/{model_name}''' )
hf_model.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
__snake_case = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__snake_case = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 1 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@parameterized.expand([(None,), ('foo.json',)] )
def snake_case_ ( self: int,A_: int ):
'''simple docstring'''
__UpperCamelCase = GenerationConfig(
do_sample=A_,temperature=0.7,length_penalty=1.0,bad_words_ids=[[1, 2, 3], [4, 5]],)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A_,config_name=A_ )
__UpperCamelCase = GenerationConfig.from_pretrained(A_,config_name=A_ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample,A_ )
self.assertEqual(loaded_config.temperature,0.7 )
self.assertEqual(loaded_config.length_penalty,1.0 )
self.assertEqual(loaded_config.bad_words_ids,[[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k,50 )
self.assertEqual(loaded_config.max_length,20 )
self.assertEqual(loaded_config.max_time,A_ )
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = AutoConfig.from_pretrained('gpt2' )
__UpperCamelCase = GenerationConfig.from_model_config(A_ )
__UpperCamelCase = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(A_,A_ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id,default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id,model_config.eos_token_id )
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = GenerationConfig()
__UpperCamelCase = {
'max_new_tokens': 1024,
'foo': 'bar',
}
__UpperCamelCase = copy.deepcopy(A_ )
__UpperCamelCase = generation_config.update(**A_ )
# update_kwargs was not modified (no side effects)
self.assertEqual(A_,A_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens,1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(A_,{'foo': 'bar'} )
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = GenerationConfig()
__UpperCamelCase = 'bar'
with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir:
generation_config.save_pretrained(A_ )
__UpperCamelCase = GenerationConfig.from_pretrained(A_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo,'bar' )
__UpperCamelCase = GenerationConfig.from_model_config(A_ )
assert not hasattr(A_,'foo' ) # no new kwargs should be initialized if from config
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = GenerationConfig()
self.assertEqual(default_config.temperature,1.0 )
self.assertEqual(default_config.do_sample,A_ )
self.assertEqual(default_config.num_beams,1 )
__UpperCamelCase = GenerationConfig(
do_sample=A_,temperature=0.7,length_penalty=1.0,bad_words_ids=[[1, 2, 3], [4, 5]],)
self.assertEqual(config.temperature,0.7 )
self.assertEqual(config.do_sample,A_ )
self.assertEqual(config.num_beams,1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(A_ )
__UpperCamelCase = GenerationConfig.from_pretrained(A_,temperature=1.0 )
self.assertEqual(loaded_config.temperature,1.0 )
self.assertEqual(loaded_config.do_sample,A_ )
self.assertEqual(loaded_config.num_beams,1 ) # default value
@is_staging_test
class __lowerCamelCase (unittest.TestCase ):
@classmethod
def snake_case_ ( cls: int ):
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(A_ )
@classmethod
def snake_case_ ( cls: int ):
'''simple docstring'''
try:
delete_repo(token=cls._token,repo_id='test-generation-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token,repo_id='valid_org/test-generation-config-org' )
except HTTPError:
pass
def snake_case_ ( self: int ):
'''simple docstring'''
__UpperCamelCase = GenerationConfig(
do_sample=A_,temperature=0.7,length_penalty=1.0,)
config.push_to_hub('test-generation-config',use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='test-generation-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A_,repo_id='test-generation-config',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A_,getattr(A_,A_ ) )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = GenerationConfig(
do_sample=A_,temperature=0.7,length_penalty=1.0,)
config.push_to_hub('valid_org/test-generation-config-org',use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A_,getattr(A_,A_ ) )
# Reset repo
delete_repo(token=self._token,repo_id='valid_org/test-generation-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
A_,repo_id='valid_org/test-generation-config-org',push_to_hub=A_,use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(A_,getattr(A_,A_ ) )
| 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
__snake_case = logging.getLogger(__name__)
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
_lowercase = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
_lowercase = field(
default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
_lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __lowerCamelCase :
_lowercase = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
_lowercase = field(
default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
_lowercase = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_lowercase = field(
default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def _A ( ) -> str:
"""simple docstring"""
__UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
__UpperCamelCase = import_module('tasks' )
try:
__UpperCamelCase = getattr(_lowercase , model_args.task_type )
__UpperCamelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _lowercase )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCamelCase = token_classification_task.get_labels(data_args.labels )
__UpperCamelCase = dict(enumerate(_lowercase ) )
__UpperCamelCase = len(_lowercase )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , )
__UpperCamelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCamelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCamelCase = (
TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]:
__UpperCamelCase = np.argmax(_lowercase , axis=2 )
__UpperCamelCase, __UpperCamelCase = preds.shape
__UpperCamelCase = [[] for _ in range(_lowercase )]
__UpperCamelCase = [[] for _ in range(_lowercase )]
for i in range(_lowercase ):
for j in range(_lowercase ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(_lowercase ) -> Dict:
__UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(_lowercase , _lowercase ),
"precision": precision_score(_lowercase , _lowercase ),
"recall": recall_score(_lowercase , _lowercase ),
"f1": fa_score(_lowercase , _lowercase ),
}
# Data collator
__UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCamelCase = Trainer(
model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCamelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__UpperCamelCase = trainer.evaluate()
__UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
results.update(_lowercase )
# Predict
if training_args.do_predict:
__UpperCamelCase = TokenClassificationDataset(
token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase )
__UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase )
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
for key, value in metrics.items():
logger.info(' %s = %s' , _lowercase , _lowercase )
writer.write('%s = %s\n' % (key, value) )
# Save predictions
__UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' )
if trainer.is_world_process_zero():
with open(_lowercase , 'w' ) as writer:
with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f:
token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase )
return results
def _A ( _lowercase ) -> Dict:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 | 1 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def _A ( _lowercase ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = MobileNetVaConfig(layer_norm_eps=0.0_01 )
if "_quant" in model_name:
raise ValueError('Quantized models are not supported.' )
__UpperCamelCase = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , _lowercase )
if matches:
__UpperCamelCase = float(matches[1] )
__UpperCamelCase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCamelCase = 10_01
__UpperCamelCase = 'imagenet-1k-id2label.json'
__UpperCamelCase = 'huggingface/label-files'
__UpperCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) )
__UpperCamelCase = {int(_lowercase ) + 1: v for k, v in idalabel.items()}
__UpperCamelCase = 'background'
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
return config
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__UpperCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw )
return im
@torch.no_grad()
def _A ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = get_mobilenet_va_config(_lowercase )
# Load 🤗 model
__UpperCamelCase = MobileNetVaForImageClassification(_lowercase ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_lowercase , _lowercase , _lowercase )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCamelCase = MobileNetVaImageProcessor(
crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , )
__UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' )
__UpperCamelCase = model(**_lowercase )
__UpperCamelCase = outputs.logits
assert logits.shape == (1, 10_01)
if model_name == "mobilenet_v1_1.0_224":
__UpperCamelCase = torch.tensor([-4.17_39, -1.12_33, 3.12_05] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCamelCase = torch.tensor([-3.94_40, -2.31_41, -0.33_33] )
else:
__UpperCamelCase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 )
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_lowercase )
if push_to_hub:
print('Pushing to the hub...' )
__UpperCamelCase = 'google/' + model_name
image_processor.push_to_hub(_lowercase )
model.push_to_hub(_lowercase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''mobilenet_v1_1.0_224''',
type=str,
help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''',
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _A ( *_lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'r' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__snake_case = int(os.environ['''LOCAL_RANK'''])
torch.cuda.set_device(local_rank)
__snake_case = torch.device('''cuda''', local_rank)
__snake_case = socket.gethostname()
__snake_case = f"""[{hostname}-{local_rank}]"""
try:
# test distributed
dist.init_process_group('''nccl''')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__snake_case = dist.get_rank()
__snake_case = dist.get_world_size()
printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""")
dist.barrier()
if rank == 0:
printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""")
except Exception:
printflock(f"""{gpu} is broken""")
raise
| 1 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def _A ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int:
"""simple docstring"""
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True ) -> Any:
"""simple docstring"""
model.train()
__UpperCamelCase = model(_lowercase )
__UpperCamelCase = F.mse_loss(_lowercase , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowercase )
def _A ( _lowercase , _lowercase=False ) -> List[Any]:
"""simple docstring"""
set_seed(42 )
__UpperCamelCase = RegressionModel()
__UpperCamelCase = deepcopy(_lowercase )
__UpperCamelCase = RegressionDataset(length=80 )
__UpperCamelCase = DataLoader(_lowercase , batch_size=16 )
model.to(accelerator.device )
if sched:
__UpperCamelCase = AdamW(params=model.parameters() , lr=1e-3 )
__UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 )
__UpperCamelCase = LambdaLR(_lowercase , lr_lambda=lambda _lowercase : epoch**0.65 )
__UpperCamelCase = LambdaLR(_lowercase , lr_lambda=lambda _lowercase : epoch**0.65 )
# Make a copy of `model`
if sched:
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase )
else:
__UpperCamelCase, __UpperCamelCase = accelerator.prepare(_lowercase , _lowercase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase )
# Use a single batch
__UpperCamelCase, __UpperCamelCase = next(iter(_lowercase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowercase ):
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
else:
# Sync grads
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowercase , _lowercase , _lowercase , _lowercase )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(13_37 + iteration )
__UpperCamelCase = ddp_input[torch.randperm(len(_lowercase ) )]
def _A ( _lowercase ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase )
# Use a single batch
__UpperCamelCase, __UpperCamelCase = next(iter(_lowercase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowercase ):
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
else:
# Sync grads
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(13_37 + iteration )
__UpperCamelCase = ddp_input[torch.randperm(len(_lowercase ) )]
def _A ( _lowercase=False , _lowercase=False ) -> str:
"""simple docstring"""
__UpperCamelCase = Accelerator(
split_batches=_lowercase , dispatch_batches=_lowercase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase )
for iteration, batch in enumerate(_lowercase ):
__UpperCamelCase, __UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowercase ):
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowercase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(13_37 + iteration )
__UpperCamelCase = ddp_input[torch.randperm(len(_lowercase ) )]
GradientState._reset_state()
def _A ( _lowercase=False , _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = Accelerator(
split_batches=_lowercase , dispatch_batches=_lowercase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = get_training_setup(_lowercase , _lowercase )
for iteration, batch in enumerate(_lowercase ):
__UpperCamelCase, __UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCamelCase, __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase, __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowercase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowercase ):
step_model(_lowercase , _lowercase , _lowercase , _lowercase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
__UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowercase ))
if accelerator.num_processes > 1:
check_model_parameters(_lowercase , _lowercase , _lowercase , _lowercase )
# Shuffle ddp_input on each iteration
torch.manual_seed(13_37 + iteration )
GradientState._reset_state()
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = Accelerator()
__UpperCamelCase = RegressionDataset(length=80 )
__UpperCamelCase = DataLoader(_lowercase , batch_size=16 )
__UpperCamelCase = RegressionDataset(length=96 )
__UpperCamelCase = DataLoader(_lowercase , batch_size=16 )
__UpperCamelCase, __UpperCamelCase = accelerator.prepare(_lowercase , _lowercase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowercase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_lowercase )
if iteration < len(_lowercase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowercase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_lowercase )
if batch_num < len(_lowercase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def _A ( ) -> Tuple:
"""simple docstring"""
__UpperCamelCase = Accelerator()
__UpperCamelCase = accelerator.state
if state.local_process_index == 0:
print('**Test `accumulate` gradient accumulation with dataloader break**' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('**Test NOOP `no_sync` context manager**' )
test_noop_sync(_lowercase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('**Test Distributed `no_sync` context manager**' )
test_distributed_sync(_lowercase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowercase , _lowercase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowercase , _lowercase )
def _A ( _lowercase ) -> str:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 1 |
import pytest
import datasets
# Import fixture modules as plugins
__snake_case = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec''']
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def _A ( _lowercase ) -> str:
"""simple docstring"""
config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
__UpperCamelCase = tmp_path_factory.getbasetemp() / 'cache'
__UpperCamelCase = test_hf_cache_home / 'datasets'
__UpperCamelCase = test_hf_cache_home / 'metrics'
__UpperCamelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowercase ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowercase ) )
__UpperCamelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowercase ) )
@pytest.fixture(autouse=_lowercase , scope='session' )
def _A ( ) -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=_lowercase )
def _A ( _lowercase ) -> Tuple:
"""simple docstring"""
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowercase )
@pytest.fixture
def _A ( _lowercase ) -> Any:
"""simple docstring"""
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowercase )
| 1 | 1 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__snake_case = datasets.utils.logging.get_logger(__name__)
__snake_case = ['''names''', '''prefix''']
__snake_case = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
__snake_case = ['''encoding_errors''', '''on_bad_lines''']
__snake_case = ['''date_format''']
@dataclass
class __lowerCamelCase (datasets.BuilderConfig ):
_lowercase = ","
_lowercase = None
_lowercase = "infer"
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = True
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = False
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = True
_lowercase = True
_lowercase = False
_lowercase = True
_lowercase = None
_lowercase = "."
_lowercase = None
_lowercase = '"'
_lowercase = 0
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = None
_lowercase = True
_lowercase = True
_lowercase = 0
_lowercase = True
_lowercase = False
_lowercase = None
_lowercase = 1_0000
_lowercase = None
_lowercase = "strict"
_lowercase = "error"
_lowercase = None
def snake_case_ ( self: str ):
'''simple docstring'''
if self.delimiter is not None:
__UpperCamelCase = self.delimiter
if self.column_names is not None:
__UpperCamelCase = self.column_names
@property
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(),A_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class __lowerCamelCase (datasets.ArrowBasedBuilder ):
_lowercase = CsvConfig
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def snake_case_ ( self: List[str],A_: Any ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
__UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(A_,(str, list, tuple) ):
__UpperCamelCase = data_files
if isinstance(A_,A_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={'files': files} )]
__UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(A_,A_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files]
splits.append(datasets.SplitGenerator(name=A_,gen_kwargs={'files': files} ) )
return splits
def snake_case_ ( self: Dict,A_: pa.Table ):
'''simple docstring'''
if self.config.features is not None:
__UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(A_ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema],schema=A_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase = table_cast(A_,A_ )
return pa_table
def snake_case_ ( self: Optional[Any],A_: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(A_ ) else object
for name, dtype, feature in zip(schema.names,schema.types,self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ):
__UpperCamelCase = pd.read_csv(A_,iterator=A_,dtype=A_,**self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(A_ ):
__UpperCamelCase = pa.Table.from_pandas(A_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(A_ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(A_ )}: {e}''' )
raise
| 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = VideoToVideoSDPipeline
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""}
_lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""}
_lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""}
_lowercase = False
# No `output_type`.
_lowercase = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,)
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,)
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,)
__UpperCamelCase = CLIPTextModel(A_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ )
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'video': video,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = VideoToVideoSDPipeline(**A_ )
__UpperCamelCase = sd_pipe.to(A_ )
sd_pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = 'np'
__UpperCamelCase = sd_pipe(**A_ ).frames
__UpperCamelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
__UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: Any ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: str ):
'''simple docstring'''
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def snake_case_ ( self: int ):
'''simple docstring'''
pass
def snake_case_ ( self: Any ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
__UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ )
__UpperCamelCase = video.to('cuda' )
__UpperCamelCase = 'Spiderman is surfing'
__UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames
__UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 1 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=_a )
class __lowerCamelCase (_a ):
_lowercase = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
_lowercase = Features({"""audio""": Audio()} )
_lowercase = Features({"""labels""": ClassLabel} )
_lowercase = "audio"
_lowercase = "labels"
def snake_case_ ( self: str,A_: int ):
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column],A_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
__UpperCamelCase = copy.deepcopy(self )
__UpperCamelCase = self.label_schema.copy()
__UpperCamelCase = features[self.label_column]
__UpperCamelCase = label_schema
return task_template
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
__snake_case = parser.parse_args()
__snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case = CLIPImageProcessor()
__snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
__snake_case = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 1 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''',
'''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''',
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'''
),
'''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''',
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''',
'''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''',
'''cl-tohoku/bert-base-japanese-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'''
),
'''cl-tohoku/bert-base-japanese-char-whole-word-masking''': (
'''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'''
),
'''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCamelCase (_a ):
_lowercase = """bert"""
def __init__( self: Any,A_: Dict=3_0522,A_: Optional[Any]=768,A_: Union[str, Any]=12,A_: List[Any]=12,A_: Optional[int]=3072,A_: Union[str, Any]="gelu",A_: List[str]=0.1,A_: Dict=0.1,A_: Optional[int]=512,A_: Optional[Any]=2,A_: Union[str, Any]=0.0_2,A_: List[Any]=1E-12,A_: Optional[int]=0,A_: List[Any]="absolute",A_: str=True,A_: Union[str, Any]=None,**A_: int,):
'''simple docstring'''
super().__init__(pad_token_id=A_,**A_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class __lowerCamelCase (_a ):
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_autoformer''': [
'''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''AutoformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AutoformerForPrediction''',
'''AutoformerModel''',
'''AutoformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
if not (isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase )):
raise ValueError('longest_common_substring() takes two strings for inputs' )
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = len(_lowercase )
__UpperCamelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
__UpperCamelCase = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
__UpperCamelCase = i
__UpperCamelCase = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__snake_case = '''src/diffusers'''
# Matches is_xxx_available()
__snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
__snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
__snake_case = '''
{0} = None
'''
__snake_case = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
__snake_case = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def _A ( _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = _re_backend.findall(_lowercase )
if len(_lowercase ) == 0:
return None
return "_and_".join(_lowercase )
def _A ( ) -> Tuple:
"""simple docstring"""
with open(os.path.join(_lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(_lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('else:' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(_lowercase ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(_lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_lowercase ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def _A ( _lowercase , _lowercase ) -> Union[str, Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(_lowercase , _lowercase )
else:
return DUMMY_CLASS.format(_lowercase , _lowercase )
def _A ( _lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']'
__UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n'
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_lowercase , _lowercase ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def _A ( _lowercase=False ) -> List[str]:
"""simple docstring"""
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'torch': 'pt'}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(_lowercase , 'utils' )
__UpperCamelCase = {
backend: os.path.join(_lowercase , f'''dummy_{short_names.get(_lowercase , _lowercase )}_objects.py''' )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_lowercase ):
with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py as the main '''
'__init__ has new objects.' )
with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'The main __init__ has objects that are not present in '
f'''diffusers.utils.dummy_{short_names.get(_lowercase , _lowercase )}_objects.py. Run `make fix-copies` '''
'to fix this.' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
__snake_case = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 1 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''roberta-base''': 5_1_2,
'''roberta-large''': 5_1_2,
'''roberta-large-mnli''': 5_1_2,
'''distilroberta-base''': 5_1_2,
'''roberta-base-openai-detector''': 5_1_2,
'''roberta-large-openai-detector''': 5_1_2,
}
class __lowerCamelCase (_a ):
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ["""input_ids""", """attention_mask"""]
_lowercase = RobertaTokenizer
def __init__( self: Any,A_: Any=None,A_: Optional[Any]=None,A_: Any=None,A_: str="replace",A_: List[Any]="<s>",A_: str="</s>",A_: Tuple="</s>",A_: str="<s>",A_: int="<unk>",A_: Optional[int]="<pad>",A_: Optional[int]="<mask>",A_: List[str]=False,A_: Dict=True,**A_: Optional[Any],):
'''simple docstring'''
super().__init__(
A_,A_,tokenizer_file=A_,errors=A_,bos_token=A_,eos_token=A_,sep_token=A_,cls_token=A_,unk_token=A_,pad_token=A_,mask_token=A_,add_prefix_space=A_,trim_offsets=A_,**A_,)
__UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space',A_ ) != add_prefix_space:
__UpperCamelCase = getattr(A_,pre_tok_state.pop('type' ) )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = pre_tok_class(**A_ )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = 'post_processor'
__UpperCamelCase = getattr(self.backend_tokenizer,A_,A_ )
if tokenizer_component_instance:
__UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__UpperCamelCase = tuple(state['sep'] )
if "cls" in state:
__UpperCamelCase = tuple(state['cls'] )
__UpperCamelCase = False
if state.get('add_prefix_space',A_ ) != add_prefix_space:
__UpperCamelCase = add_prefix_space
__UpperCamelCase = True
if state.get('trim_offsets',A_ ) != trim_offsets:
__UpperCamelCase = trim_offsets
__UpperCamelCase = True
if changes_to_apply:
__UpperCamelCase = getattr(A_,state.pop('type' ) )
__UpperCamelCase = component_class(**A_ )
setattr(self.backend_tokenizer,A_,A_ )
@property
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def snake_case_ ( self: Dict,A_: List[str] ):
'''simple docstring'''
__UpperCamelCase = AddedToken(A_,lstrip=A_,rstrip=A_ ) if isinstance(A_,A_ ) else value
__UpperCamelCase = value
def snake_case_ ( self: Optional[int],*A_: Dict,**A_: str ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words',A_ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*A_,**A_ )
def snake_case_ ( self: Tuple,*A_: Dict,**A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words',A_ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*A_,**A_ )
def snake_case_ ( self: Dict,A_: str,A_: Optional[str] = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(A_,name=A_ )
return tuple(A_ )
def snake_case_ ( self: Any,A_: Optional[int],A_: Optional[int]=None ):
'''simple docstring'''
__UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def snake_case_ ( self: Union[str, Any],A_: List[int],A_: Optional[List[int]] = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 1 |
import string
def _A ( _lowercase ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(_lowercase )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = input('Encrypted message: ' )
__UpperCamelCase = message.upper()
decrypt(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 1 | 1 |
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(_lowercase , n - 1 , _lowercase ) * a) % mod
else:
__UpperCamelCase = binary_exponentiation(_lowercase , n / 2 , _lowercase )
return (b * b) % mod
# a prime number
__snake_case = 7_0_1
__snake_case = 1_0_0_0_0_0_0_0_0_0
__snake_case = 1_0
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = KandinskyInpaintPipeline
_lowercase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
_lowercase = [
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
_lowercase = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
_lowercase = False
@property
def snake_case_ ( self: int ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return 32
@property
def snake_case_ ( self: Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
return 100
@property
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = MCLIPConfig(
numDims=self.cross_attention_dim,transformerDimensions=self.text_embedder_hidden_size,hidden_size=self.text_embedder_hidden_size,intermediate_size=37,num_attention_heads=4,num_hidden_layers=5,vocab_size=1005,)
__UpperCamelCase = MultilingualCLIP(A_ )
__UpperCamelCase = text_encoder.eval()
return text_encoder
@property
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase = UNetaDConditionModel(**A_ )
return model
@property
def snake_case_ ( self: str ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def snake_case_ ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = VQModel(**self.dummy_movq_kwargs )
return model
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = self.dummy_tokenizer
__UpperCamelCase = self.dummy_unet
__UpperCamelCase = self.dummy_movq
__UpperCamelCase = DDIMScheduler(
num_train_timesteps=1000,beta_schedule='linear',beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,clip_sample=A_,set_alpha_to_one=A_,steps_offset=1,prediction_type='epsilon',thresholding=A_,)
__UpperCamelCase = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def snake_case_ ( self: Tuple,A_: Optional[int],A_: Dict=0 ):
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = floats_tensor((1, self.cross_attention_dim),rng=random.Random(seed + 1 ) ).to(A_ )
# create init_image
__UpperCamelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(A_ ) ).to(A_ )
__UpperCamelCase = image.cpu().permute(0,2,3,1 )[0]
__UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
__UpperCamelCase = np.ones((64, 64),dtype=np.floataa )
__UpperCamelCase = 0
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
__UpperCamelCase = pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) )
__UpperCamelCase = output.images
__UpperCamelCase = pipe(
**self.get_dummy_inputs(A_ ),return_dict=A_,)[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Any ):
'''simple docstring'''
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
__UpperCamelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__UpperCamelCase = np.ones((768, 768),dtype=np.floataa )
__UpperCamelCase = 0
__UpperCamelCase = 'a hat'
__UpperCamelCase = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior',torch_dtype=torch.floataa )
pipe_prior.to(A_ )
__UpperCamelCase = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint',torch_dtype=torch.floataa )
__UpperCamelCase = pipeline.to(A_ )
pipeline.set_progress_bar_config(disable=A_ )
__UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
__UpperCamelCase, __UpperCamelCase = pipe_prior(
A_,generator=A_,num_inference_steps=5,negative_prompt='',).to_tuple()
__UpperCamelCase = pipeline(
A_,image=A_,mask_image=A_,image_embeds=A_,negative_image_embeds=A_,generator=A_,num_inference_steps=100,height=768,width=768,output_type='np',)
__UpperCamelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(A_,A_ )
| 1 | 1 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCamelCase (_a ):
def __init__( self: Any,A_: WhisperForConditionalGeneration,A_: WhisperProcessor,A_: AutoencoderKL,A_: CLIPTextModel,A_: CLIPTokenizer,A_: UNetaDConditionModel,A_: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],A_: StableDiffusionSafetyChecker,A_: CLIPImageProcessor,):
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' )
self.register_modules(
speech_model=A_,speech_processor=A_,vae=A_,text_encoder=A_,tokenizer=A_,unet=A_,scheduler=A_,feature_extractor=A_,)
def snake_case_ ( self: int,A_: Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
__UpperCamelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A_ )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
self.enable_attention_slicing(A_ )
@torch.no_grad()
def __call__( self: List[str],A_: List[Any],A_: int=1_6000,A_: int = 512,A_: int = 512,A_: int = 50,A_: float = 7.5,A_: Optional[Union[str, List[str]]] = None,A_: Optional[int] = 1,A_: float = 0.0,A_: Optional[torch.Generator] = None,A_: Optional[torch.FloatTensor] = None,A_: Optional[str] = "pil",A_: bool = True,A_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,A_: int = 1,**A_: str,):
'''simple docstring'''
__UpperCamelCase = self.speech_processor.feature_extractor(
A_,return_tensors='pt',sampling_rate=A_ ).input_features.to(self.device )
__UpperCamelCase = self.speech_model.generate(A_,max_length=48_0000 )
__UpperCamelCase = self.speech_processor.tokenizer.batch_decode(A_,skip_special_tokens=A_,normalize=A_ )[
0
]
if isinstance(A_,A_ ):
__UpperCamelCase = 1
elif isinstance(A_,A_ ):
__UpperCamelCase = len(A_ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A_,A_ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(A_ )}.''' )
# get prompt text embeddings
__UpperCamelCase = self.tokenizer(
A_,padding='max_length',max_length=self.tokenizer.model_max_length,return_tensors='pt',)
__UpperCamelCase = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
__UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length]
__UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__UpperCamelCase, __UpperCamelCase, __UpperCamelCase = text_embeddings.shape
__UpperCamelCase = text_embeddings.repeat(1,A_,1 )
__UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt,A_,-1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__UpperCamelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__UpperCamelCase = 42
if negative_prompt is None:
__UpperCamelCase = [''] * batch_size
elif type(A_ ) is not type(A_ ):
raise TypeError(
F'''`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !='''
F''' {type(A_ )}.''' )
elif isinstance(A_,A_ ):
__UpperCamelCase = [negative_prompt]
elif batch_size != len(A_ ):
raise ValueError(
F'''`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:'''
F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
' the batch size of `prompt`.' )
else:
__UpperCamelCase = negative_prompt
__UpperCamelCase = text_input_ids.shape[-1]
__UpperCamelCase = self.tokenizer(
A_,padding='max_length',max_length=A_,truncation=A_,return_tensors='pt',)
__UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__UpperCamelCase = uncond_embeddings.shape[1]
__UpperCamelCase = uncond_embeddings.repeat(1,A_,1 )
__UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt,A_,-1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__UpperCamelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__UpperCamelCase = torch.randn(A_,generator=A_,device='cpu',dtype=A_ ).to(
self.device )
else:
__UpperCamelCase = torch.randn(A_,generator=A_,device=self.device,dtype=A_ )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
__UpperCamelCase = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(A_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__UpperCamelCase = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__UpperCamelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__UpperCamelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__UpperCamelCase = {}
if accepts_eta:
__UpperCamelCase = eta
for i, t in enumerate(self.progress_bar(A_ ) ):
# expand the latents if we are doing classifier free guidance
__UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__UpperCamelCase = self.scheduler.scale_model_input(A_,A_ )
# predict the noise residual
__UpperCamelCase = self.unet(A_,A_,encoder_hidden_states=A_ ).sample
# perform guidance
if do_classifier_free_guidance:
__UpperCamelCase, __UpperCamelCase = noise_pred.chunk(2 )
__UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__UpperCamelCase = self.scheduler.step(A_,A_,A_,**A_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A_,A_,A_ )
__UpperCamelCase = 1 / 0.1_8_2_1_5 * latents
__UpperCamelCase = self.vae.decode(A_ ).sample
__UpperCamelCase = (image / 2 + 0.5).clamp(0,1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCamelCase = image.cpu().permute(0,2,3,1 ).float().numpy()
if output_type == "pil":
__UpperCamelCase = self.numpy_to_pil(A_ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=A_,nsfw_content_detected=A_ )
| 1 |
from typing import Any
class __lowerCamelCase :
def __init__( self: int,A_: Any ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self: Any ):
'''simple docstring'''
return F'''Node({self.data})'''
class __lowerCamelCase :
def __init__( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self: int ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self: List[str] ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self: Any ):
'''simple docstring'''
return "->".join([str(A_ ) for item in self] )
def __getitem__( self: int,A_: int ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self: int,A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(A_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
self.insert_nth(len(self ),A_ )
def snake_case_ ( self: List[Any],A_: Any ):
'''simple docstring'''
self.insert_nth(0,A_ )
def snake_case_ ( self: Optional[Any],A_: int,A_: Any ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(A_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def snake_case_ ( self: str ): # print every node data
'''simple docstring'''
print(self )
def snake_case_ ( self: int ):
'''simple docstring'''
return self.delete_nth(0 )
def snake_case_ ( self: str ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def snake_case_ ( self: Any,A_: int = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def snake_case_ ( self: Any ):
'''simple docstring'''
return self.head is None
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(_lowercase ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(_lowercase ) == i
linked_list.insert_nth(_lowercase , i + 1 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(_lowercase ) == 9
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8 , 1 ) )
def _A ( ) -> None:
"""simple docstring"""
__UpperCamelCase = [
-9,
1_00,
Node(77_34_51_12 ),
'dlrow olleH',
7,
55_55,
0,
-1_92.5_55_55,
'Hello, world!',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(_lowercase )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(_lowercase )
assert (
str(_lowercase )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(_lowercase )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def _A ( ) -> List[str]:
"""simple docstring"""
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(_lowercase )
print('\nReading/changing Node data using indexing:' )
print(f'''Element at Position 1: {linked_list[1]}''' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(_lowercase )
print(f'''length of linked_list is : {len(_lowercase )}''' )
if __name__ == "__main__":
main()
| 1 | 1 |
import math
def _A ( _lowercase , _lowercase ) -> str:
"""simple docstring"""
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(_lowercase )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('This should never happen' )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
__snake_case = '''Enter the base and the power separated by a comma: '''
__snake_case , __snake_case = map(int, input(prompt).split(''','''))
__snake_case , __snake_case = map(int, input(prompt).split(''','''))
# We find the log of each number, using the function res(), which takes two
# arguments.
__snake_case = res(xa, ya)
__snake_case = res(xa, ya)
# We check for the largest number
if resa > resa:
print('''Largest number is''', xa, '''^''', ya)
elif resa > resa:
print('''Largest number is''', xa, '''^''', ya)
else:
print('''Both are equal''')
| 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''UniSpeechForCTC''',
'''UniSpeechForPreTraining''',
'''UniSpeechForSequenceClassification''',
'''UniSpeechModel''',
'''UniSpeechPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 1 | 1 |
import os
from datetime import datetime as dt
from github import Github
__snake_case = [
'''good first issue''',
'''feature request''',
'''wip''',
]
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = Github(os.environ['GITHUB_TOKEN'] )
__UpperCamelCase = g.get_repo('huggingface/accelerate' )
__UpperCamelCase = repo.get_issues(state='open' )
for issue in open_issues:
__UpperCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase )
__UpperCamelCase = comments[0] if len(_lowercase ) > 0 else None
__UpperCamelCase = dt.utcnow()
__UpperCamelCase = (current_time - issue.updated_at).days
__UpperCamelCase = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='closed' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
if __name__ == "__main__":
main()
| 1 |
__snake_case = {
'''a''': '''AAAAA''',
'''b''': '''AAAAB''',
'''c''': '''AAABA''',
'''d''': '''AAABB''',
'''e''': '''AABAA''',
'''f''': '''AABAB''',
'''g''': '''AABBA''',
'''h''': '''AABBB''',
'''i''': '''ABAAA''',
'''j''': '''BBBAA''',
'''k''': '''ABAAB''',
'''l''': '''ABABA''',
'''m''': '''ABABB''',
'''n''': '''ABBAA''',
'''o''': '''ABBAB''',
'''p''': '''ABBBA''',
'''q''': '''ABBBB''',
'''r''': '''BAAAA''',
'''s''': '''BAAAB''',
'''t''': '''BAABA''',
'''u''': '''BAABB''',
'''v''': '''BBBAB''',
'''w''': '''BABAA''',
'''x''': '''BABAB''',
'''y''': '''BABBA''',
'''z''': '''BABBB''',
''' ''': ''' ''',
}
__snake_case = {value: key for key, value in encode_dict.items()}
def _A ( _lowercase ) -> str:
"""simple docstring"""
__UpperCamelCase = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces' )
return encoded
def _A ( _lowercase ) -> str:
"""simple docstring"""
if set(_lowercase ) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces' )
__UpperCamelCase = ''
for word in coded.split():
while len(_lowercase ) != 0:
decoded += decode_dict[word[:5]]
__UpperCamelCase = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 1 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __lowerCamelCase :
_lowercase = 42
_lowercase = 42
class __lowerCamelCase :
def __init__( self: List[str],A_: int ):
'''simple docstring'''
__UpperCamelCase = [[] for _ in range(A_ )]
__UpperCamelCase = size
def __getitem__( self: Any,A_: int ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
return self._size
def snake_case_ ( self: Any,A_: int,A_: int,A_: int ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(A_,A_ ) )
def snake_case_ ( self: Optional[Any],A_: int,A_: int ):
'''simple docstring'''
__UpperCamelCase = deque([start_vertex] )
__UpperCamelCase = [None] * self.size
__UpperCamelCase = 0
while queue:
__UpperCamelCase = queue.popleft()
__UpperCamelCase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__UpperCamelCase = current_distance + edge.weight
__UpperCamelCase = distances[edge.destination_vertex]
if (
isinstance(A_,A_ )
and new_distance >= dest_vertex_distance
):
continue
__UpperCamelCase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
from collections.abc import Generator
from math import sin
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if len(_lowercase ) != 32:
raise ValueError('Input must be of length 32' )
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '08x' )[-8:]
__UpperCamelCase = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = B''
for char in message:
bit_string += format(_lowercase , '08b' ).encode('utf-8' )
__UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowercase ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _A ( _lowercase ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(_lowercase ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(_lowercase ) , 5_12 ):
__UpperCamelCase = bit_string[pos : pos + 5_12]
__UpperCamelCase = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _A ( _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
__UpperCamelCase = format(_lowercase , '032b' )
__UpperCamelCase = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowercase , 2 )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _A ( _lowercase ) -> bytes:
"""simple docstring"""
__UpperCamelCase = preprocess(_lowercase )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0X67_45_23_01
__UpperCamelCase = 0Xef_cd_ab_89
__UpperCamelCase = 0X98_ba_dc_fe
__UpperCamelCase = 0X10_32_54_76
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowercase ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(_lowercase ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = sum_aa(_lowercase , _lowercase )
__UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 | 1 |
from copy import deepcopy
class __lowerCamelCase :
def __init__( self: Optional[Any],A_: list[int] | None = None,A_: int | None = None ):
'''simple docstring'''
if arr is None and size is not None:
__UpperCamelCase = size
__UpperCamelCase = [0] * size
elif arr is not None:
self.init(A_ )
else:
raise ValueError('Either arr or size must be specified' )
def snake_case_ ( self: Any,A_: list[int] ):
'''simple docstring'''
__UpperCamelCase = len(A_ )
__UpperCamelCase = deepcopy(A_ )
for i in range(1,self.size ):
__UpperCamelCase = self.next_(A_ )
if j < self.size:
self.tree[j] += self.tree[i]
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = self.tree[:]
for i in range(self.size - 1,0,-1 ):
__UpperCamelCase = self.next_(A_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def snake_case_ ( A_: int ):
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def snake_case_ ( A_: int ):
'''simple docstring'''
return index - (index & (-index))
def snake_case_ ( self: Dict,A_: int,A_: int ):
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
__UpperCamelCase = self.next_(A_ )
def snake_case_ ( self: Dict,A_: int,A_: int ):
'''simple docstring'''
self.add(A_,value - self.get(A_ ) )
def snake_case_ ( self: Union[str, Any],A_: int ):
'''simple docstring'''
if right == 0:
return 0
__UpperCamelCase = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
__UpperCamelCase = self.prev(A_ )
return result
def snake_case_ ( self: Any,A_: int,A_: int ):
'''simple docstring'''
return self.prefix(A_ ) - self.prefix(A_ )
def snake_case_ ( self: List[str],A_: int ):
'''simple docstring'''
return self.query(A_,index + 1 )
def snake_case_ ( self: Tuple,A_: int ):
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
__UpperCamelCase = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
__UpperCamelCase = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__snake_case = 0
__snake_case = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__snake_case = tuple[int, int]
class __lowerCamelCase :
def __init__( self: str,A_: int,A_: int,A_: int,A_: int,A_: int,A_: Node | None,):
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(A_ ) + abs(A_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self: int,A_: Node ):
'''simple docstring'''
return self.f_cost < other.f_cost
class __lowerCamelCase :
def __init__( self: Any,A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = Node(start[1],start[0],goal[1],goal[0],0,A_ )
__UpperCamelCase = Node(goal[1],goal[0],goal[1],goal[0],9_9999,A_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(A_ )
self.closed_nodes.append(A_ )
__UpperCamelCase = self.get_successors(A_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(A_ )
else:
self.open_nodes.append(A_ )
return [self.start.pos]
def snake_case_ ( self: int,A_: Node ):
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
A_,A_,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,A_,) )
return successors
def snake_case_ ( self: Any,A_: Node | None ):
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class __lowerCamelCase :
def __init__( self: List[Any],A_: TPosition,A_: TPosition ):
'''simple docstring'''
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = AStar(A_,A_ )
__UpperCamelCase = False
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
A_,A_ )
self.fwd_astar.closed_nodes.append(A_ )
self.bwd_astar.closed_nodes.append(A_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(A_ ),
self.bwd_astar: self.bwd_astar.get_successors(A_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(A_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(A_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(A_ )
else:
astar.open_nodes.append(A_ )
return [self.fwd_astar.start.pos]
def snake_case_ ( self: List[str],A_: Node,A_: Node ):
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(A_ )
__UpperCamelCase = self.bwd_astar.retrace_path(A_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__snake_case = (0, 0)
__snake_case = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__snake_case = time.time()
__snake_case = AStar(init, goal)
__snake_case = a_star.search()
__snake_case = time.time() - start_time
print(f"""AStar execution time = {end_time:f} seconds""")
__snake_case = time.time()
__snake_case = BidirectionalAStar(init, goal)
__snake_case = time.time() - bd_start_time
print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
| 1 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.