code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['ConvNextFeatureExtractor'] __A = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
646
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Optional[Any] = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class __UpperCamelCase ( UpperCAmelCase__ ): lowercase : Union[str, Any] = 'roc_bert' def __init__( self :Union[str, Any] ,_UpperCamelCase :str=3_0_5_2_2 ,_UpperCamelCase :List[str]=7_6_8 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :List[str]=1_2 ,_UpperCamelCase :Dict=3_0_7_2 ,_UpperCamelCase :Optional[int]="gelu" ,_UpperCamelCase :Optional[Any]=0.1 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :List[Any]=5_1_2 ,_UpperCamelCase :Tuple=2 ,_UpperCamelCase :str=0.02 ,_UpperCamelCase :Tuple=1E-1_2 ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :List[Any]=0 ,_UpperCamelCase :List[Any]="absolute" ,_UpperCamelCase :str=None ,_UpperCamelCase :str=True ,_UpperCamelCase :Dict=True ,_UpperCamelCase :Optional[int]=7_6_8 ,_UpperCamelCase :List[str]=9_1_0 ,_UpperCamelCase :List[Any]=5_1_2 ,_UpperCamelCase :Optional[int]=2_4_8_5_8 ,_UpperCamelCase :List[Any]=True ,**_UpperCamelCase :Any ,): snake_case_ : Optional[int] = vocab_size snake_case_ : str = max_position_embeddings snake_case_ : Union[str, Any] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_act snake_case_ : str = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : List[Any] = initializer_range snake_case_ : str = type_vocab_size snake_case_ : Optional[int] = layer_norm_eps snake_case_ : List[str] = use_cache snake_case_ : List[str] = enable_pronunciation snake_case_ : List[Any] = enable_shape snake_case_ : Any = pronunciation_embed_dim snake_case_ : List[Any] = pronunciation_vocab_size snake_case_ : str = shape_embed_dim snake_case_ : Optional[Any] = shape_vocab_size snake_case_ : Union[str, Any] = concat_input snake_case_ : Tuple = position_embedding_type snake_case_ : List[str] = classifier_dropout super().__init__(pad_token_id=_UpperCAmelCase ,**_UpperCAmelCase )
334
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]): lowerCamelCase : Optional[Any] = MobileBertConfig.from_json_file(UpperCAmelCase__) print(F'''Building PyTorch model from configuration: {config}''') lowerCamelCase : List[Any] = MobileBertForPreTraining(UpperCAmelCase__) # Load weights from tf checkpoint lowerCamelCase : Any = load_tf_weights_in_mobilebert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , UpperCAmelCase__) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
320
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def a ( A__ : Dict ) -> List[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('deeplabv3_' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='pascal-voc-id2label.json' else: _lowercase =1000 _lowercase ='imagenet-1k-id2label.json' _lowercase ='huggingface/label-files' _lowercase =json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) _lowercase ={int(A__ ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def a ( A__ : Tuple , A__ : List[Any]=False ) -> List[str]: """simple docstring""" for i in range(1 , 6 ): if F'''layer_{i}.''' in name: _lowercase =name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: _lowercase =name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: _lowercase =name.replace('.block.' , '.' ) if "exp_1x1" in name: _lowercase =name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: _lowercase =name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: _lowercase =name.replace('.norm.' , '.normalization.' ) if ".conv." in name: _lowercase =name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: _lowercase =name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: _lowercase =name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: _lowercase =name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: _lowercase =name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: _lowercase =name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: _lowercase =name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: _lowercase =name.replace(F'''.global_rep.{i}.weight''' , '.layernorm.weight' ) if F'''.global_rep.{i}.bias''' in name: _lowercase =name.replace(F'''.global_rep.{i}.bias''' , '.layernorm.bias' ) if ".global_rep." in name: _lowercase =name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: _lowercase =name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: _lowercase =name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: _lowercase =name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: _lowercase =name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: _lowercase =name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='mobilevit.' + name return name def a ( A__ : int , A__ : List[str] , A__ : List[Any]=False ) -> List[str]: """simple docstring""" if base_model: _lowercase ='' else: _lowercase ='mobilevit.' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(A__ ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('.' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def a ( ) -> Dict: """simple docstring""" _lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase =Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def a ( A__ : Optional[int] , A__ : Any , A__ : Any , A__ : List[str]=False ) -> Optional[int]: """simple docstring""" _lowercase =get_mobilevit_config(A__ ) # load original state_dict _lowercase =torch.load(A__ , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): _lowercase =MobileViTForSemanticSegmentation(A__ ).eval() else: _lowercase =MobileViTForImageClassification(A__ ).eval() _lowercase =convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='pt' ) _lowercase =model(**A__ ) _lowercase =outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , A__ , atol=1e-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: _lowercase ={ 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(A__ , organization='apple' ) model.push_to_hub(A__ , organization='apple' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase_ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
291
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __SCREAMING_SNAKE_CASE (UpperCAmelCase__ ): """simple docstring""" _a : Optional[int] = '''decision_transformer''' _a : int = ['''past_key_values'''] _a : int = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , UpperCamelCase__=17 , UpperCamelCase__=4 , UpperCamelCase__=128 , UpperCamelCase__=4_096 , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=1_024 , UpperCamelCase__=3 , UpperCamelCase__=1 , UpperCamelCase__=None , UpperCamelCase__="relu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=50_256 , UpperCamelCase__=50_256 , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ): """simple docstring""" a_ = state_dim a_ = act_dim a_ = hidden_size a_ = max_ep_len a_ = action_tanh a_ = vocab_size a_ = n_positions a_ = n_layer a_ = n_head a_ = n_inner a_ = activation_function a_ = resid_pdrop a_ = embd_pdrop a_ = attn_pdrop a_ = layer_norm_epsilon a_ = initializer_range a_ = scale_attn_weights a_ = use_cache a_ = scale_attn_by_inverse_layer_idx a_ = reorder_and_upcast_attn a_ = bos_token_id a_ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
536
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Optional[int] ,__lowercase : Any ,__lowercase : List[str] ,__lowercase : List[Any]=True ,__lowercase : Tuple="pt" ): '''simple docstring''' A_ : Dict = {'add_prefix_space': True} if isinstance(__lowercase ,__lowercase ) and not line.startswith(' ' ) else {} A_ : int = padding_side return tokenizer( [line] ,max_length=__lowercase ,padding='max_length' if pad_to_max_length else None ,truncation=__lowercase ,return_tensors=__lowercase ,add_special_tokens=__lowercase ,**__lowercase ,) def UpperCamelCase ( __lowercase : int ,__lowercase : int ,__lowercase : Any=None ,): '''simple docstring''' A_ : Optional[int] = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase="train" , lowercase=None , lowercase=None , lowercase=None , lowercase="" , ): """simple docstring""" super().__init__() A_ : List[Any] = Path(_UpperCAmelCase ).joinpath(type_path + '.source' ) A_ : Any = Path(_UpperCAmelCase ).joinpath(type_path + '.target' ) A_ : List[Any] = self.get_char_lens(self.src_file ) A_ : Tuple = max_source_length A_ : List[Any] = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' A_ : Optional[Any] = tokenizer A_ : List[str] = prefix if n_obs is not None: A_ : List[Any] = self.src_lens[:n_obs] A_ : List[str] = src_lang A_ : List[str] = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , lowercase ): """simple docstring""" A_ : int = index + 1 # linecache starts at 1 A_ : Tuple = self.prefix + linecache.getline(str(self.src_file ) , _UpperCAmelCase ).rstrip('\n' ) A_ : Tuple = linecache.getline(str(self.tgt_file ) , _UpperCAmelCase ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer ) A_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer A_ : Dict = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_source_length , 'right' ) A_ : Tuple = encode_line(_UpperCAmelCase , _UpperCAmelCase , self.max_target_length , 'right' ) A_ : List[Any] = source_inputs['input_ids'].squeeze() A_ : str = target_inputs['input_ids'].squeeze() A_ : Optional[int] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( lowercase ): """simple docstring""" return [len(_UpperCAmelCase ) for x in Path(_UpperCAmelCase ).open().readlines()] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = torch.stack([x['input_ids'] for x in batch] ) A_ : Optional[Any] = torch.stack([x['attention_mask'] for x in batch] ) A_ : str = torch.stack([x['decoder_input_ids'] for x in batch] ) A_ : Optional[int] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) A_ : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCAmelCase ) else self.tokenizer.pad_token_id ) A_ : Any = trim_batch(_UpperCAmelCase , _UpperCAmelCase ) A_ , A_ : Union[str, Any] = trim_batch(_UpperCAmelCase , _UpperCAmelCase , attention_mask=_UpperCAmelCase ) A_ : List[Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _UpperCAmelCase = getLogger(__name__) def UpperCamelCase ( __lowercase : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(__lowercase ) ) def UpperCamelCase ( __lowercase : str ): '''simple docstring''' A_ : Any = get_git_info() save_json(__lowercase ,os.path.join(__lowercase ,'git_log.json' ) ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ,__lowercase : Dict=4 ,**__lowercase : List[str] ): '''simple docstring''' with open(__lowercase ,'w' ) as f: json.dump(__lowercase ,__lowercase ,indent=__lowercase ,**__lowercase ) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' with open(__lowercase ) as f: return json.load(__lowercase ) def UpperCamelCase ( ): '''simple docstring''' A_ : int = git.Repo(search_parent_directories=__lowercase ) A_ : Optional[Any] = { 'repo_id': str(__lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def UpperCamelCase ( __lowercase : Callable ,__lowercase : Iterable ): '''simple docstring''' return list(map(__lowercase ,__lowercase ) ) def UpperCamelCase ( __lowercase : int ,__lowercase : str ): '''simple docstring''' with open(__lowercase ,'wb' ) as f: return pickle.dump(__lowercase ,__lowercase ) def UpperCamelCase ( __lowercase : str ): '''simple docstring''' def remove_articles(__lowercase : Optional[int] ): return re.sub(r'\b(a|an|the)\b' ,' ' ,__lowercase ) def white_space_fix(__lowercase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowercase : Tuple ): A_ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def UpperCamelCase ( __lowercase : int ,__lowercase : List[Any] ): '''simple docstring''' A_ : Tuple = normalize_answer(__lowercase ).split() A_ : Optional[int] = normalize_answer(__lowercase ).split() A_ : Optional[Any] = Counter(__lowercase ) & Counter(__lowercase ) A_ : Any = sum(common.values() ) if num_same == 0: return 0 A_ : Dict = 1.0 * num_same / len(__lowercase ) A_ : Union[str, Any] = 1.0 * num_same / len(__lowercase ) A_ : Dict = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( __lowercase : int ,__lowercase : str ): '''simple docstring''' return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : List[str] ): '''simple docstring''' assert len(__lowercase ) == len(__lowercase ) A_ : List[str] = 0 for hypo, pred in zip(__lowercase ,__lowercase ): em += exact_match_score(__lowercase ,__lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' return model_prefix.startswith('rag' ) def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : int ,__lowercase : int ): '''simple docstring''' A_ : Optional[int] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Optional[Any] = 'dropout_rate' for p in extra_params: if getattr(__lowercase ,__lowercase ,__lowercase ): if not hasattr(__lowercase ,__lowercase ) and not hasattr(__lowercase ,equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__lowercase ) ) delattr(__lowercase ,__lowercase ) continue A_ : List[Any] = p if hasattr(__lowercase ,__lowercase ) else equivalent_param[p] setattr(__lowercase ,__lowercase ,getattr(__lowercase ,__lowercase ) ) delattr(__lowercase ,__lowercase ) return hparams, config
558
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self: str , UpperCamelCase_: int = 768 , ): super().__init__() UpperCamelCase_ =nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) ) UpperCamelCase_ =nn.Parameter(torch.ones(1 , _UpperCAmelCase ) ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Optional[Union[str, torch.device]] = None , UpperCamelCase_: Optional[torch.dtype] = None , ): UpperCamelCase_ =nn.Parameter(self.mean.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) UpperCamelCase_ =nn.Parameter(self.std.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) return self def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Dict ): UpperCamelCase_ =(embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase__ ( self: Dict , UpperCamelCase_: Tuple ): UpperCamelCase_ =(embeds * self.std) + self.mean return embeds
391
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
'''simple docstring''' UpperCAmelCase_ : List[Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
120
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCamelCase = 'hf-internal-testing/tiny-random-bert' __lowerCamelCase = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __lowerCamelCase = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __magic_name__: Optional[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , """refs""" , """main""" ) ) as f: __magic_name__: Tuple = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """snapshots""" , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. __magic_name__: Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. __magic_name__: int = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision="""9b8c223""" ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """snapshots""" , _UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid model identifier""" ): __magic_name__: Any = cached_file("""tiny-random-bert""" , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid git identifier""" ): __magic_name__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision="""aaaa""" ) with self.assertRaisesRegex(_UpperCAmelCase , """does not appear to have a file named""" ): __magic_name__: int = cached_file(_UpperCAmelCase , """conf""" ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: with self.assertRaisesRegex(_UpperCAmelCase , """does not appear to have a file named""" ): __magic_name__: List[str] = cached_file(_UpperCAmelCase , """conf""" ) with open(os.path.join(_UpperCAmelCase , """refs""" , """main""" ) ) as f: __magic_name__: str = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """.no_exist""" , _UpperCAmelCase , """conf""" ) ) ) __magic_name__: Union[str, Any] = cached_file(_UpperCAmelCase , """conf""" , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) __magic_name__: Union[str, Any] = cached_file(_UpperCAmelCase , """conf""" , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) __magic_name__: Dict = mock.Mock() __magic_name__: Any = 5_0_0 __magic_name__: Union[str, Any] = {} __magic_name__: Any = HTTPError __magic_name__: Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_UpperCAmelCase ) as mock_head: __magic_name__: List[str] = cached_file(_UpperCAmelCase , """conf""" , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : str ) -> Union[str, Any]: self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCAmelCase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCAmelCase ) ) def lowerCamelCase__ ( self : int ) -> int: self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , _UpperCAmelCase , revision="""ahaha""" ) __magic_name__: List[Any] = get_file_from_repo("""bert-base-cased""" , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __magic_name__: List[str] = json.loads(open(_UpperCAmelCase , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 7_6_8 ) def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__: Dict = Path(_UpperCAmelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , """a.txt""" ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , """b.txt""" ) )
96
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A : Union[str, Any] = logging.get_logger(__name__) def a__ ( __UpperCamelCase ): if "resnet-50" in model_name: SCREAMING_SNAKE_CASE_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: SCREAMING_SNAKE_CASE_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) SCREAMING_SNAKE_CASE_ = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes SCREAMING_SNAKE_CASE_ = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE_ = 2_5_0 else: SCREAMING_SNAKE_CASE_ = 9_1 SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = state_dict.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val def a__ ( __UpperCamelCase , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ = "" if is_panoptic: SCREAMING_SNAKE_CASE_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[:2_5_6, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[:2_5_6] SCREAMING_SNAKE_CASE_ = in_proj_weight[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[2_5_6:5_1_2] SCREAMING_SNAKE_CASE_ = in_proj_weight[-2_5_6:, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[:2_5_6, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[:2_5_6] SCREAMING_SNAKE_CASE_ = in_proj_weight[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[2_5_6:5_1_2] SCREAMING_SNAKE_CASE_ = in_proj_weight[-2_5_6:, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight_cross_attn[:2_5_6, :] SCREAMING_SNAKE_CASE_ = in_proj_bias_cross_attn[:2_5_6] SCREAMING_SNAKE_CASE_ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] SCREAMING_SNAKE_CASE_ = in_proj_bias_cross_attn[2_5_6:5_1_2] SCREAMING_SNAKE_CASE_ = in_proj_weight_cross_attn[-2_5_6:, :] SCREAMING_SNAKE_CASE_ = in_proj_bias_cross_attn[-2_5_6:] def a__ ( ): SCREAMING_SNAKE_CASE_ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_detr_config(__UpperCamelCase ) # load original model from torch hub SCREAMING_SNAKE_CASE_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) SCREAMING_SNAKE_CASE_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() SCREAMING_SNAKE_CASE_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: SCREAMING_SNAKE_CASE_ = "detr." + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE_ = state_dict.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE_ = state_dict.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE_ = state_dict.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE_ = state_dict.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE_ = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image SCREAMING_SNAKE_CASE_ = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE_ = DetrImageProcessor(format=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE_ = encoding["pixel_values"] SCREAMING_SNAKE_CASE_ = detr(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") A : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
140
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _lowercase( UpperCAmelCase__ ): """simple docstring""" __lowerCamelCase = field(default=UpperCAmelCase__ ,metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) __lowerCamelCase = field( default=UpperCAmelCase__ ,metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __lowerCamelCase = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } ,) __lowerCamelCase = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } ,) __lowerCamelCase = field( default=UpperCAmelCase__ ,metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } ,) def snake_case ( self: int ): __UpperCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): __UpperCAmelCase = v.to_dict() return d
396
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase__ ): snake_case__ = ["pixel_values"] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Optional[Any] , ): super().__init__(**_UpperCAmelCase ) __lowerCamelCase : Optional[Any] = size if size is not None else {"height": 256, "width": 256} __lowerCamelCase : Any = get_size_dict(_UpperCAmelCase ) __lowerCamelCase : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224} __lowerCamelCase : Any = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) __lowerCamelCase : List[Any] = do_resize __lowerCamelCase : Dict = size __lowerCamelCase : int = resample __lowerCamelCase : List[str] = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Union[str, Any] = do_rescale __lowerCamelCase : Union[str, Any] = rescale_factor __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Any , ): __lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}""" ) return resize( _UpperCAmelCase , size=(size["height"], size["width"]) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ): __lowerCamelCase : Dict = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : str , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Any , ): __lowerCamelCase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowerCamelCase : Tuple = resample if resample is not None else self.resample __lowerCamelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : int = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean __lowerCamelCase : int = image_std if image_std is not None else self.image_std __lowerCamelCase : Optional[Any] = size if size is not None else self.size __lowerCamelCase : str = get_size_dict(_UpperCAmelCase ) __lowerCamelCase : Dict = crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Optional[int] = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) __lowerCamelCase : Dict = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowerCamelCase : Tuple = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase : List[str] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase : str = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase : str = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase : Any = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowerCamelCase : Union[str, Any] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowerCamelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
646
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
'''simple docstring''' import qiskit def UpperCAmelCase ( lowerCamelCase_ :int = 2 ): '''simple docstring''' snake_case_ : int = qubits # Using Aer's simulator snake_case_ : List[str] = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register snake_case_ : Dict = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator snake_case_ : Optional[Any] = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
334
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __snake_case ( unittest.TestCase): def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=5, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=4, ): """simple docstring""" lowerCamelCase : Any = parent lowerCamelCase : List[Any] = batch_size lowerCamelCase : Union[str, Any] = seq_length lowerCamelCase : Dict = is_training lowerCamelCase : str = use_attention_mask lowerCamelCase : Optional[Any] = use_token_type_ids lowerCamelCase : Optional[int] = use_labels lowerCamelCase : str = vocab_size lowerCamelCase : List[str] = hidden_size lowerCamelCase : str = num_hidden_layers lowerCamelCase : Tuple = num_attention_heads lowerCamelCase : Tuple = intermediate_size lowerCamelCase : str = hidden_act lowerCamelCase : Optional[int] = hidden_dropout_prob lowerCamelCase : List[Any] = attention_probs_dropout_prob lowerCamelCase : int = max_position_embeddings lowerCamelCase : Optional[Any] = type_vocab_size lowerCamelCase : Optional[int] = type_sequence_label_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Optional[Any] = num_choices def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase : Optional[Any] = None if self.use_attention_mask: lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, tie_weights_=_UpperCAmelCase, ) return config, input_ids, attention_mask def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = config_and_inputs lowerCamelCase : str = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class __snake_case ( UpperCAmelCase__ , unittest.TestCase): _lowerCAmelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = FlaxDistilBertModelTester(self ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase : Optional[int] = model_class_name.from_pretrained('distilbert-base-uncased' ) lowerCamelCase : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class __snake_case ( unittest.TestCase): @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCamelCase : Dict = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase : Any = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] lowerCamelCase : Optional[Any] = (1, 11, 768) self.assertEqual(output.shape, _UpperCAmelCase ) lowerCamelCase : Dict = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1e-4 ) )
320
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCAmelCase ( UpperCAmelCase__ ): def A__ ( self , lowerCAmelCase ) -> float: '''simple docstring''' return 0.0 def a ( A__ : np.ndarray , A__ : int ) -> tuple[int | float, int | float]: """simple docstring""" _lowercase =min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowercase =max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def a ( A__ : FilterType , A__ : int ) -> None: """simple docstring""" _lowercase =512 _lowercase =[1] + [0] * (size - 1) _lowercase =[filter_type.process(A__ ) for item in inputs] _lowercase =[0] * (samplerate - size) # zero-padding outputs += filler _lowercase =np.abs(np.fft.fft(A__ ) ) _lowercase =20 * np.logaa(A__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _lowercase =get_bounds(A__ , A__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(A__ ) plt.show() def a ( A__ : FilterType , A__ : int ) -> None: """simple docstring""" _lowercase =512 _lowercase =[1] + [0] * (size - 1) _lowercase =[filter_type.process(A__ ) for item in inputs] _lowercase =[0] * (samplerate - size) # zero-padding outputs += filler _lowercase =np.angle(np.fft.fft(A__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(A__ , -2 * pi ) ) plt.show()
291
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import copy import re class __SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[Any] = '''hp''' _a : int = {} _a : Tuple = None @classmethod def _a ( cls , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = prefix a_ = defaults cls.build_naming_info() @staticmethod def _a ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if len(_UpperCAmelCase ) == 0: return "" a_ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): a_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: a_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCamelCase__ ): a_ = '' while integer != 0: a_ = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s a_ = 0 while True: a_ = word + '#' + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: a_ = sword break a_ = short_word a_ = word return short_word @staticmethod def _a ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = param_name.split('_' ) a_ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name a_ = ['', '_'] for separator in separators: a_ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: a_ = shortname a_ = param_name return shortname return param_name @staticmethod def _a ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) a_ = short_name a_ = param_name @classmethod def _a ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return a_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } a_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) a_ = info @classmethod def _a ( cls , UpperCamelCase__ ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None a_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue a_ = cls.NAMING_INFO['short_param'][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = 1 if v else 0 a_ = '' if isinstance(_UpperCAmelCase , (int, float) ) else '-' a_ = f'{key}{sep}{v}' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def _a ( cls , UpperCamelCase__ ): """simple docstring""" a_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": a_ = [] else: a_ = repr.split('_' ) a_ = {} for value in values: if "-" in value: a_ , a_ = value.split('-' ) else: a_ = re.sub('[0-9.]' , '' , _UpperCAmelCase ) a_ = float(re.sub('[^0-9.]' , '' , _UpperCAmelCase ) ) a_ = cls.NAMING_INFO['reverse_short_param'][p_k] a_ = p_v for k in cls.DEFAULTS: if k not in parameters: a_ = cls.DEFAULTS[k] return parameters
536
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
import numpy as np import datasets _UpperCAmelCase = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' _UpperCAmelCase = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' _UpperCAmelCase = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : str = np.array(_UpperCAmelCase ) A_ : Union[str, Any] = np.array(_UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction A_ : List[str] = X - np.mean(_UpperCAmelCase ) A_ : Dict = np.cov(reference_distribution.T ) try: A_ : List[str] = np.linalg.inv(_UpperCAmelCase ) except np.linalg.LinAlgError: A_ : Any = np.linalg.pinv(_UpperCAmelCase ) A_ : str = np.dot(_UpperCAmelCase , _UpperCAmelCase ) A_ : Tuple = np.dot(_UpperCAmelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
558
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" import argparse import struct import unittest class __lowerCAmelCase : '''simple docstring''' def __init__( self: Union[str, Any] , UpperCamelCase_: bytes ): UpperCamelCase_ =data # Initialize hash values UpperCamelCase_ =[ 0X6A09E667, 0XBB67AE85, 0X3C6EF372, 0XA54FF53A, 0X510E527F, 0X9B05688C, 0X1F83D9AB, 0X5BE0CD19, ] # Initialize round constants UpperCamelCase_ =[ 0X428A2F98, 0X71374491, 0XB5C0FBCF, 0XE9B5DBA5, 0X3956C25B, 0X59F111F1, 0X923F82A4, 0XAB1C5ED5, 0XD807AA98, 0X12835B01, 0X243185BE, 0X550C7DC3, 0X72BE5D74, 0X80DEB1FE, 0X9BDC06A7, 0XC19BF174, 0XE49B69C1, 0XEFBE4786, 0X0FC19DC6, 0X240CA1CC, 0X2DE92C6F, 0X4A7484AA, 0X5CB0A9DC, 0X76F988DA, 0X983E5152, 0XA831C66D, 0XB00327C8, 0XBF597FC7, 0XC6E00BF3, 0XD5A79147, 0X06CA6351, 0X14292967, 0X27B70A85, 0X2E1B2138, 0X4D2C6DFC, 0X53380D13, 0X650A7354, 0X766A0ABB, 0X81C2C92E, 0X92722C85, 0XA2BFE8A1, 0XA81A664B, 0XC24B8B70, 0XC76C51A3, 0XD192E819, 0XD6990624, 0XF40E3585, 0X106AA070, 0X19A4C116, 0X1E376C08, 0X2748774C, 0X34B0BCB5, 0X391C0CB3, 0X4ED8AA4A, 0X5B9CCA4F, 0X682E6FF3, 0X748F82EE, 0X78A5636F, 0X84C87814, 0X8CC70208, 0X90BEFFFA, 0XA4506CEB, 0XBEF9A3F7, 0XC67178F2, ] UpperCamelCase_ =self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase__ ( UpperCamelCase_: bytes ): UpperCamelCase_ =B"\x80" + (B"\x00" * (63 - (len(_UpperCAmelCase ) + 8) % 64)) UpperCamelCase_ =struct.pack(">Q" , (len(_UpperCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =[ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase_ =list(struct.unpack(">16L" , _UpperCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase_ =( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCamelCase_ =( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCamelCase_ =( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression UpperCamelCase_ =self.ror(_UpperCAmelCase , 6 ) ^ self.ror(_UpperCAmelCase , 11 ) ^ self.ror(_UpperCAmelCase , 25 ) UpperCamelCase_ =(e & f) ^ ((~e & 0XFFFFFFFF) & g) UpperCamelCase_ =( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 UpperCamelCase_ =self.ror(_UpperCAmelCase , 2 ) ^ self.ror(_UpperCAmelCase , 13 ) ^ self.ror(_UpperCAmelCase , 22 ) UpperCamelCase_ =(a & b) ^ (a & c) ^ (b & c) UpperCamelCase_ =(sa + maj) % 0X100000000 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) UpperCamelCase_ =[a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase_ =[ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] UpperCamelCase_ ="".join([hex(_UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase__ ( self: str , UpperCamelCase_: int , UpperCamelCase_: int ): return 0XFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self: Dict ): import hashlib UpperCamelCase_ =bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(_UpperCAmelCase ).hash , hashlib.shaaaa(_UpperCAmelCase ).hexdigest() ) def _UpperCamelCase ( ): import doctest doctest.testmod() UpperCamelCase_ =argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) UpperCamelCase_ =parser.parse_args() UpperCamelCase_ =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCamelCase_ =f.read() else: UpperCamelCase_ =bytes(A , "utf-8" ) print(SHAaaa(A ).hash ) if __name__ == "__main__": main()
391
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase_ : str = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def UpperCAmelCase_ ( A , A , A , A , A , A , A , A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=A , exist_ok=A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A , A , f=output_path.as_posix() , input_names=A , output_names=A , dynamic_axes=A , do_constant_folding=A , use_external_data_format=A , enable_onnx_checker=A , opset_version=A , ) else: export( A , A , f=output_path.as_posix() , input_names=A , output_names=A , dynamic_axes=A , do_constant_folding=A , opset_version=A , ) @torch.no_grad() def UpperCAmelCase_ ( A , A , A , A = False ): '''simple docstring''' _a : Union[str, Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _a : Optional[Any] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _a : int = 'cpu' _a : Optional[int] = Path(A ) # VAE DECODER _a : str = AutoencoderKL.from_pretrained(model_path + '/vae' ) _a : Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part _a : Union[str, Any] = vae_decoder.decode onnx_export( A , model_args=( torch.randn(1 , A , 2_5 , 2_5 ).to(device=A , dtype=A ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=A , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCAmelCase_ : Dict = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
120
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase__ = load_file(__magic_name__ ) lowercase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.text_encoder else: lowercase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase__ = pipeline.unet # find the target layer lowercase__ = layer_infos.pop(0 ) while len(__magic_name__ ) > -1: try: lowercase__ = curr_layer.__getattr__(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = layer_infos.pop(0 ) elif len(__magic_name__ ) == 0: break except Exception: if len(__magic_name__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase__ = layer_infos.pop(0 ) lowercase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(__magic_name__ ) else: pair_keys.append(__magic_name__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowercase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ) # update visited list for item in pair_keys: visited.append(__magic_name__ ) return pipeline if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A : str = parser.parse_args() A : Tuple = args.base_model_path A : List[str] = args.checkpoint_path A : Optional[int] = args.dump_path A : Optional[int] = args.lora_prefix_unet A : Any = args.lora_prefix_text_encoder A : Any = args.alpha A : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
15
0
"""simple docstring""" def a ( __UpperCAmelCase : int , __UpperCAmelCase : list ) -> str: _enforce_args(__UpperCAmelCase , __UpperCAmelCase ) if n == 0: return 0 __magic_name__: int = float("""-inf""" ) for i in range(1 , n + 1 ): __magic_name__: List[str] = max( __UpperCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , __UpperCAmelCase ) ) return max_revue def a ( __UpperCAmelCase : int , __UpperCAmelCase : list ) -> Optional[int]: _enforce_args(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[int] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a ( __UpperCAmelCase : int , __UpperCAmelCase : list , __UpperCAmelCase : list ) -> int: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __magic_name__: int = float("""-inf""" ) for i in range(1 , n + 1 ): __magic_name__: List[Any] = max( __UpperCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __UpperCAmelCase , __UpperCAmelCase ) , ) __magic_name__: Optional[Any] = max_revenue return max_rev[n] def a ( __UpperCAmelCase : int , __UpperCAmelCase : list ) -> Tuple: _enforce_args(__UpperCAmelCase , __UpperCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __magic_name__: Any = [float("""-inf""" ) for _ in range(n + 1 )] __magic_name__: Union[str, Any] = 0 for i in range(1 , n + 1 ): __magic_name__: Dict = max_rev[i] for j in range(1 , i + 1 ): __magic_name__: Optional[int] = max(__UpperCAmelCase , prices[j - 1] + max_rev[i - j] ) __magic_name__: List[str] = max_revenue_i return max_rev[n] def a ( __UpperCAmelCase : int , __UpperCAmelCase : list ) -> Union[str, Any]: if n < 0: __magic_name__: Tuple = f'n must be greater than or equal to 0. Got n = {n}' raise ValueError(__UpperCAmelCase ) if n > len(__UpperCAmelCase ): __magic_name__: List[Any] = ( """Each integral piece of rod must have a corresponding price. """ f'Got n = {n} but length of prices = {len(__UpperCAmelCase )}' ) raise ValueError(__UpperCAmelCase ) def a ( ) -> List[Any]: __magic_name__: Optional[Any] = [6, 1_0, 1_2, 1_5, 2_0, 2_3] __magic_name__: Tuple = len(__UpperCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __magic_name__: Union[str, Any] = 3_6 __magic_name__: str = top_down_cut_rod(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Tuple = bottom_up_cut_rod(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Tuple = naive_cut_rod_recursive(__UpperCAmelCase , __UpperCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
96
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Tuple = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''ibert''' def __init__(self : int , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1E-1_2 , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]="none" , **_UpperCAmelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
15
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = StableUnCLIPPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase__ = False def __A ( self : Any ) -> str: SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = embedder_hidden_size # prior components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=_UpperCAmelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL() SCREAMING_SNAKE_CASE_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __A ( self : Dict , __magic_name__ : Tuple , __magic_name__ : List[str]=0 ) -> List[str]: if str(_UpperCAmelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __A ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase ) def __A ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Dict ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe("anime turle" , generator=_UpperCAmelCase , output_type="np" ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def __A ( self : Any ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
140
from math import log from scipy.constants import Boltzmann, physical_constants A : Any = 3_0_0 # TEMPERATURE (unit = K) def UpperCamelCase ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] _UpperCamelCase : Tuple = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def __snake_case ( lowerCAmelCase : Any ): __UpperCAmelCase = torch.load(lowerCAmelCase , map_location='cpu' ) return sd def __snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : List[Any]=rename_keys_prefix ): __UpperCAmelCase = OrderedDict() __UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCAmelCase = key for name_pair in rename_keys_prefix: __UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCAmelCase = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def __snake_case ( lowerCAmelCase : Any , lowerCAmelCase : Dict ): assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __UpperCAmelCase = 'pretraining' if "vcr" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 512} __UpperCAmelCase = 'multichoice' elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048} __UpperCAmelCase = 'vqa_advanced' elif "vqa" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048, 'num_labels': 3129} __UpperCAmelCase = 'vqa' elif "nlvr" in checkpoint_path: __UpperCAmelCase = { 'visual_embedding_dim': 1024, 'num_labels': 2, } __UpperCAmelCase = 'nlvr' __UpperCAmelCase = VisualBertConfig(**lowerCAmelCase ) # Load State Dict __UpperCAmelCase = load_state_dict(lowerCAmelCase ) __UpperCAmelCase = get_new_dict(lowerCAmelCase , lowerCAmelCase ) if model_type == "pretraining": __UpperCAmelCase = VisualBertForPreTraining(lowerCAmelCase ) elif model_type == "vqa": __UpperCAmelCase = VisualBertForQuestionAnswering(lowerCAmelCase ) elif model_type == "nlvr": __UpperCAmelCase = VisualBertForVisualReasoning(lowerCAmelCase ) elif model_type == "multichoice": __UpperCAmelCase = VisualBertForMultipleChoice(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) # Save Checkpoints Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') _UpperCamelCase : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
396
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: int ) -> list[int]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : int = len(_lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCamelCase : Tuple = i + 1 else: __lowerCamelCase : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
646
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Tuple = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''poolformer''' def __init__(self : Dict , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Union[str, Any]=4.0 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : int=[64, 128, 320, 512] , _UpperCAmelCase : Union[str, Any]=[7, 3, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Tuple=0.02 , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = num_channels lowercase__ = patch_size lowercase__ = stride lowercase__ = padding lowercase__ = pool_size lowercase__ = hidden_sizes lowercase__ = mlp_ratio lowercase__ = depths lowercase__ = patch_sizes lowercase__ = strides lowercase__ = num_encoder_blocks lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = initializer_range super().__init__(**_UpperCAmelCase ) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = version.parse('''1.11''' ) @property def lowerCamelCase__ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ (self : Dict ) -> float: """simple docstring""" return 2E-3
15
0
'''simple docstring''' import math from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[float], float] , lowerCamelCase_ :float , lowerCamelCase_ :float ): '''simple docstring''' snake_case_ : Any = xa snake_case_ : Optional[Any] = xa while True: if x_n == x_na or function(lowerCamelCase_ ) == function(lowerCamelCase_ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) snake_case_ : Union[str, Any] = x_na - ( function(lowerCamelCase_ ) / ((function(lowerCamelCase_ ) - function(lowerCamelCase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na snake_case_ : List[Any] = x_na snake_case_ : Optional[Any] = x_na def UpperCAmelCase ( lowerCamelCase_ :float ): '''simple docstring''' return math.pow(lowerCamelCase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
334
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'vocab_file': 'vocab.json'} A = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } A = {'mgp-str': 27} class __snake_case ( UpperCAmelCase__): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, A, A="[GO]", A="[GO]", A="[s]", A="[GO]", **A ): """simple docstring""" super().__init__( unk_token=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, **_UpperCAmelCase, ) with open(_UpperCAmelCase, encoding='utf-8' ) as vocab_handle: lowerCamelCase : Any = json.load(_UpperCAmelCase ) lowerCamelCase : Tuple = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self ): """simple docstring""" return len(self.vocab ) def UpperCAmelCase_ ( self ): """simple docstring""" return dict(self.vocab, **self.added_tokens_encoder ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Optional[int] = [] for s in text: char_tokens.extend(_UpperCAmelCase ) return char_tokens def UpperCAmelCase_ ( self, A ): """simple docstring""" return self.vocab.get(_UpperCAmelCase, self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self, A ): """simple docstring""" return self.decoder.get(_UpperCAmelCase ) def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(_UpperCAmelCase ) ) return lowerCamelCase : Optional[Any] = os.path.join( _UpperCAmelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(_UpperCAmelCase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=_UpperCAmelCase, ensure_ascii=_UpperCAmelCase ) + '\n' ) return (vocab_file,)
320
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
import math import random def a ( A__ : float , A__ : bool = False ) -> float: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase_ = 0.0_2 def a ( A__ : int , A__ : int ) -> float: """simple docstring""" _lowercase =float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(A__ ): # Forward propagation _lowercase =sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _lowercase =(expected / 100) - layer_a # Error delta _lowercase =layer_1_error * sigmoid_function(A__ , A__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('Expected value: ')) lowercase_ = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
291
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
536
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) lowercase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, {"""score""": ANY(_UpperCAmelCase ), """label""": ANY(_UpperCAmelCase )}, ] , ) @require_torch def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" lowercase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) lowercase__ = pipeline( """video-classification""" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) lowercase__ = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}] , ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], [{"""score""": 0.5_199, """label""": """LABEL_0"""}, {"""score""": 0.4_801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" pass
15
0
def UpperCamelCase ( __lowercase : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) A_ : int = sorted(string.lower() ) return len(__lowercase ) == len(set(__lowercase ) ) if __name__ == "__main__": _UpperCAmelCase = input("""Enter a string """).strip() _UpperCAmelCase = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
558
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = GPTSwaTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = True __lowerCamelCase : Any = False def UpperCamelCase__ ( self: List[Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ =GPTSwaTokenizer(_UpperCAmelCase , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any ): UpperCamelCase_ ="This is a test" UpperCamelCase_ ="This is a test" return input_text, output_text def UpperCamelCase__ ( self: int ): UpperCamelCase_ ="<s>" UpperCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 2000 ) def UpperCamelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =GPTSwaTokenizer(_UpperCAmelCase ) UpperCamelCase_ =tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [465, 287, 265, 631, 842] ) UpperCamelCase_ =tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( _UpperCAmelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on UpperCamelCase_ =tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCamelCase_ =tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) # fmt: off self.assertListEqual( _UpperCAmelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =GPTSwaTokenizer(_UpperCAmelCase ) UpperCamelCase_ =["This is a test", "I was born in 92000, and this is falsé."] UpperCamelCase_ =[ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_UpperCAmelCase ) , _UpperCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(tokenizer.decode_fast(_UpperCAmelCase ) , _UpperCAmelCase ) @slow def UpperCamelCase__ ( self: int ): UpperCamelCase_ =[ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off UpperCamelCase_ ={"input_ids": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="AI-Sweden/gpt-sw3-126m" , sequences=_UpperCAmelCase , )
391
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _a : int = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def __UpperCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) _a : Optional[int] = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=1_0 , ) return model @property def __UpperCamelCase ( self ) -> Any: torch.manual_seed(0 ) _a : Dict = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) _a : Optional[int] = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def __UpperCamelCase ( self ) -> Any: _a : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _a : Optional[Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _a : Optional[Any] = DDPMScheduler() _a : Tuple = AudioDiffusionPipeline(vqvae=_UpperCAmelCase , unet=self.dummy_unet , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase ) _a : List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _a : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(4_2 ) _a : Optional[Any] = pipe(generator=_UpperCAmelCase , steps=4 ) _a : List[Any] = output.audios[0] _a : List[Any] = output.images[0] _a : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(4_2 ) _a : Optional[int] = pipe(generator=_UpperCAmelCase , steps=4 , return_dict=_UpperCAmelCase ) _a : Optional[Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _a : str = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] _a : int = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:1_0] _a : List[Any] = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _a : Any = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _a : str = DDIMScheduler() _a : str = self.dummy_vqvae_and_unet _a : Optional[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase ) _a : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) np.random.seed(0 ) _a : Union[str, Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _a : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(4_2 ) _a : Any = pipe(raw_audio=_UpperCAmelCase , generator=_UpperCAmelCase , start_step=5 , steps=1_0 ) _a : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _a : Dict = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] _a : Union[str, Any] = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _a : Any = self.dummy_unet_condition _a : Any = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_UpperCAmelCase , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase ) _a : Dict = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) np.random.seed(0 ) _a : str = torch.rand((1, 1, 1_0) ) _a : Optional[Any] = pipe(generator=_UpperCAmelCase , encoding=_UpperCAmelCase ) _a : Union[str, Any] = output.images[0] _a : Tuple = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] _a : Union[str, Any] = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ) -> List[str]: _a : Optional[Any] = torch_device _a : Optional[int] = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) _a : Union[str, Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _a : Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(4_2 ) _a : str = pipe(generator=_UpperCAmelCase ) _a : List[Any] = output.audios[0] _a : Optional[int] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _a : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] _a : Tuple = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
120
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict="last" , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
15
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __A ( nn.Module ): def __init__( self : List[str] , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : str = "layer_norm" , __snake_case : bool = False , ) -> Dict: super().__init__() __magic_name__: Union[str, Any] = only_cross_attention __magic_name__: Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __magic_name__: Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __magic_name__: List[str] = AdaLayerNorm(_UpperCAmelCase , _UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __magic_name__: Dict = AdaLayerNormZero(_UpperCAmelCase , _UpperCAmelCase ) else: __magic_name__: Optional[Any] = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase ) __magic_name__: Optional[int] = Attention( query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , dropout=_UpperCAmelCase , bias=_UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_UpperCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __magic_name__: Union[str, Any] = ( AdaLayerNorm(_UpperCAmelCase , _UpperCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase ) ) __magic_name__: Union[str, Any] = Attention( query_dim=_UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , dropout=_UpperCAmelCase , bias=_UpperCAmelCase , upcast_attention=_UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none else: __magic_name__: str = None __magic_name__: Optional[Any] = None # 3. Feed-forward __magic_name__: int = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase ) __magic_name__: List[str] = FeedForward(_UpperCAmelCase , dropout=_UpperCAmelCase , activation_fn=_UpperCAmelCase , final_dropout=_UpperCAmelCase ) # let chunk size default to None __magic_name__: Tuple = None __magic_name__: str = 0 def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[int] , __snake_case : int ) -> int: __magic_name__: Optional[int] = chunk_size __magic_name__: str = dim def lowerCamelCase__ ( self : Optional[int] , __snake_case : torch.FloatTensor , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Dict[str, Any] = None , __snake_case : Optional[torch.LongTensor] = None , ) -> List[str]: if self.use_ada_layer_norm: __magic_name__: str = self.norma(_UpperCAmelCase , _UpperCAmelCase ) elif self.use_ada_layer_norm_zero: __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__: Optional[int] = self.norma( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hidden_dtype=hidden_states.dtype ) else: __magic_name__: Union[str, Any] = self.norma(_UpperCAmelCase ) __magic_name__: Optional[int] = cross_attention_kwargs if cross_attention_kwargs is not None else {} __magic_name__: str = self.attna( _UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) if self.use_ada_layer_norm_zero: __magic_name__: Tuple = gate_msa.unsqueeze(1 ) * attn_output __magic_name__: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __magic_name__: List[Any] = ( self.norma(_UpperCAmelCase , _UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(_UpperCAmelCase ) ) __magic_name__: Tuple = self.attna( _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) __magic_name__: Optional[Any] = attn_output + hidden_states # 3. Feed-forward __magic_name__: Optional[int] = self.norma(_UpperCAmelCase ) if self.use_ada_layer_norm_zero: __magic_name__: Union[str, Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __magic_name__: Dict = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __magic_name__: Optional[Any] = torch.cat( [self.ff(_UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __magic_name__: List[Any] = self.ff(_UpperCAmelCase ) if self.use_ada_layer_norm_zero: __magic_name__: List[Any] = gate_mlp.unsqueeze(1 ) * ff_output __magic_name__: Dict = ff_output + hidden_states return hidden_states class __A ( nn.Module ): def __init__( self : Dict , __snake_case : int , __snake_case : Optional[int] = None , __snake_case : int = 4 , __snake_case : float = 0.0 , __snake_case : str = "geglu" , __snake_case : bool = False , ) -> Union[str, Any]: super().__init__() __magic_name__: Optional[int] = int(dim * mult ) __magic_name__: Dict = dim_out if dim_out is not None else dim if activation_fn == "gelu": __magic_name__: str = GELU(_UpperCAmelCase , _UpperCAmelCase ) if activation_fn == "gelu-approximate": __magic_name__: List[str] = GELU(_UpperCAmelCase , _UpperCAmelCase , approximate="""tanh""" ) elif activation_fn == "geglu": __magic_name__: int = GEGLU(_UpperCAmelCase , _UpperCAmelCase ) elif activation_fn == "geglu-approximate": __magic_name__: Optional[Any] = ApproximateGELU(_UpperCAmelCase , _UpperCAmelCase ) __magic_name__: int = nn.ModuleList([] ) # project in self.net.append(_UpperCAmelCase ) # project dropout self.net.append(nn.Dropout(_UpperCAmelCase ) ) # project out self.net.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCAmelCase ) ) def lowerCamelCase__ ( self : Dict , __snake_case : Optional[Any] ) -> Tuple: for module in self.net: __magic_name__: Tuple = module(_UpperCAmelCase ) return hidden_states class __A ( nn.Module ): def __init__( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : str = "none" ) -> int: super().__init__() __magic_name__: str = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) __magic_name__: Tuple = approximate def lowerCamelCase__ ( self : int , __snake_case : List[str] ) -> List[Any]: if gate.device.type != "mps": return F.gelu(_UpperCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : List[str] ) -> Any: __magic_name__: int = self.proj(_UpperCAmelCase ) __magic_name__: Optional[Any] = self.gelu(_UpperCAmelCase ) return hidden_states class __A ( nn.Module ): def __init__( self : Optional[Any] , __snake_case : int , __snake_case : int ) -> Union[str, Any]: super().__init__() __magic_name__: List[Any] = nn.Linear(_UpperCAmelCase , dim_out * 2 ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any ) -> Optional[int]: if gate.device.type != "mps": return F.gelu(_UpperCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCamelCase__ ( self : Dict , __snake_case : Optional[Any] ) -> List[Any]: __magic_name__, __magic_name__: Optional[int] = self.proj(_UpperCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_UpperCAmelCase ) class __A ( nn.Module ): def __init__( self : Dict , __snake_case : int , __snake_case : int ) -> str: super().__init__() __magic_name__: Optional[Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ ( self : int , __snake_case : int ) -> Optional[int]: __magic_name__: List[str] = self.proj(_UpperCAmelCase ) return x * torch.sigmoid(1.702 * x ) class __A ( nn.Module ): def __init__( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> str: super().__init__() __magic_name__: Any = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) __magic_name__: Tuple = nn.SiLU() __magic_name__: Dict = nn.Linear(_UpperCAmelCase , embedding_dim * 2 ) __magic_name__: Tuple = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple , __snake_case : List[Any] , __snake_case : Dict ) -> Optional[Any]: __magic_name__: Tuple = self.linear(self.silu(self.emb(_UpperCAmelCase ) ) ) __magic_name__, __magic_name__: Optional[Any] = torch.chunk(_UpperCAmelCase , 2 ) __magic_name__: Dict = self.norm(_UpperCAmelCase ) * (1 + scale) + shift return x class __A ( nn.Module ): def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Dict ) -> List[str]: super().__init__() __magic_name__: Union[str, Any] = CombinedTimestepLabelEmbeddings(_UpperCAmelCase , _UpperCAmelCase ) __magic_name__: Optional[int] = nn.SiLU() __magic_name__: str = nn.Linear(_UpperCAmelCase , 6 * embedding_dim , bias=_UpperCAmelCase ) __magic_name__: Union[str, Any] = nn.LayerNorm(_UpperCAmelCase , elementwise_affine=_UpperCAmelCase , eps=1E-6 ) def lowerCamelCase__ ( self : int , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : int=None ) -> Any: __magic_name__: Dict = self.linear(self.silu(self.emb(_UpperCAmelCase , _UpperCAmelCase , hidden_dtype=_UpperCAmelCase ) ) ) __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__: List[Any] = emb.chunk(6 , dim=1 ) __magic_name__: str = self.norm(_UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __A ( nn.Module ): def __init__( self : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Optional[str] = None , __snake_case : float = 1E-5 ) -> Optional[int]: super().__init__() __magic_name__: Optional[Any] = num_groups __magic_name__: List[str] = eps if act_fn is None: __magic_name__: Optional[int] = None else: __magic_name__: List[str] = get_activation(_UpperCAmelCase ) __magic_name__: int = nn.Linear(_UpperCAmelCase , out_dim * 2 ) def lowerCamelCase__ ( self : Any , __snake_case : List[str] , __snake_case : List[Any] ) -> int: if self.act: __magic_name__: Optional[int] = self.act(_UpperCAmelCase ) __magic_name__: List[Any] = self.linear(_UpperCAmelCase ) __magic_name__: Optional[Any] = emb[:, :, None, None] __magic_name__, __magic_name__: Any = emb.chunk(2 , dim=1 ) __magic_name__: Optional[Any] = F.group_norm(_UpperCAmelCase , self.num_groups , eps=self.eps ) __magic_name__: Any = x * (1 + scale) + shift return x
96
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) lowercase__ = emb.weight.data return lin_layer def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str="facebook/mbart-large-en-ro" , __magic_name__ : Any=False , __magic_name__ : int=False ) -> Optional[int]: """simple docstring""" lowercase__ = torch.load(__magic_name__ , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__magic_name__ ) lowercase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase__ = MBartConfig.from_pretrained(__magic_name__ , vocab_size=__magic_name__ ) if mbart_aa and finetuned: lowercase__ = """relu""" lowercase__ = state_dict["""decoder.embed_tokens.weight"""] lowercase__ = MBartForConditionalGeneration(__magic_name__ ) model.model.load_state_dict(__magic_name__ ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A : Any = parser.parse_args() A : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
15
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
140
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" lowercase__ = model.config lowercase__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if "encoder.model" in name: lowercase__ = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase__ = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase__ = """encoder.""" + name if "attn.proj" in name: lowercase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase__ = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase__ = """encoder.layernorm.bias""" return name def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase__ = key.split(""".""" ) lowercase__ = int(key_split[3] ) lowercase__ = int(key_split[5] ) lowercase__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ = val return orig_state_dict def UpperCamelCase ( __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None , __magic_name__ : Dict=False ) -> int: """simple docstring""" lowercase__ = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase__ , lowercase__ = get_configs(__magic_name__ ) lowercase__ = DonutSwinModel(__magic_name__ ) lowercase__ = MBartForCausalLM(__magic_name__ ) lowercase__ = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase__ = original_model.state_dict() lowercase__ = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase__ = load_dataset("""hf-internal-testing/example-documents""" ) lowercase__ = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase__ = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase__ = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = """When is the coffee break?""" lowercase__ = task_prompt.replace("""{user_input}""" , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase__ = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors="""pt""" )[ """input_ids""" ] lowercase__ = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase__ , lowercase__ = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) # verify encoder hidden states lowercase__ = original_model.encoder(__magic_name__ ) lowercase__ = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-2 ) # verify decoder hidden states lowercase__ = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase__ = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) A : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase : Optional[Any] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
396
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __A = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } __A = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class _snake_case ( UpperCAmelCase__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = GPTaTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str="<|endoftext|>" , UpperCAmelCase : Dict="<|endoftext|>" , UpperCAmelCase : int="<|endoftext|>" , UpperCAmelCase : str=False , **UpperCAmelCase : str , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) __lowerCamelCase : int = kwargs.pop("add_bos_token" , _UpperCAmelCase ) __lowerCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _UpperCAmelCase ) != add_prefix_space: __lowerCamelCase : Dict = getattr(_UpperCAmelCase , pre_tok_state.pop("type" ) ) __lowerCamelCase : int = add_prefix_space __lowerCamelCase : Any = pre_tok_class(**_UpperCAmelCase ) __lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase__ ( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ): __lowerCamelCase : str = kwargs.get("is_split_into_words" , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): __lowerCamelCase : int = kwargs.get("is_split_into_words" , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): __lowerCamelCase : Any = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : "Conversation" ): __lowerCamelCase : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] ) if len(_UpperCAmelCase ) > self.model_max_length: __lowerCamelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
646
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Any = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __UpperCamelCase ( UpperCAmelCase__ ): lowercase : int = 'data2vec-audio' def __init__( self :int ,_UpperCamelCase :str=3_2 ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :Tuple=1_2 ,_UpperCamelCase :Dict=3_0_7_2 ,_UpperCamelCase :Dict="gelu" ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :str=0.0 ,_UpperCamelCase :List[Any]=0.1 ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :Tuple=0.02 ,_UpperCamelCase :str=1E-5 ,_UpperCamelCase :List[str]="gelu" ,_UpperCamelCase :str=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,_UpperCamelCase :int=(5, 2, 2, 2, 2, 2, 2) ,_UpperCamelCase :Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) ,_UpperCamelCase :int=False ,_UpperCamelCase :Any=1_6 ,_UpperCamelCase :Dict=1_9 ,_UpperCamelCase :Dict=5 ,_UpperCamelCase :Dict=0.05 ,_UpperCamelCase :Dict=1_0 ,_UpperCamelCase :Any=2 ,_UpperCamelCase :Optional[int]=0.0 ,_UpperCamelCase :Optional[int]=1_0 ,_UpperCamelCase :List[Any]=0 ,_UpperCamelCase :List[str]="sum" ,_UpperCamelCase :Dict=False ,_UpperCamelCase :Tuple=False ,_UpperCamelCase :Dict=2_5_6 ,_UpperCamelCase :Optional[int]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) ,_UpperCamelCase :List[str]=(5, 3, 3, 1, 1) ,_UpperCamelCase :Any=(1, 2, 3, 1, 1) ,_UpperCamelCase :List[str]=5_1_2 ,_UpperCamelCase :Optional[int]=0 ,_UpperCamelCase :str=1 ,_UpperCamelCase :List[str]=2 ,_UpperCamelCase :List[Any]=False ,_UpperCamelCase :Tuple=3 ,_UpperCamelCase :Any=2 ,_UpperCamelCase :Dict=3 ,_UpperCamelCase :List[str]=None ,**_UpperCamelCase :Tuple ,): super().__init__(**_UpperCAmelCase ,pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : int = feat_extract_activation snake_case_ : List[str] = list(_UpperCAmelCase ) snake_case_ : Union[str, Any] = list(_UpperCAmelCase ) snake_case_ : Dict = list(_UpperCAmelCase ) snake_case_ : Union[str, Any] = conv_bias snake_case_ : Dict = num_conv_pos_embeddings snake_case_ : Tuple = num_conv_pos_embedding_groups snake_case_ : Tuple = conv_pos_kernel_size snake_case_ : Union[str, Any] = len(self.conv_dim ) snake_case_ : int = num_hidden_layers snake_case_ : str = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Any = num_attention_heads snake_case_ : List[Any] = hidden_dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : int = activation_dropout snake_case_ : Optional[Any] = feat_proj_dropout snake_case_ : List[str] = final_dropout snake_case_ : Optional[int] = layerdrop snake_case_ : List[str] = layer_norm_eps snake_case_ : Optional[int] = initializer_range snake_case_ : List[Any] = vocab_size snake_case_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : Optional[Any] = mask_time_prob snake_case_ : Any = mask_time_length snake_case_ : Union[str, Any] = mask_time_min_masks snake_case_ : Any = mask_feature_prob snake_case_ : int = mask_feature_length snake_case_ : List[Any] = mask_feature_min_masks # ctc loss snake_case_ : Dict = ctc_loss_reduction snake_case_ : Optional[Any] = ctc_zero_infinity # adapter snake_case_ : str = add_adapter snake_case_ : Optional[Any] = adapter_kernel_size snake_case_ : int = adapter_stride snake_case_ : List[Any] = num_adapter_layers snake_case_ : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ : List[Any] = list(_UpperCAmelCase ) snake_case_ : Union[str, Any] = list(_UpperCAmelCase ) snake_case_ : Any = list(_UpperCAmelCase ) snake_case_ : Union[str, Any] = xvector_output_dim @property def a__ ( self :Optional[int] ): return math.prod(self.conv_stride )
334
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : str , **_UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : str ) -> Tuple: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(_UpperCAmelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=_UpperCAmelCase ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
15
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __snake_case : def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=2, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=False, A=True, A="None", A=3, A=4, A=None, ): """simple docstring""" lowerCamelCase : int = parent lowerCamelCase : str = batch_size lowerCamelCase : List[Any] = seq_length lowerCamelCase : int = is_training lowerCamelCase : Optional[Any] = use_input_mask lowerCamelCase : int = use_token_type_ids lowerCamelCase : str = use_labels lowerCamelCase : Dict = vocab_size lowerCamelCase : Dict = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : str = intermediate_size lowerCamelCase : Any = hidden_act lowerCamelCase : Optional[int] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Dict = max_position_embeddings lowerCamelCase : str = type_vocab_size lowerCamelCase : Optional[int] = type_sequence_label_size lowerCamelCase : Any = initializer_range lowerCamelCase : List[str] = num_labels lowerCamelCase : Dict = num_choices lowerCamelCase : Any = relative_attention lowerCamelCase : Optional[Any] = position_biased_input lowerCamelCase : Optional[Any] = pos_att_type lowerCamelCase : List[Any] = scope def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase : Optional[Any] = None if self.use_input_mask: lowerCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : List[str] = None if self.use_token_type_ids: lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase : Optional[Any] = None lowerCamelCase : int = None lowerCamelCase : int = None if self.use_labels: lowerCamelCase : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase : Optional[int] = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=_UpperCAmelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Union[str, Any] = TFDebertaVaModel(config=_UpperCAmelCase ) lowerCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase : Optional[int] = [input_ids, input_mask] lowerCamelCase : List[Any] = model(_UpperCAmelCase ) lowerCamelCase : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : int = TFDebertaVaForMaskedLM(config=_UpperCAmelCase ) lowerCamelCase : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Tuple = self.num_labels lowerCamelCase : List[str] = TFDebertaVaForSequenceClassification(config=_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Optional[Any] = self.num_labels lowerCamelCase : Optional[int] = TFDebertaVaForTokenClassification(config=_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self, A, A, A, A, A, A, A ): """simple docstring""" lowerCamelCase : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : List[Any] = config_and_inputs lowerCamelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): _lowerCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCAmelCase = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = TFDebertaVaModelTester(self ) lowerCamelCase : Tuple = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=37 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class __snake_case ( unittest.TestCase): @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) lowerCamelCase : List[str] = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCamelCase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase : Union[str, Any] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] lowerCamelCase : Tuple = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1e-4 )
320
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowercase_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowercase_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowercase_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowercase_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowercase_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a ( A__ : Optional[Any] , A__ : Optional[int] ) -> int: """simple docstring""" for tf_name, hf_name in patterns: _lowercase =k.replace(A__ , A__ ) return k def a ( A__ : dict , A__ : dict ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" _lowercase =BigBirdPegasusConfig(**A__ ) _lowercase =BigBirdPegasusForConditionalGeneration(A__ ) _lowercase =torch_model.state_dict() _lowercase ={} # separating decoder weights _lowercase ={k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _lowercase ={k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): _lowercase =[k.endswith(A__ ) for ending in KEYS_TO_IGNORE] if any(A__ ): continue _lowercase =DECODER_PATTERNS _lowercase =rename_state_dict_key(A__ , A__ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowercase =v.T _lowercase =torch.from_numpy(A__ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): _lowercase =[k.endswith(A__ ) for ending in KEYS_TO_IGNORE] if any(A__ ): continue _lowercase =REMAINING_PATTERNS _lowercase =rename_state_dict_key(A__ , A__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowercase =v.T _lowercase =torch.from_numpy(A__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' _lowercase =mapping['model.embed_positions.weight'] _lowercase =mapping.pop('model.embed_positions.weight' ) _lowercase , _lowercase =torch_model.load_state_dict(A__ , strict=A__ ) _lowercase =[ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def a ( A__ : Tuple ) -> Dict: """simple docstring""" _lowercase =tf.train.list_variables(A__ ) _lowercase ={} _lowercase =['global_step'] for name, shape in tqdm(A__ , desc='converting tf checkpoint to dict' ): _lowercase =any(pat in name for pat in ignore_name ) if skip_key: continue _lowercase =tf.train.load_variable(A__ , A__ ) _lowercase =array return tf_weights def a ( A__ : str , A__ : str , A__ : dict ) -> int: """simple docstring""" _lowercase =get_tf_weights_as_numpy(A__ ) _lowercase =convert_bigbird_pegasus(A__ , A__ ) torch_model.save_pretrained(A__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowercase_ = parser.parse_args() lowercase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
291
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import os import string import sys __lowerCAmelCase = 1 << 8 __lowerCAmelCase = { 'tab': ord("\t"), 'newline': ord("\r"), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __lowerCAmelCase = KEYMAP['up'] __lowerCAmelCase = KEYMAP['left'] if sys.platform == "win32": __lowerCAmelCase = [] __lowerCAmelCase = { B'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, B'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, B'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, B'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, B'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __lowerCAmelCase = ord(str(i)) def __UpperCamelCase ( ): """simple docstring""" if os.name == "nt": import msvcrt a_ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase_ ) == 0: # Read the keystroke a_ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): a_ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: a_ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowercase_ ) if ord(lowercase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) a_ = chr(KEYMAP['esc'] ) except KeyError: a_ = cha[1] else: a_ = ch.decode(lowercase_ ) else: a_ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty a_ = sys.stdin.fileno() a_ = termios.tcgetattr(lowercase_ ) try: tty.setraw(lowercase_ ) a_ = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase_ , termios.TCSADRAIN , lowercase_ ) return ch def __UpperCamelCase ( ): """simple docstring""" a_ = get_raw_chars() if ord(lowercase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase_ ) == KEYMAP["esc"]: a_ = get_raw_chars() if ord(lowercase_ ) == KEYMAP["mod_int"]: a_ = get_raw_chars() if ord(lowercase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
536
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = 'RegNetConfig' # Base docstring _UpperCAmelCase = 'facebook/regnet-y-040' _UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCAmelCase = 'facebook/regnet-y-040' _UpperCAmelCase = 'tabby, tabby cat' _UpperCAmelCase = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ : Tuple = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=_UpperCAmelCase , strides=_UpperCAmelCase , padding='VALID' , groups=_UpperCAmelCase , use_bias=_UpperCAmelCase , name='convolution' , ) A_ : str = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) A_ : int = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = self.convolution(self.padding(_UpperCAmelCase ) ) A_ : Tuple = self.normalization(_UpperCAmelCase ) A_ : Optional[int] = self.activation(_UpperCAmelCase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : List[str] = config.num_channels A_ : Optional[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Tuple = shape_list(_UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ : Optional[Any] = tf.transpose(_UpperCAmelCase , perm=(0, 2, 3, 1) ) A_ : Optional[Any] = self.embedder(_UpperCAmelCase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : Optional[int] = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=1 , strides=_UpperCAmelCase , use_bias=_UpperCAmelCase , name='convolution' ) A_ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" return self.normalization(self.convolution(_UpperCAmelCase ) , training=_UpperCAmelCase ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name='pooler' ) A_ : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = self.pooler(_UpperCAmelCase ) for layer_module in self.attention: A_ : Union[str, Any] = layer_module(_UpperCAmelCase ) A_ : Any = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : int = in_channels != out_channels or stride != 1 A_ : List[Any] = max(1 , out_channels // config.groups_width ) A_ : Union[str, Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ : int = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name='layer.2' ), ] A_ : List[Any] = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = hidden_state for layer_module in self.layers: A_ : Union[str, Any] = layer_module(_UpperCAmelCase ) A_ : List[str] = self.shortcut(_UpperCAmelCase ) hidden_state += residual A_ : List[Any] = self.activation(_UpperCAmelCase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : Union[str, Any] = in_channels != out_channels or stride != 1 A_ : Dict = max(1 , out_channels // config.groups_width ) A_ : Tuple = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) A_ : Dict = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name='layer.3' ), ] A_ : str = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = hidden_state for layer_module in self.layers: A_ : Tuple = layer_module(_UpperCAmelCase ) A_ : Optional[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual A_ : Dict = self.activation(_UpperCAmelCase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : List[Any] = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer A_ : int = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , name='layers.0' ), *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for layer_module in self.layers: A_ : List[str] = layer_module(_UpperCAmelCase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) A_ : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase , name=F'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ): """simple docstring""" A_ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Optional[Any] = hidden_states + (hidden_state,) A_ : str = stage_module(_UpperCAmelCase ) if output_hidden_states: A_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ = RegNetConfig def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**_UpperCAmelCase ) A_ : Dict = config A_ : Optional[int] = TFRegNetEmbeddings(_UpperCAmelCase , name='embedder' ) A_ : Any = TFRegNetEncoder(_UpperCAmelCase , name='encoder' ) A_ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" A_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict A_ : Any = self.embedder(_UpperCAmelCase , training=_UpperCAmelCase ) A_ : List[Any] = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) A_ : Dict = encoder_outputs[0] A_ : Union[str, Any] = self.pooler(_UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules A_ : int = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) A_ : Optional[Any] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ : Union[str, Any] = tuple([tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase_ = RegNetConfig lowerCamelCase_ = '''regnet''' lowerCamelCase_ = '''pixel_values''' @property def lowerCAmelCase_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _UpperCAmelCase = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _UpperCAmelCase = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , UpperCAmelCase__ , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) A_ : List[Any] = TFRegNetMainLayer(_UpperCAmelCase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict A_ : Union[str, Any] = self.regnet( pixel_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase__ , ) class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) A_ : List[Any] = config.num_labels A_ : Union[str, Any] = TFRegNetMainLayer(_UpperCAmelCase , name='regnet' ) # classification head A_ : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict A_ : List[str] = self.regnet( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) A_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] A_ : Tuple = self.classifier[0](_UpperCAmelCase ) A_ : List[Any] = self.classifier[1](_UpperCAmelCase ) A_ : Dict = None if labels is None else self.hf_compute_loss(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) if not return_dict: A_ : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
558
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
0
"""simple docstring""" from math import factorial, radians def _UpperCamelCase ( A , A = 18 , A = 10 ): UpperCamelCase_ =angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCamelCase_ =radians(A ) UpperCamelCase_ =angle_in_radians UpperCamelCase_ =3 UpperCamelCase_ =-1 for _ in range(A ): result += (b * (angle_in_radians**a)) / factorial(A ) UpperCamelCase_ =-b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(A , A ) if __name__ == "__main__": __import__("doctest").testmod()
391
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __A : Optional[Any] = datasets.utils.logging.get_logger(__name__) __A : Any = ['names', 'prefix'] __A : Tuple = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __A : Dict = ['encoding_errors', 'on_bad_lines'] __A : str = ['date_format'] @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ = "," lowerCamelCase__ = None lowerCamelCase__ = "infer" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = False lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = "." lowerCamelCase__ = None lowerCamelCase__ = '"' lowerCamelCase__ = 0 lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = None lowerCamelCase__ = 1_0_0_0_0 lowerCamelCase__ = None lowerCamelCase__ = "strict" lowerCamelCase__ = "error" lowerCamelCase__ = None def _snake_case ( self : Tuple ): if self.delimiter is not None: SCREAMING_SNAKE_CASE = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE = self.column_names @property def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ = CsvConfig def _snake_case ( self : int ): return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self : Any , __lowerCamelCase : str ): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def _snake_case ( self : List[Any] , __lowerCamelCase : pa.Table ): if self.config.features is not None: SCREAMING_SNAKE_CASE = self.config.features.arrow_schema if all(not require_storage_cast(__lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE = table_cast(__lowerCamelCase , __lowerCamelCase ) return pa_table def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE = pd.read_csv(__lowerCamelCase , iterator=__lowerCamelCase , dtype=__lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = pa.Table.from_pandas(__lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(__lowerCamelCase )}: {e}" ) raise
16
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
from math import factorial def __a ( A__ : int , A__ : int , A__ : float ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) SCREAMING_SNAKE_CASE = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE = float(factorial(A__ ) ) coefficient /= factorial(A__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
16
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[Any] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } __A : Optional[int] = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } __A : Optional[int] = '</w>' __A : List[Any] = '@@ ' def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs # Speech2Text2 has no max input length __A : Any = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : List[Any]="<pad>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : Tuple="<unk>" , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Optional[Any] , ): super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = do_lower_case with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None else: with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split()[:2] ) for merge in merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} @property def _snake_case ( self : str ): return len(self.decoder ) def _snake_case ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) if word == "\n " + BPE_TOKEN_MERGES: SCREAMING_SNAKE_CASE = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase ): SCREAMING_SNAKE_CASE = word.replace(__lowerCamelCase , "" ) SCREAMING_SNAKE_CASE = word.replace(" " , __lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any ): if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: SCREAMING_SNAKE_CASE = text.lower() SCREAMING_SNAKE_CASE = text.split() SCREAMING_SNAKE_CASE = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) ) return split_tokens def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : List[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.decoder.get(__lowerCamelCase , self.unk_token ) return result def _snake_case ( self : List[str] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) # make sure @@ tokens are concatenated SCREAMING_SNAKE_CASE = "".join(string.split(__lowerCamelCase ) ) return string def _snake_case ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
16
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : List[str] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ['MaskFormerFeatureExtractor'] __A : Optional[Any] = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] __A : str = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
1
import logging import os from .state import PartialState class _SCREAMING_SNAKE_CASE ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def _snake_case ( __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Any ): if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) SCREAMING_SNAKE_CASE = kwargs.pop("main_process_only" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: SCREAMING_SNAKE_CASE = PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def __a ( A__ : str , A__ : str = None ): if log_level is None: SCREAMING_SNAKE_CASE = os.environ.get("ACCELERATE_LOG_LEVEL" , A__ ) SCREAMING_SNAKE_CASE = logging.getLogger(A__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(A__ , {} )
16
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : Collection[float] | None = None ): if components is None: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) def __len__( self : Optional[int] ): return len(self.__components ) def __str__( self : List[str] ): return "(" + ",".join(map(__lowerCamelCase , self.__components ) ) + ")" def __add__( self : Optional[Any] , __lowerCamelCase : Vector ): SCREAMING_SNAKE_CASE = len(self ) if size == len(__lowerCamelCase ): SCREAMING_SNAKE_CASE = [self.__components[i] + other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) else: raise Exception("must have the same size" ) def __sub__( self : str , __lowerCamelCase : Vector ): SCREAMING_SNAKE_CASE = len(self ) if size == len(__lowerCamelCase ): SCREAMING_SNAKE_CASE = [self.__components[i] - other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : int , __lowerCamelCase : float ): ... @overload def __mul__( self : str , __lowerCamelCase : Vector ): ... def __mul__( self : Any , __lowerCamelCase : float | Vector ): if isinstance(__lowerCamelCase , (float, int) ): SCREAMING_SNAKE_CASE = [c * other for c in self.__components] return Vector(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ) and len(self ) == len(__lowerCamelCase ): SCREAMING_SNAKE_CASE = len(self ) SCREAMING_SNAKE_CASE = [self.__components[i] * other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return sum(__lowerCamelCase ) else: # error case raise Exception("invalid operand!" ) def _snake_case ( self : Any ): return Vector(self.__components ) def _snake_case ( self : Dict , __lowerCamelCase : int ): if isinstance(__lowerCamelCase , __lowerCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : float ): assert -len(self.__components ) <= pos < len(self.__components ) SCREAMING_SNAKE_CASE = value def _snake_case ( self : Dict ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) SCREAMING_SNAKE_CASE = [c**2 for c in self.__components] return math.sqrt(sum(__lowerCamelCase ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Vector , __lowerCamelCase : bool = False ): SCREAMING_SNAKE_CASE = self * other SCREAMING_SNAKE_CASE = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __a ( A__ : int ): assert isinstance(A__ , A__ ) return Vector([0] * dimension ) def __a ( A__ : int , A__ : int ): assert isinstance(A__ , A__ ) and (isinstance(A__ , A__ )) SCREAMING_SNAKE_CASE = [0] * dimension SCREAMING_SNAKE_CASE = 1 return Vector(A__ ) def __a ( A__ : float , A__ : Vector , A__ : Vector ): assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and (isinstance(A__ , (int, float) )) ) return x * scalar + y def __a ( A__ : int , A__ : int , A__ : int ): random.seed(A__ ) SCREAMING_SNAKE_CASE = [random.randint(A__ , A__ ) for _ in range(A__ )] return Vector(A__ ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : list[list[float]] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = matrix SCREAMING_SNAKE_CASE = w SCREAMING_SNAKE_CASE = h def __str__( self : Any ): SCREAMING_SNAKE_CASE = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Tuple , __lowerCamelCase : Matrix ): if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE = [] for i in range(self.__height ): SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] + other.component(__lowerCamelCase , __lowerCamelCase ) for j in range(self.__width ) ] matrix.append(__lowerCamelCase ) return Matrix(__lowerCamelCase , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[Any] , __lowerCamelCase : Matrix ): if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE = [] for i in range(self.__height ): SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] - other.component(__lowerCamelCase , __lowerCamelCase ) for j in range(self.__width ) ] matrix.append(__lowerCamelCase ) return Matrix(__lowerCamelCase , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Optional[int] , __lowerCamelCase : float ): ... @overload def __mul__( self : List[str] , __lowerCamelCase : Vector ): ... def __mul__( self : List[str] , __lowerCamelCase : float | Vector ): if isinstance(__lowerCamelCase , __lowerCamelCase ): # matrix-vector if len(__lowerCamelCase ) == self.__width: SCREAMING_SNAKE_CASE = zero_vector(self.__height ) for i in range(self.__height ): SCREAMING_SNAKE_CASE = [ self.__matrix[i][j] * other.component(__lowerCamelCase ) for j in range(self.__width ) ] ans.change_component(__lowerCamelCase , sum(__lowerCamelCase ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(__lowerCamelCase , (int, float) ): # matrix-scalar SCREAMING_SNAKE_CASE = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__lowerCamelCase , self.__width , self.__height ) return None def _snake_case ( self : Any ): return self.__height def _snake_case ( self : Tuple ): return self.__width def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _snake_case ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float ): if 0 <= x < self.__height and 0 <= y < self.__width: SCREAMING_SNAKE_CASE = value else: raise Exception("change_component: indices out of bounds" ) def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) SCREAMING_SNAKE_CASE = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE = minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowerCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def _snake_case ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowerCamelCase , __lowerCamelCase ) else: raise Exception("Indices out of bounds" ) def _snake_case ( self : Any ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: SCREAMING_SNAKE_CASE = [ self.__matrix[0][y] * self.cofactor(0 , __lowerCamelCase ) for y in range(self.__width ) ] return sum(__lowerCamelCase ) def __a ( A__ : int ): SCREAMING_SNAKE_CASE = [[0] * n for _ in range(A__ )] return Matrix(A__ , A__ , A__ ) def __a ( A__ : int , A__ : int , A__ : int , A__ : int ): random.seed(A__ ) SCREAMING_SNAKE_CASE = [ [random.randint(A__ , A__ ) for _ in range(A__ )] for _ in range(A__ ) ] return Matrix(A__ , A__ , A__ )
16
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __A : Tuple = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/nllb-200-distilled-600M" lowerCamelCase__ = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowerCamelCase__ = "translator" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = LANGUAGE_CODES lowerCamelCase__ = ["text", "text", "text"] lowerCamelCase__ = ["text"] def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language." ) SCREAMING_SNAKE_CASE = self.lang_to_code[src_lang] SCREAMING_SNAKE_CASE = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowerCamelCase , return_tensors="pt" , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] ): return self.model.generate(**__lowerCamelCase ) def _snake_case ( self : str , __lowerCamelCase : str ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowerCamelCase )
16
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
1
from datetime import datetime import matplotlib.pyplot as plt import torch def __a ( A__ : Tuple ): for param in module.parameters(): SCREAMING_SNAKE_CASE = False def __a ( ): SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def __a ( ): SCREAMING_SNAKE_CASE = datetime.now() SCREAMING_SNAKE_CASE = current_time.strftime("%H:%M:%S" ) return timestamp
16
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} __A : Optional[int] = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } __A : Union[str, Any] = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def __a ( A__ : List[str] , A__ : List[str] ): with open(A__ , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.loads(f.read() ) SCREAMING_SNAKE_CASE = collections.OrderedDict() SCREAMING_SNAKE_CASE = collections.OrderedDict() SCREAMING_SNAKE_CASE = collections.OrderedDict() with open(A__ , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(A__ ): SCREAMING_SNAKE_CASE = b SCREAMING_SNAKE_CASE = idx for wd in b: SCREAMING_SNAKE_CASE = idx return vocab, raw_vocab, ids_to_tokens, emoji class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]="<|endoftext|>" , __lowerCamelCase : int="<|endoftext|>" , __lowerCamelCase : Dict="<|startoftext|>" , __lowerCamelCase : Any="<|endoftext|>" , __lowerCamelCase : List[str]=False , **__lowerCamelCase : str , ): super().__init__( unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , do_clean_text=__lowerCamelCase , **__lowerCamelCase , ) if not os.path.isfile(__lowerCamelCase ): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) SCREAMING_SNAKE_CASE = do_clean_text SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_vocab_and_emoji(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _snake_case ( self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _snake_case ( self : Optional[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , __lowerCamelCase : str ): return self.subword_tokenizer.tokenize(__lowerCamelCase , clean=self.do_clean_text ) def _snake_case ( self : str , __lowerCamelCase : List[Any] ): return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) ) def _snake_case ( self : int , __lowerCamelCase : Dict ): return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).strip() return out_string def _snake_case ( self : str , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE = 0 if os.path.isdir(__lowerCamelCase ): SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: SCREAMING_SNAKE_CASE = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(",".join(__lowerCamelCase ) + "\n" ) index += 1 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __lowerCamelCase ) return vocab_file, emoji_file class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = vocab # same as swe SCREAMING_SNAKE_CASE = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE = emoji SCREAMING_SNAKE_CASE = np.max([len(__lowerCamelCase ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) SCREAMING_SNAKE_CASE = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) SCREAMING_SNAKE_CASE = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) SCREAMING_SNAKE_CASE = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) SCREAMING_SNAKE_CASE = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) SCREAMING_SNAKE_CASE = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) SCREAMING_SNAKE_CASE = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" SCREAMING_SNAKE_CASE = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" SCREAMING_SNAKE_CASE = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Any ): return len(self.ids_to_tokens ) def _snake_case ( self : int , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.content_repattera.sub("<URL>" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.content_repattera.sub("<EMAIL>" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.content_repattera.sub("<TEL>" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.content_repattera.sub("<DATE>" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.content_repattera.sub("<DATE>" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.content_repattera.sub("<PRICE>" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _snake_case ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=False ): SCREAMING_SNAKE_CASE = text.replace(" " , "<SP>" ) SCREAMING_SNAKE_CASE = text.replace(" " , "<SP>" ) SCREAMING_SNAKE_CASE = text.replace("\r\n" , "<BR>" ) SCREAMING_SNAKE_CASE = text.replace("\n" , "<BR>" ) SCREAMING_SNAKE_CASE = text.replace("\r" , "<BR>" ) SCREAMING_SNAKE_CASE = text.replace("\t" , "<TAB>" ) SCREAMING_SNAKE_CASE = text.replace("—" , "ー" ) SCREAMING_SNAKE_CASE = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE = text.replace(__lowerCamelCase , __lowerCamelCase ) if clean: SCREAMING_SNAKE_CASE = self.clean_text(__lowerCamelCase ) def check_simbol(__lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 2: SCREAMING_SNAKE_CASE = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC_2A1 and c <= 0xC_2BF) or (c >= 0xC_780 and c <= 0xC_783) or (c >= 0xC_AB9 and c <= 0xC_BBF) or (c >= 0xC_C80 and c <= 0xC_DA2) ): return True return False def checkuae(__lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 3: SCREAMING_SNAKE_CASE = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE28_080 and c <= 0xE2B_07F: return True return False SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] while pos < len(__lowerCamelCase ): SCREAMING_SNAKE_CASE = min(len(__lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 SCREAMING_SNAKE_CASE = [] # (token_id, token, pos) for e in range(__lowerCamelCase , __lowerCamelCase , -1 ): SCREAMING_SNAKE_CASE = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__lowerCamelCase ) > 2: SCREAMING_SNAKE_CASE = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__lowerCamelCase ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[0] )[0] result.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = e else: SCREAMING_SNAKE_CASE = pos + 1 SCREAMING_SNAKE_CASE = text[pos:end] if check_simbol(__lowerCamelCase ): result.append("<KIGOU>" ) elif checkuae(__lowerCamelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) SCREAMING_SNAKE_CASE = end return result def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]="\n" ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode("utf-8" , errors="replace" ) ) SCREAMING_SNAKE_CASE = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__lowerCamelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode("utf-8" , errors="replace" ) ) SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) return text
16
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __A : str = logging.get_logger(__name__) __A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __A : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __a ( A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = {} with open(A__ , "r" ) as file: for line_number, line in enumerate(A__ ): SCREAMING_SNAKE_CASE = line.strip() if line: SCREAMING_SNAKE_CASE = line.split() SCREAMING_SNAKE_CASE = line_number SCREAMING_SNAKE_CASE = words[0] SCREAMING_SNAKE_CASE = value return result def __a ( A__ : List[Any] , A__ : Dict , A__ : List[str] , A__ : int , A__ : Optional[Any] ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE = getattr(A__ , A__ ) SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split("." )[-1]] SCREAMING_SNAKE_CASE = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE = getattr(A__ , A__ ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE = hf_pointer for attribute in hf_param_name.split("." ): SCREAMING_SNAKE_CASE = getattr(A__ , A__ ) SCREAMING_SNAKE_CASE = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE = value[0] else: SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value elif weight_type == "param": for attribute in hf_param_name.split("." ): SCREAMING_SNAKE_CASE = getattr(A__ , A__ ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __a ( A__ : str , A__ : Union[str, Any] , A__ : Any , A__ : List[Any] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split("." )[-1]] SCREAMING_SNAKE_CASE = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE = ".".join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE = key SCREAMING_SNAKE_CASE = value if "lm_head" in full_key else value[0] __A : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __a ( A__ : Optional[int] , A__ : str , A__ : List[str]=None , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(A__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace("*" , A__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE = "weight" else: SCREAMING_SNAKE_CASE = None if hf_dict is not None: rename_dict(A__ , A__ , A__ , A__ , A__ ) else: set_recursively(A__ , A__ , A__ , A__ , A__ ) return is_used return is_used def __a ( A__ : Union[str, Any] , A__ : str , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = load_wavaveca_layer(A__ , A__ , A__ ) if not is_used: unused_weights.append(A__ ) logger.warning(F"Unused weights: {unused_weights}" ) def __a ( A__ : int , A__ : Union[str, Any] , A__ : Dict , A__ : Dict , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE = name.split("." ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A__ ) @torch.no_grad() def __a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : Tuple=None , A__ : Any=None , A__ : Optional[Any]=True , A__ : List[str]=False ): if config_path is not None: SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(A__ ) else: SCREAMING_SNAKE_CASE = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE = read_txt_into_dict(A__ ) SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification(A__ ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) feature_extractor.save_pretrained(A__ ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE = Dictionary.load(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE = target_dict.pad_index SCREAMING_SNAKE_CASE = target_dict.bos_index SCREAMING_SNAKE_CASE = target_dict.eos_index SCREAMING_SNAKE_CASE = len(target_dict.symbols ) SCREAMING_SNAKE_CASE = os.path.join(A__ , "vocab.json" ) if not os.path.isdir(A__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 with open(A__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(A__ , A__ ) SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=A__ , ) SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) SCREAMING_SNAKE_CASE = WavaVecaForCTC(A__ ) else: SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(A__ ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: SCREAMING_SNAKE_CASE = argparse.Namespace(task="audio_pretraining" ) SCREAMING_SNAKE_CASE = fairseq.tasks.setup_task(A__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A__ ) SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(A__ , A__ , not is_finetuned ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __A : Dict = parser.parse_args() __A : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
16
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = ["image_processor", "tokenizer"] lowerCamelCase__ = "BlipImageProcessor" lowerCamelCase__ = "AutoTokenizer" def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any ): super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer SCREAMING_SNAKE_CASE = qformer_tokenizer def __call__( self : List[str] , __lowerCamelCase : ImageInput = None , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Dict , ): if images is None and text is None: raise ValueError("You have to specify at least images or text." ) SCREAMING_SNAKE_CASE = BatchFeature() if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("input_ids" ) SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("attention_mask" ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _snake_case ( self : List[str] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Any ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _snake_case ( self : str , __lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[int] ): if os.path.isfile(__lowerCamelCase ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , __lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) SCREAMING_SNAKE_CASE = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
16
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : List[Any] , *__lowerCamelCase : str , **__lowerCamelCase : Dict ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Tuple , *__lowerCamelCase : str , **__lowerCamelCase : Any ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Tuple , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Union[str, Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : str ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Tuple ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Any , *__lowerCamelCase : List[str] , **__lowerCamelCase : Any ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : int , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : str , *__lowerCamelCase : List[str] , **__lowerCamelCase : Union[str, Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Any ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[int] , *__lowerCamelCase : str , **__lowerCamelCase : Dict ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Union[str, Any] , *__lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[int] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : int ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Any , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Dict ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[int] , *__lowerCamelCase : List[str] , **__lowerCamelCase : str ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Dict ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Tuple , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[int] , *__lowerCamelCase : int , **__lowerCamelCase : Any ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : List[Any] , *__lowerCamelCase : int , **__lowerCamelCase : Union[str, Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Any , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : str ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Tuple , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Optional[int] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Tuple ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : str , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Tuple , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[int] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Dict , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Union[str, Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : int , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Tuple ): requires_backends(self , ["sentencepiece"] ) class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["sentencepiece"] def __init__( self : Union[str, Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Any ): requires_backends(self , ["sentencepiece"] )
16
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : int = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "ctrl" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , __lowerCamelCase : int=246534 , __lowerCamelCase : str=256 , __lowerCamelCase : Optional[int]=1280 , __lowerCamelCase : int=8192 , __lowerCamelCase : Any=48 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Union[str, Any]=1e-6 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : List[str] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = dff SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache super().__init__(**__lowerCamelCase )
16
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=13 , __lowerCamelCase : List[Any]=10 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Any=10 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : List[str]="divided_space_time" , __lowerCamelCase : List[Any]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_frames SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = attention_type SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = (num_frames) * self.num_patches_per_frame + 1 def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) SCREAMING_SNAKE_CASE = self.num_labels return config def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # verify the logits shape SCREAMING_SNAKE_CASE = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = TimesformerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str=False ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _snake_case ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _snake_case ( self : Optional[Any] ): pass def _snake_case ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def _snake_case ( self : str ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = self.model_tester.seq_length SCREAMING_SNAKE_CASE = self.model_tester.num_frames SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _snake_case ( self : Any ): def check_hidden_states_output(__lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) SCREAMING_SNAKE_CASE = np.load(A__ ) return list(A__ ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_video() SCREAMING_SNAKE_CASE = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "new-model" if is_tf_available(): class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = NewModelConfig @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : int ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : int ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : List[str] ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Tuple ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow @require_tensorflow_probability def _snake_case ( self : Union[str, Any] ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 ) def _snake_case ( self : List[Any] ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] SCREAMING_SNAKE_CASE = TFAutoModel.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): try: AutoConfig.register("new-model" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE = auto_class.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = auto_class.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _snake_case ( self : Optional[int] ): with self.assertRaisesRegex( __lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def _snake_case ( self : Any ): with self.assertRaisesRegex( __lowerCamelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase , revision="aaaaaa" ) def _snake_case ( self : str ): with self.assertRaisesRegex( __lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self : Tuple ): with self.assertRaisesRegex(__lowerCamelCase , "Use `from_pt=True` to load this model" ): SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _snake_case ( self : int ): # Make sure we have cached the model. SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
16
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any]=0.01 , __lowerCamelCase : Any=1000 ): SCREAMING_SNAKE_CASE = p_stop SCREAMING_SNAKE_CASE = max_length def __iter__( self : Optional[int] ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE = random.random() < self.p_stop class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=True ): SCREAMING_SNAKE_CASE = [ BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 ) ] SCREAMING_SNAKE_CASE = [list(__lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCamelCase ) for shard in batch_sampler_shards] , [len(__lowerCamelCase ) for e in expected] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) def _snake_case ( self : Dict ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE = [BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Optional[Any]=False ): random.seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ IterableDatasetShard( __lowerCamelCase , batch_size=__lowerCamelCase , drop_last=__lowerCamelCase , num_processes=__lowerCamelCase , process_index=__lowerCamelCase , split_batches=__lowerCamelCase , ) for i in range(__lowerCamelCase ) ] SCREAMING_SNAKE_CASE = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCamelCase ) iterable_dataset_lists.append(list(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(len(__lowerCamelCase ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE = [] for idx in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCamelCase ) < len(__lowerCamelCase ): reference += reference self.assertListEqual(__lowerCamelCase , reference[: len(__lowerCamelCase )] ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE = SkipBatchSampler(__lowerCamelCase , 2 ) self.assertListEqual(list(__lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE = skip_first_batches(__lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _snake_case ( self : str ): Accelerator() SCREAMING_SNAKE_CASE = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
16
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self : Any , __lowerCamelCase : int = 128 , __lowerCamelCase : int = 256 , __lowerCamelCase : float = 2_000.0 , __lowerCamelCase : int = 768 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 2048 , __lowerCamelCase : float = 0.1 , ): super().__init__() SCREAMING_SNAKE_CASE = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _snake_case ( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE = self.position_encoding(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE = self.dropout(__lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE = self.decoder_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.post_dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.spec_out(__lowerCamelCase ) return spec_out class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=1e-6 ): super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def _snake_case ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , ): SCREAMING_SNAKE_CASE = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=None , ): # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE = self.attention(__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=None , ): SCREAMING_SNAKE_CASE = self.layer_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple=None ): SCREAMING_SNAKE_CASE = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE = self.film(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.DenseReluDense(__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE = NewGELUActivation() def _snake_case ( self : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.act(self.wi_a(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = self.wi_a(__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.wo(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=1e-6 ): super().__init__() SCREAMING_SNAKE_CASE = nn.Parameter(torch.ones(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = eps def _snake_case ( self : List[str] , __lowerCamelCase : str ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def _snake_case ( self : str , __lowerCamelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__lowerCamelCase , 3.0 )) )) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ): super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.scale_bias(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.chunk(__lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE = x * (1 + scale) + shift return x
16
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
1
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __A : Dict = get_logger(__name__) __A : Tuple = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Union[str, Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : List[Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @add_start_docstrings(__lowerCamelCase ) def __call__( self : Optional[Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): for processor in self: SCREAMING_SNAKE_CASE = inspect.signature(processor.__call__ ).parameters if len(__lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys() )} for " f"{processor.__class__} are passed to the logits processor." ) SCREAMING_SNAKE_CASE = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : float ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}" ) SCREAMING_SNAKE_CASE = temperature def __call__( self : Any , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = scores / self.temperature return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : float , __lowerCamelCase : float = -float("Inf" ) , __lowerCamelCase : int = 1 ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) SCREAMING_SNAKE_CASE = top_p SCREAMING_SNAKE_CASE = filter_value SCREAMING_SNAKE_CASE = min_tokens_to_keep def __call__( self : Tuple , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = lax.top_k(__lowerCamelCase , scores.shape[-1] ) SCREAMING_SNAKE_CASE = jnp.full_like(__lowerCamelCase , self.filter_value ) SCREAMING_SNAKE_CASE = jax.nn.softmax(__lowerCamelCase , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE = jnp.roll(__lowerCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__lowerCamelCase ) # min tokens to keep SCREAMING_SNAKE_CASE = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jax.lax.sort_key_val(__lowerCamelCase , __lowerCamelCase )[-1] return next_scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : float = -float("Inf" ) , __lowerCamelCase : int = 1 ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}" ) SCREAMING_SNAKE_CASE = max(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = filter_value def __call__( self : Union[str, Any] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = scores.shape SCREAMING_SNAKE_CASE = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = lax.top_k(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.broadcast_to((jnp.arange(__lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE = topk_scores.flatten() SCREAMING_SNAKE_CASE = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE = next_scores_flat.at[topk_indices_flat].set(__lowerCamelCase ) SCREAMING_SNAKE_CASE = next_scores_flat.reshape(__lowerCamelCase , __lowerCamelCase ) return next_scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = bos_token_id def __call__( self : str , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = eos_token_id def __call__( self : List[str] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) SCREAMING_SNAKE_CASE = min_length SCREAMING_SNAKE_CASE = eos_token_id def __call__( self : List[str] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) SCREAMING_SNAKE_CASE = begin_index def __call__( self : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE = jnp.where(__lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , __lowerCamelCase ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : list ): SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) def __call__( self : List[str] , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = dict(__lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE = force_token_array.at[index].set(__lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.intaa(__lowerCamelCase ) def __call__( self : str , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int ): def _force_token(__lowerCamelCase : str ): SCREAMING_SNAKE_CASE = scores.shape[0] SCREAMING_SNAKE_CASE = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE = jnp.ones_like(__lowerCamelCase , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE = lax.dynamic_update_slice(__lowerCamelCase , __lowerCamelCase , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCamelCase ) , lambda: scores , ) , ) return scores class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = generate_config.eos_token_id SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCamelCase , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE = model_config.vocab_size def __call__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = jnp.where((cur_len - self.begin_index) < 2 , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCamelCase , __lowerCamelCase , ) return jnp.where( __lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = jax.vmap(__lowerCamelCase )(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where(cur_len == self.begin_index , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE = jnp.where( __lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , __lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE = jax.nn.log_softmax(__lowerCamelCase , axis=-1 ) def handle_cumulative_probs(__lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , __lowerCamelCase , ) SCREAMING_SNAKE_CASE = jax.vmap(__lowerCamelCase )(__lowerCamelCase , __lowerCamelCase ) return scores
16
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[int] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "trocr" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any]=50265 , __lowerCamelCase : Any=1024 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : List[Any]=4096 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Any=512 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[str]=True , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=1 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Tuple=2 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_embedding SCREAMING_SNAKE_CASE = use_learned_position_embeddings SCREAMING_SNAKE_CASE = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
16
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( A__ : str , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : List[Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = result.headers["Location"] SCREAMING_SNAKE_CASE = requests.get(A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{artifact_name}.zip" ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def __a ( A__ : List[Any] , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: SCREAMING_SNAKE_CASE = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE = line[: line.index(": " )] SCREAMING_SNAKE_CASE = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE = line if len(A__ ) != len(A__ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` " F"and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) SCREAMING_SNAKE_CASE = None if job_name and job_links: SCREAMING_SNAKE_CASE = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def __a ( A__ : List[str] , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : str ): SCREAMING_SNAKE_CASE = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE = test.split("/" )[2] else: SCREAMING_SNAKE_CASE = None return test def __a ( A__ : List[str] , A__ : Dict=None ): SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE = {x[2] for x in logs} SCREAMING_SNAKE_CASE = {} for test in tests: SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = "| no. | error | status |" SCREAMING_SNAKE_CASE = "|-:|:-|:-|" SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE = F"| {count} | {error[:100]} | |" lines.append(A__ ) return "\n".join(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __A : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A : int = get_job_links(args.workflow_run_id, token=args.token) __A : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A : Union[str, Any] = k.find(' / ') __A : Optional[int] = k[index + len(' / ') :] __A : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A : Optional[Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A : str = reduce_by_error(errors) __A : int = reduce_by_model(errors) __A : Any = make_github_table(reduced_by_error) __A : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
16
1
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __A : List[str] = logging.get_logger(__name__) def __a ( A__ : Any , A__ : List[str] , A__ : List[Any] , A__ : Tuple=False ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: SCREAMING_SNAKE_CASE = os.path.abspath(A__ ) logger.info(F"Loading PyTorch weights from {pt_path}" ) SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) SCREAMING_SNAKE_CASE = convert_pytorch_state_dict_to_flax(A__ , A__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files SCREAMING_SNAKE_CASE = convert_pytorch_sharded_state_dict_to_flax(A__ , A__ ) return flax_state_dict def __a ( A__ : Tuple[str] , A__ : np.ndarray , A__ : Dict[str, jnp.ndarray] , A__ : str , ): def is_key_or_prefix_key_in_dict(A__ : Tuple[str] ) -> bool: return len(set(A__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(A__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(A__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(A__ ): return renamed_pt_tuple_key, pt_tensor # embedding SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(A__ ): return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(A__ ): SCREAMING_SNAKE_CASE = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(A__ ): SCREAMING_SNAKE_CASE = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 SCREAMING_SNAKE_CASE = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): SCREAMING_SNAKE_CASE = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): SCREAMING_SNAKE_CASE = pt_tuple_key[-2] + "_v" if name is not None: SCREAMING_SNAKE_CASE = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __a ( A__ : int , A__ : Union[str, Any] ): # convert pytorch tensor to numpy SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} SCREAMING_SNAKE_CASE = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: SCREAMING_SNAKE_CASE = flax_model.params["params"] else: SCREAMING_SNAKE_CASE = flax_model.params SCREAMING_SNAKE_CASE = flatten_dict(A__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: SCREAMING_SNAKE_CASE = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(A__ ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) SCREAMING_SNAKE_CASE = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE = tuple(pt_key.split("." ) ) # remove base model prefix if necessary SCREAMING_SNAKE_CASE = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE = pt_tuple_key[1:] # Correctly rename weight parameters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor( A__ , A__ , A__ , A__ ) # add model prefix if necessary SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A__ , A__ ) continue # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) else: # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) return unflatten_dict(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch # Load the index SCREAMING_SNAKE_CASE = {} for shard_file in shard_filenames: # load using msgpack utils SCREAMING_SNAKE_CASE = torch.load(A__ ) SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} SCREAMING_SNAKE_CASE = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: SCREAMING_SNAKE_CASE = flax_model.params["params"] SCREAMING_SNAKE_CASE = flatten_dict(A__ ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: SCREAMING_SNAKE_CASE = flax_model.params SCREAMING_SNAKE_CASE = flatten_dict(A__ ) SCREAMING_SNAKE_CASE = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) SCREAMING_SNAKE_CASE = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE = tuple(pt_key.split("." ) ) # remove base model prefix if necessary SCREAMING_SNAKE_CASE = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE = pt_tuple_key[1:] # Correctly rename weight parameters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor( A__ , A__ , A__ , A__ ) # add model prefix if necessary SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) continue if "var" in flax_key[-1]: SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A__ , A__ ) continue # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) else: # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE = jnp.asarray(A__ ) return unflatten_dict(A__ ) def __a ( A__ : int , A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.abspath(A__ ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class SCREAMING_SNAKE_CASE = getattr(A__ , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(A__ , "rb" ) as state_f: try: SCREAMING_SNAKE_CASE = from_bytes(A__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(A__ , A__ ) def __a ( A__ : int , A__ : Any ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values() if any(A__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) SCREAMING_SNAKE_CASE = jax.tree_util.tree_map( lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ ) SCREAMING_SNAKE_CASE = flatten_dict(A__ ) SCREAMING_SNAKE_CASE = pt_model.state_dict() SCREAMING_SNAKE_CASE = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) SCREAMING_SNAKE_CASE = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE = flax_key_tuple[0] == pt_model.base_model_prefix SCREAMING_SNAKE_CASE = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: SCREAMING_SNAKE_CASE = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: SCREAMING_SNAKE_CASE = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(A__ ) not in pt_model_dict: # conv layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE = jnp.transpose(A__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A__ ) not in pt_model_dict: # linear layer SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: SCREAMING_SNAKE_CASE = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: SCREAMING_SNAKE_CASE = ".".join(A__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. SCREAMING_SNAKE_CASE = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: SCREAMING_SNAKE_CASE = key.split("." ) SCREAMING_SNAKE_CASE = None if key_components[-3::2] == ["parametrizations", "original0"]: SCREAMING_SNAKE_CASE = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: SCREAMING_SNAKE_CASE = key_components[-2] + "_v" if name is not None: SCREAMING_SNAKE_CASE = key_components[:-3] + [name] SCREAMING_SNAKE_CASE = ".".join(A__ ) SCREAMING_SNAKE_CASE = key if flax_key in special_pt_names: SCREAMING_SNAKE_CASE = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE = torch.from_numpy(A__ ) # remove from missing keys missing_keys.remove(A__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(A__ ) pt_model.load_state_dict(A__ ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE = list(A__ ) if len(A__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(A__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
16
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
from math import isqrt def __a ( A__ : int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(A__ ) + 1 ) ) def __a ( A__ : int = 10**6 ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 7 while prime_candidate < max_prime: primes_count += is_prime(A__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
16
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : TransformeraDModel , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : KarrasDiffusionSchedulers , __lowerCamelCase : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase ) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(sorted(self.labels.items() ) ) def _snake_case ( self : Tuple , __lowerCamelCase : Union[str, List[str]] ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : float = 4.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.transformer.config.sample_size SCREAMING_SNAKE_CASE = self.transformer.config.in_channels SCREAMING_SNAKE_CASE = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 ) SCREAMING_SNAKE_CASE = torch.tensor([1000] * batch_size , device=self.device ) SCREAMING_SNAKE_CASE = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: SCREAMING_SNAKE_CASE = latent_model_input[: len(__lowerCamelCase ) // 2] SCREAMING_SNAKE_CASE = torch.cat([half, half] , dim=0 ) SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = t if not torch.is_tensor(__lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE = latent_model_input.device.type == "mps" if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output SCREAMING_SNAKE_CASE = self.transformer( __lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 ) SCREAMING_SNAKE_CASE = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE = torch.cat([half_eps, half_eps] , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 ) else: SCREAMING_SNAKE_CASE = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = latent_model_input.chunk(2 , dim=0 ) else: SCREAMING_SNAKE_CASE = latent_model_input SCREAMING_SNAKE_CASE = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE = self.vae.decode(__lowerCamelCase ).sample SCREAMING_SNAKE_CASE = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCamelCase )
16
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CodeGenTokenizer lowerCamelCase__ = CodeGenTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"add_prefix_space": True} lowerCamelCase__ = False def _snake_case ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def _snake_case ( self : Tuple , **__lowerCamelCase : List[str] ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : List[str] , **__lowerCamelCase : Optional[int] ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing the unknown token SCREAMING_SNAKE_CASE = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : Tuple , *__lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _snake_case ( self : Optional[Any] , __lowerCamelCase : Any=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # Simple input SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE = tokenizer.pad_token_id SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding="max_length" , max_length=30 , return_tensors="np" ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=60 , return_tensors="np" ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = "$$$" SCREAMING_SNAKE_CASE = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE = tokenizer.bos_token_id SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) SCREAMING_SNAKE_CASE = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" SCREAMING_SNAKE_CASE = "\nif len_a > len_b: result = a\nelse: result = b" SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , truncate_before_pattern=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): pass
16
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A : Optional[Any] = get_logger(__name__) def __a ( A__ : Union[str, Any] , A__ : str , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Optional[int]=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(A__ , A__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Saving model to {output_model_file}" ) torch.save(A__ , A__ ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{MODEL_NAME}_{model_index}" ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F"Saving model to {ckpt_dir}" ) SCREAMING_SNAKE_CASE = {"model": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def __a ( A__ : Any , A__ : Tuple , A__ : Union[str, Any] , A__ : Any , A__ : List[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return SCREAMING_SNAKE_CASE = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = ( os.path.join(A__ , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE = state_dict["model"] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(A__ ) def __a ( A__ : List[Any] , A__ : List[str] , A__ : Tuple , A__ : List[str] , A__ : List[Any] , A__ : int=0 ): os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(A__ , A__ ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(A__ , exist_ok=A__ ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def __a ( A__ : str , A__ : List[str] , A__ : List[Any] , A__ : List[str] , A__ : str , A__ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) SCREAMING_SNAKE_CASE = torch.load(A__ ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: SCREAMING_SNAKE_CASE = ( os.path.join(A__ , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) SCREAMING_SNAKE_CASE = optim_state["optimizer"] logger.info(F"Optimizer loaded from {ckpt_dir}" ) SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
16
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
def __a ( A__ : int ): if num <= 0: raise ValueError("Input must be a positive integer" ) SCREAMING_SNAKE_CASE = [True] * (num + 1) SCREAMING_SNAKE_CASE = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A__ ): SCREAMING_SNAKE_CASE = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Tuple = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
16
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
1
import random def __a ( A__ : int , A__ : float , A__ : bool = False ): SCREAMING_SNAKE_CASE = {i: [] for i in range(A__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(A__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(A__ ): for j in range(i + 1 , A__ ): if random.random() < probability: graph[i].append(A__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(A__ ) return graph def __a ( A__ : int ): return { i: [j for j in range(A__ ) if i != j] for i in range(A__ ) } if __name__ == "__main__": import doctest doctest.testmod()
16
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
1
from __future__ import annotations import math def __a ( A__ : int ): if num <= 0: SCREAMING_SNAKE_CASE = F"{num}: Invalid input, please enter a positive integer." raise ValueError(A__ ) SCREAMING_SNAKE_CASE = [True] * (num + 1) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = int(math.sqrt(A__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(A__ ) # Set multiples of start be False for i in range(start * start , num + 1 , A__ ): if sieve[i] is True: SCREAMING_SNAKE_CASE = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(A__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
16
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
1
import re def __a ( A__ : str ): SCREAMING_SNAKE_CASE = re.compile(R"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(A__ , A__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
16
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = CanineTokenizer lowerCamelCase__ = False def _snake_case ( self : Tuple ): super().setUp() SCREAMING_SNAKE_CASE = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self : str ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _snake_case ( self : Optional[int] , **__lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = 1024 return tokenizer @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.canine_tokenizer SCREAMING_SNAKE_CASE = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off SCREAMING_SNAKE_CASE = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.canine_tokenizer SCREAMING_SNAKE_CASE = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.canine_tokenizer SCREAMING_SNAKE_CASE = [ "What's the weater?", "It's about 25 degrees.", ] SCREAMING_SNAKE_CASE = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _snake_case ( self : List[Any] ): # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: SCREAMING_SNAKE_CASE = chr(0xE_007 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE = 0xE_005 SCREAMING_SNAKE_CASE = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) SCREAMING_SNAKE_CASE = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE = chr(0xE_005 ) SCREAMING_SNAKE_CASE = chr(0xE_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE = 0xE_006 SCREAMING_SNAKE_CASE = chr(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE = 0xE_006 SCREAMING_SNAKE_CASE = chr(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [new_token_a] SCREAMING_SNAKE_CASE = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) SCREAMING_SNAKE_CASE = 0xE_007 SCREAMING_SNAKE_CASE = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE = "hello world" if self.space_between_special_tokens: SCREAMING_SNAKE_CASE = "[CLS] hello world [SEP]" else: SCREAMING_SNAKE_CASE = input SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] SCREAMING_SNAKE_CASE = "a" SCREAMING_SNAKE_CASE = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) SCREAMING_SNAKE_CASE = 0xE_006 SCREAMING_SNAKE_CASE = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Any ): pass def _snake_case ( self : Optional[Any] ): pass def _snake_case ( self : Tuple ): pass def _snake_case ( self : Tuple ): pass def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Any ): pass
16
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DiTPipeline lowerCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def _snake_case ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = AutoencoderKL() SCREAMING_SNAKE_CASE = DDIMScheduler() SCREAMING_SNAKE_CASE = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _snake_case ( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any]=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = "cpu" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) SCREAMING_SNAKE_CASE = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) SCREAMING_SNAKE_CASE = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) def _snake_case ( self : Optional[Any] ): self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE = ["vase", "umbrella", "white shark", "white wolf"] SCREAMING_SNAKE_CASE = pipe.get_label_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) SCREAMING_SNAKE_CASE = ["vase", "umbrella"] SCREAMING_SNAKE_CASE = pipe.get_label_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1e-1
16
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
1
def __a ( A__ : int ): SCREAMING_SNAKE_CASE = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 0, 0 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 for _ in range(1 , A__ ): SCREAMING_SNAKE_CASE = min(A__ , A__ , A__ ) ugly_nums.append(A__ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(2_0_0) = }')
16
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
1
from __future__ import annotations import math __A : Optional[int] = '2020.9.26' __A : Any = 'xcodz-dot, cclaus, dhruvmanila' def __a ( A__ : float , A__ : float , A__ : float , A__ : float , A__ : float ): if not all(isinstance(A__ , (float, int) ) for val in locals().values() ): SCREAMING_SNAKE_CASE = F"Input values must either be float or int: {list(locals().values() )}" raise TypeError(A__ ) SCREAMING_SNAKE_CASE = ((x * distance) / (z + distance)) * scale SCREAMING_SNAKE_CASE = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __a ( A__ : float , A__ : float , A__ : float , A__ : str , A__ : float ): if not isinstance(A__ , A__ ): raise TypeError("Axis must be a str" ) SCREAMING_SNAKE_CASE = locals() del input_variables["axis"] if not all(isinstance(A__ , (float, int) ) for val in input_variables.values() ): SCREAMING_SNAKE_CASE = ( "Input values except axis must either be float or int: " F"{list(input_variables.values() )}" ) raise TypeError(A__ ) SCREAMING_SNAKE_CASE = (angle % 360) / 450 * 180 / math.pi if axis == "z": SCREAMING_SNAKE_CASE = x * math.cos(A__ ) - y * math.sin(A__ ) SCREAMING_SNAKE_CASE = y * math.cos(A__ ) + x * math.sin(A__ ) SCREAMING_SNAKE_CASE = z elif axis == "x": SCREAMING_SNAKE_CASE = y * math.cos(A__ ) - z * math.sin(A__ ) SCREAMING_SNAKE_CASE = z * math.cos(A__ ) + y * math.sin(A__ ) SCREAMING_SNAKE_CASE = x elif axis == "y": SCREAMING_SNAKE_CASE = x * math.cos(A__ ) - z * math.sin(A__ ) SCREAMING_SNAKE_CASE = z * math.cos(A__ ) + x * math.sin(A__ ) SCREAMING_SNAKE_CASE = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
16
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __a ( A__ : str , A__ : Any , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[-256:] def __a ( A__ : Tuple , A__ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size SCREAMING_SNAKE_CASE = max(A__ , A__ ) SCREAMING_SNAKE_CASE = 800 if "detection" in checkpoint_url else 1000 SCREAMING_SNAKE_CASE = target_max_size / current_max_size SCREAMING_SNAKE_CASE = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = F.to_tensor(A__ ) SCREAMING_SNAKE_CASE = F.normalize(A__ , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def __a ( A__ : Union[str, Any] , A__ : int , A__ : str ): logger.info("Converting model..." ) # load original state dict SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE = 15 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = {0: "table", 1: "table rotated"} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE = 125 SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) SCREAMING_SNAKE_CASE = TableTransformerForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=A__ ) SCREAMING_SNAKE_CASE = Image.open(A__ ).convert("RGB" ) SCREAMING_SNAKE_CASE = normalize(resize(A__ , A__ ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE = model(A__ ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE = (1, 15, 3) SCREAMING_SNAKE_CASE = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: SCREAMING_SNAKE_CASE = (1, 125, 7) SCREAMING_SNAKE_CASE = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) SCREAMING_SNAKE_CASE = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(A__ ) image_processor.push_to_hub(A__ ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : Optional[Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
16
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A : Any = logging.get_logger(__name__) __A : List[Any] = '▁' __A : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} __A : Union[str, Any] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __A : Union[str, Any] = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off __A : Optional[int] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ["input_ids", "attention_mask"] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : str="<s>" , __lowerCamelCase : Union[str, Any]="<unk>" , __lowerCamelCase : Tuple="<pad>" , __lowerCamelCase : Optional[Any]="<mask>" , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any=False , **__lowerCamelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenizer_file=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = len(self.sp_model ) SCREAMING_SNAKE_CASE = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCamelCase ) } SCREAMING_SNAKE_CASE = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else "eng_Latn" SCREAMING_SNAKE_CASE = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self : Any ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self : Optional[int] ): return self._src_lang @src_lang.setter def _snake_case ( self : List[Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def _snake_case ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] , __lowerCamelCase : Optional[str] , **__lowerCamelCase : Union[str, Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self : Any , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self : int , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def _snake_case ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str = "eng_Latn" , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "fra_Latn" , **__lowerCamelCase : Optional[int] , ): SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self : List[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = self.lang_code_to_id[src_lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE = [self.cur_lang_code] SCREAMING_SNAKE_CASE = [self.eos_token_id] def _snake_case ( self : Optional[Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.lang_code_to_id[lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE = [self.cur_lang_code] SCREAMING_SNAKE_CASE = [self.eos_token_id]
16
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("_" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 192 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 21841 else: SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __a ( A__ : List[str] ): if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: SCREAMING_SNAKE_CASE = "encoder." + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = "layernorm.weight" if name == "norm.bias": SCREAMING_SNAKE_CASE = "layernorm.bias" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) else: SCREAMING_SNAKE_CASE = "swin." + name return name def __a ( A__ : Optional[Any] , A__ : Any ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(A__ ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split("." ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __a ( A__ : Optional[Any] , A__ : Any ): SCREAMING_SNAKE_CASE = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(A__ ) SCREAMING_SNAKE_CASE = SwinForImageClassification(A__ ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , A__ ) model.load_state_dict(A__ ) SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = timm_model(inputs["pixel_values"] ) SCREAMING_SNAKE_CASE = model(**A__ ).logits assert torch.allclose(A__ , A__ , atol=1E-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __A : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
16
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A : Dict = logging.get_logger(__name__) # General docstring __A : List[Any] = 'MobileNetV1Config' # Base docstring __A : List[str] = 'google/mobilenet_v1_1.0_224' __A : Any = [1, 1_0_2_4, 7, 7] # Image classification docstring __A : List[str] = 'google/mobilenet_v1_1.0_224' __A : str = 'tabby, tabby cat' __A : int = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __a ( A__ : Dict , A__ : Union[str, Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = {} if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE = model.mobilenet_va else: SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE = i + 1 SCREAMING_SNAKE_CASE = i * 2 SCREAMING_SNAKE_CASE = backbone.layer[pt_index] SCREAMING_SNAKE_CASE = F"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE = pointer.convolution.weight SCREAMING_SNAKE_CASE = pointer.normalization.bias SCREAMING_SNAKE_CASE = pointer.normalization.weight SCREAMING_SNAKE_CASE = pointer.normalization.running_mean SCREAMING_SNAKE_CASE = pointer.normalization.running_var SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE = F"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE = pointer.convolution.weight SCREAMING_SNAKE_CASE = pointer.normalization.bias SCREAMING_SNAKE_CASE = pointer.normalization.weight SCREAMING_SNAKE_CASE = pointer.normalization.running_mean SCREAMING_SNAKE_CASE = pointer.normalization.running_var if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE = model.classifier.weight SCREAMING_SNAKE_CASE = model.classifier.bias return tf_to_pt_map def __a ( A__ : List[str] , A__ : Optional[int] , A__ : List[Any] ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE = tf.train.list_variables(A__ ) SCREAMING_SNAKE_CASE = {} for name, shape in init_vars: logger.info(F"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE = tf.train.load_variable(A__ , A__ ) SCREAMING_SNAKE_CASE = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(A__ , A__ , A__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"Importing {name}" ) if name not in tf_weights: logger.info(F"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE = np.transpose(A__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE = np.transpose(A__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(F"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE = torch.from_numpy(A__ ) tf_weights.pop(A__ , A__ ) tf_weights.pop(name + "/RMSProp" , A__ ) tf_weights.pop(name + "/RMSProp_1" , A__ ) tf_weights.pop(name + "/ExponentialMovingAverage" , A__ ) logger.info(F"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def __a ( A__ : torch.Tensor , A__ : nn.Convad ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE = pad_along_width // 2 SCREAMING_SNAKE_CASE = pad_along_width - pad_left SCREAMING_SNAKE_CASE = pad_along_height // 2 SCREAMING_SNAKE_CASE = pad_along_height - pad_top SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A__ , A__ , "constant" , 0.0 ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : MobileNetVaConfig , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE = nn.Convad( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase , groups=__lowerCamelCase , bias=__lowerCamelCase , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE = nn.BatchNormad( num_features=__lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=__lowerCamelCase , track_running_stats=__lowerCamelCase , ) else: SCREAMING_SNAKE_CASE = None if use_activation: if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCamelCase ): SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE = config.hidden_act else: SCREAMING_SNAKE_CASE = None def _snake_case ( self : Dict , __lowerCamelCase : torch.Tensor ): if self.config.tf_padding: SCREAMING_SNAKE_CASE = apply_tf_padding(__lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE = self.convolution(__lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE = self.normalization(__lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE = self.activation(__lowerCamelCase ) return features class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = MobileNetVaConfig lowerCamelCase__ = load_tf_weights_in_mobilenet_va lowerCamelCase__ = "mobilenet_v1" lowerCamelCase__ = "pixel_values" lowerCamelCase__ = False def _snake_case ( self : List[Any] , __lowerCamelCase : Union[nn.Linear, nn.Convad] ): if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __A : int = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __A : List[str] = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __snake_case , ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : MobileNetVaConfig , __lowerCamelCase : bool = True ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = 32 SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE = MobileNetVaConvLayer( __lowerCamelCase , in_channels=config.num_channels , out_channels=__lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict ): raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self : List[str] , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) SCREAMING_SNAKE_CASE = self.conv_stem(__lowerCamelCase ) SCREAMING_SNAKE_CASE = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE = layer_module(__lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(__lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=__lowerCamelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __snake_case , ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : MobileNetVaConfig ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = MobileNetVaModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.mobilenet_va(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase ) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier(self.dropout(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = "single_label_classification" else: SCREAMING_SNAKE_CASE = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , )
16
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
from string import ascii_lowercase, ascii_uppercase def __a ( A__ : str ): if not sentence: return "" SCREAMING_SNAKE_CASE = dict(zip(A__ , A__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
16
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __a ( A__ : str , A__ : Optional[int] , A__ : int ): # Initialise PyTorch model SCREAMING_SNAKE_CASE = AlbertConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE = AlbertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
16
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
1
from __future__ import annotations from random import choice def __a ( A__ : int ): return choice(A__ ) def __a ( A__ : list[int] , A__ : int ): SCREAMING_SNAKE_CASE = random_pivot(A__ ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(A__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(A__ ) < k - 1: return kth_number(A__ , k - len(A__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
16
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( A__ : str , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : List[Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = result.headers["Location"] SCREAMING_SNAKE_CASE = requests.get(A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{artifact_name}.zip" ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def __a ( A__ : List[Any] , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: SCREAMING_SNAKE_CASE = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE = line[: line.index(": " )] SCREAMING_SNAKE_CASE = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE = line if len(A__ ) != len(A__ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` " F"and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) SCREAMING_SNAKE_CASE = None if job_name and job_links: SCREAMING_SNAKE_CASE = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def __a ( A__ : List[str] , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : str ): SCREAMING_SNAKE_CASE = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE = test.split("/" )[2] else: SCREAMING_SNAKE_CASE = None return test def __a ( A__ : List[str] , A__ : Dict=None ): SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE = {x[2] for x in logs} SCREAMING_SNAKE_CASE = {} for test in tests: SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = "| no. | error | status |" SCREAMING_SNAKE_CASE = "|-:|:-|:-|" SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE = F"| {count} | {error[:100]} | |" lines.append(A__ ) return "\n".join(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __A : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A : int = get_job_links(args.workflow_run_id, token=args.token) __A : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A : Union[str, Any] = k.find(' / ') __A : Optional[int] = k[index + len(' / ') :] __A : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A : Optional[Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A : str = reduce_by_error(errors) __A : int = reduce_by_model(errors) __A : Any = make_github_table(reduced_by_error) __A : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
16
1
def __a ( A__ : int ): if not isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE = F"Input value of [number={number}] must be an integer" raise TypeError(A__ ) if number < 0: return False SCREAMING_SNAKE_CASE = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
16
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
1
import os def __a ( ): with open(os.path.dirname(A__ ) + "/p022_names.txt" ) as file: SCREAMING_SNAKE_CASE = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE = names.replace("\"" , "" ).split("," ) names.sort() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE = 0 return total_score if __name__ == "__main__": print(solution())
16
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "data2vec-vision" def __init__( self : Tuple , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Union[str, Any]=224 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : str=3 , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : str=False , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[Any]=[3, 5, 7, 11] , __lowerCamelCase : Union[str, Any]=[1, 2, 3, 6] , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=0.4 , __lowerCamelCase : Dict=256 , __lowerCamelCase : int=1 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Tuple=255 , **__lowerCamelCase : List[str] , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = use_mask_token SCREAMING_SNAKE_CASE = use_absolute_position_embeddings SCREAMING_SNAKE_CASE = use_relative_position_bias SCREAMING_SNAKE_CASE = use_shared_relative_position_bias SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE = out_indices SCREAMING_SNAKE_CASE = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE = use_auxiliary_head SCREAMING_SNAKE_CASE = auxiliary_loss_weight SCREAMING_SNAKE_CASE = auxiliary_channels SCREAMING_SNAKE_CASE = auxiliary_num_convs SCREAMING_SNAKE_CASE = auxiliary_concat_input SCREAMING_SNAKE_CASE = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : List[Any] ): return 1e-4
16
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __A : Optional[Any] = logging.get_logger(__name__) # General docstring __A : int = 'PoolFormerConfig' # Base docstring __A : str = 'sail/poolformer_s12' __A : Any = [1, 5_1_2, 7, 7] # Image classification docstring __A : List[Any] = 'sail/poolformer_s12' __A : str = 'tabby, tabby cat' __A : Dict = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __a ( A__ : Optional[int] , A__ : float = 0.0 , A__ : bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE = 1 - drop_prob SCREAMING_SNAKE_CASE = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE = input.div(A__ ) * random_tensor return output class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Optional[float] = None ): super().__init__() SCREAMING_SNAKE_CASE = drop_prob def _snake_case ( self : int , __lowerCamelCase : torch.Tensor ): return drop_path(__lowerCamelCase , self.drop_prob , self.training ) def _snake_case ( self : List[Any] ): return "p={}".format(self.drop_prob ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=None ): super().__init__() SCREAMING_SNAKE_CASE = patch_size if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE = stride if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE = padding if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE = nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase ) SCREAMING_SNAKE_CASE = norm_layer(__lowerCamelCase ) if norm_layer else nn.Identity() def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = self.projection(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.norm(__lowerCamelCase ) return embeddings class _SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Any , **__lowerCamelCase : List[str] ): super().__init__(1 , __lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : Dict ): super().__init__() SCREAMING_SNAKE_CASE = nn.AvgPoolad(__lowerCamelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : int ): return self.pool(__lowerCamelCase ) - hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = PoolFormerDropPath(__lowerCamelCase ) if isinstance(config.hidden_act , __lowerCamelCase ): SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE = config.hidden_act def _snake_case ( self : Any , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.act_fn(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.drop(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.drop(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): super().__init__() SCREAMING_SNAKE_CASE = PoolFormerPooling(__lowerCamelCase ) SCREAMING_SNAKE_CASE = PoolFormerOutput(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(__lowerCamelCase ) # Useful for training neural nets SCREAMING_SNAKE_CASE = PoolFormerDropPath(__lowerCamelCase ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[int] ): if self.use_layer_scale: SCREAMING_SNAKE_CASE = self.pooling(self.before_norm(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE = hidden_states + self.drop_path(__lowerCamelCase ) SCREAMING_SNAKE_CASE = () SCREAMING_SNAKE_CASE = self.output(self.after_norm(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE = hidden_states + self.drop_path(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE = self.drop_path(self.pooling(self.before_norm(__lowerCamelCase ) ) ) # First residual connection SCREAMING_SNAKE_CASE = pooling_output + hidden_states SCREAMING_SNAKE_CASE = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE = self.drop_path(self.output(self.after_norm(__lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE = hidden_states + layer_output SCREAMING_SNAKE_CASE = (output,) + outputs return outputs class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Dict ): super().__init__() SCREAMING_SNAKE_CASE = config # stochastic depth decay rule SCREAMING_SNAKE_CASE = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE = nn.ModuleList(__lowerCamelCase ) # Transformer blocks SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowerCamelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = nn.ModuleList(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : List[Any]=True ): SCREAMING_SNAKE_CASE = () if output_hidden_states else None SCREAMING_SNAKE_CASE = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE = embedding_layer(__lowerCamelCase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = blk(__lowerCamelCase ) SCREAMING_SNAKE_CASE = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = PoolFormerConfig lowerCamelCase__ = "poolformer" lowerCamelCase__ = "pixel_values" lowerCamelCase__ = True def _snake_case ( self : Optional[Any] , __lowerCamelCase : Any ): if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any=False ): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = value __A : Optional[int] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __A : Dict = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , __snake_case , ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : str ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = PoolFormerEncoder(__lowerCamelCase ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self : Any ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) SCREAMING_SNAKE_CASE = self.encoder( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : List[str] ): super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self : Tuple , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.dense(__lowerCamelCase ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , __snake_case , ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : List[str] ): super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = PoolFormerModel(__lowerCamelCase ) # Final norm SCREAMING_SNAKE_CASE = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.LongTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.poolformer( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = outputs[0] SCREAMING_SNAKE_CASE = self.classifier(self.norm(__lowerCamelCase ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = "single_label_classification" else: SCREAMING_SNAKE_CASE = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
16
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __A : List[str] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __A : Tuple = 'main' # Default branch name __A : List[Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) __A : Dict = 'aaaaaaa' # This commit does not exist, so we should 404. __A : List[str] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes __A : Optional[int] = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def __a ( ): print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def __a ( ): print("Bonjour!" ) yield print("Au revoir!" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _snake_case ( self : int , __lowerCamelCase : List[Any] ): with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Any ): with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _snake_case ( self : int , __lowerCamelCase : str ): with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def _snake_case ( self : int ): self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' pass self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) @require_tf def _snake_case ( self : Tuple ): self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' pass self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) @require_flax def _snake_case ( self : str ): # Flax models don't have labels self.assertEqual(find_labels(__lowerCamelCase ) , [] ) self.assertEqual(find_labels(__lowerCamelCase ) , [] ) self.assertEqual(find_labels(__lowerCamelCase ) , [] ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' pass self.assertEqual(find_labels(__lowerCamelCase ) , [] )
16
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
1
import flax.linen as nn import jax import jax.numpy as jnp class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = jnp.floataa def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = hidden_states.shape SCREAMING_SNAKE_CASE = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) SCREAMING_SNAKE_CASE = self.conv(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = jnp.floataa def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , __lowerCamelCase : List[Any] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) SCREAMING_SNAKE_CASE = self.conv(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = 0.0 lowerCamelCase__ = None lowerCamelCase__ = jnp.floataa def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE = nn.Dense(__lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE = None if use_nin_shortcut: SCREAMING_SNAKE_CASE = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=True ): SCREAMING_SNAKE_CASE = hidden_states SCREAMING_SNAKE_CASE = self.norma(__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.swish(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) SCREAMING_SNAKE_CASE = hidden_states + temb SCREAMING_SNAKE_CASE = self.norma(__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.swish(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dropout(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
16
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
from __future__ import annotations from scipy.special import comb # type: ignore class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : list[tuple[float, float]] ): SCREAMING_SNAKE_CASE = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 1 def _snake_case ( self : str , __lowerCamelCase : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCamelCase ) , 5 ) == 1 return output_values def _snake_case ( self : Tuple , __lowerCamelCase : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE = self.basis_function(__lowerCamelCase ) SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _snake_case ( self : List[str] , __lowerCamelCase : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE = 0.0 while t <= 1: SCREAMING_SNAKE_CASE = self.bezier_curve_function(__lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE = [i[1] for i in self.list_of_points] plt.plot( __lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
16
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __a ( A__ : List[str] , A__ : str=0.9_9_9 , A__ : Tuple="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Optional[int] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Tuple ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) SCREAMING_SNAKE_CASE = [] for i in range(A__ ): SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase__ = 2 @register_to_config def __init__( self : Tuple , __lowerCamelCase : int = 1000 , __lowerCamelCase : float = 0.00_085 , __lowerCamelCase : float = 0.012 , __lowerCamelCase : str = "linear" , __lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : str = "linspace" , __lowerCamelCase : int = 0 , ): if trained_betas is not None: SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) SCREAMING_SNAKE_CASE = 1.0 - self.betas SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[str]=None ): if schedule_timesteps is None: SCREAMING_SNAKE_CASE = self.timesteps SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE = 1 if len(__lowerCamelCase ) > 1 else 0 else: SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self : str ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self : List[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Union[float, torch.FloatTensor] , ): SCREAMING_SNAKE_CASE = self.index_for_timestep(__lowerCamelCase ) if self.state_in_first_order: SCREAMING_SNAKE_CASE = self.sigmas[step_index] else: SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None , __lowerCamelCase : Optional[int] = None , ): SCREAMING_SNAKE_CASE = num_inference_steps SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (np.arange(__lowerCamelCase , 0 , -step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE = torch.from_numpy(np.log(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase ) ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) # interpolate sigmas SCREAMING_SNAKE_CASE = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowerCamelCase ).startswith("mps" ): # mps does not support float64 SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) # interpolate timesteps SCREAMING_SNAKE_CASE = self.sigma_to_t(__lowerCamelCase ).to(__lowerCamelCase , dtype=timesteps.dtype ) SCREAMING_SNAKE_CASE = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], interleaved_timesteps] ) SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE = defaultdict(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : List[str] ): # get log sigma SCREAMING_SNAKE_CASE = sigma.log() # get distribution SCREAMING_SNAKE_CASE = log_sigma - self.log_sigmas[:, None] # get sigmas range SCREAMING_SNAKE_CASE = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE = low_idx + 1 SCREAMING_SNAKE_CASE = self.log_sigmas[low_idx] SCREAMING_SNAKE_CASE = self.log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE = w.clamp(0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE = t.view(sigma.shape ) return t @property def _snake_case ( self : str ): return self.sample is None def _snake_case ( self : str , __lowerCamelCase : Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase : Union[float, torch.FloatTensor] , __lowerCamelCase : Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE = self.sigmas[step_index] SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index + 1] SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE = sigma_interpol - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep SCREAMING_SNAKE_CASE = sigma_next - sigma_hat SCREAMING_SNAKE_CASE = self.sample SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase ) for t in timesteps] SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
16
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 32 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : str=30 , __lowerCamelCase : Any=400 , __lowerCamelCase : Tuple=3 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 288} SCREAMING_SNAKE_CASE = size_divisor SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = do_pad SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution def _snake_case ( self : Tuple ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=False ): if not batched: SCREAMING_SNAKE_CASE = self.size["shortest_edge"] SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = size, scale * w else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = scale * h, size SCREAMING_SNAKE_CASE = int((1333 / 800) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: SCREAMING_SNAKE_CASE = max_size / max(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = newh * scale SCREAMING_SNAKE_CASE = neww * scale SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = BridgeTowerImageProcessingTester(self ) @property def _snake_case ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : int ): # Initialize image processor SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self : Any ): # Initialize image processor SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self : Optional[int] ): # Initialize image processor SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
16
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) def __a ( A__ : str , A__ : Optional[Any] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(A__ , config=A__ ) SCREAMING_SNAKE_CASE = downstream_dict["projector.weight"] SCREAMING_SNAKE_CASE = downstream_dict["projector.bias"] SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.bias"] return model def __a ( A__ : Dict , A__ : Dict , A__ : List[Any] ): SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(A__ , config=A__ ) SCREAMING_SNAKE_CASE = downstream_dict["model.linear.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.linear.bias"] return model def __a ( A__ : List[Any] , A__ : str , A__ : Tuple ): SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(A__ , config=A__ ) SCREAMING_SNAKE_CASE = downstream_dict["connector.weight"] SCREAMING_SNAKE_CASE = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] SCREAMING_SNAKE_CASE = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] SCREAMING_SNAKE_CASE = downstream_dict["objective.W"] return model @torch.no_grad() def __a ( A__ : Union[str, Any] , A__ : Any , A__ : Dict , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) SCREAMING_SNAKE_CASE = checkpoint["Downstream"] SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(A__ ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( A__ , return_attention_mask=A__ , do_normalize=A__ ) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): SCREAMING_SNAKE_CASE = convert_classification(A__ , A__ , A__ ) elif arch.endswith("ForAudioFrameClassification" ): SCREAMING_SNAKE_CASE = convert_diarization(A__ , A__ , A__ ) elif arch.endswith("ForXVector" ): SCREAMING_SNAKE_CASE = convert_xvector(A__ , A__ , A__ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __A : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
16
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "open-llama" def __init__( self : Union[str, Any] , __lowerCamelCase : int=100000 , __lowerCamelCase : List[Any]=4096 , __lowerCamelCase : Dict=11008 , __lowerCamelCase : Dict=32 , __lowerCamelCase : str=32 , __lowerCamelCase : List[str]="silu" , __lowerCamelCase : Dict=2048 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Optional[Any]=1e-6 , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = rms_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = kwargs.pop( "use_memorry_efficient_attention" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_dropout_prob SCREAMING_SNAKE_CASE = use_stable_embedding SCREAMING_SNAKE_CASE = shared_input_output_embedding SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase , ) def _snake_case ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : List[str] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "mctct" def __init__( self : List[Any] , __lowerCamelCase : int=8065 , __lowerCamelCase : List[Any]=1536 , __lowerCamelCase : Dict=36 , __lowerCamelCase : Optional[int]=6144 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Any=384 , __lowerCamelCase : List[str]=920 , __lowerCamelCase : Optional[int]=1e-5 , __lowerCamelCase : Tuple=0.3 , __lowerCamelCase : Any="relu" , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Any=0.3 , __lowerCamelCase : Any=0.3 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : str=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Optional[Any]=0.3 , __lowerCamelCase : Any=1 , __lowerCamelCase : Dict=(7,) , __lowerCamelCase : Dict=(3,) , __lowerCamelCase : int=80 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]="sum" , __lowerCamelCase : Dict=False , **__lowerCamelCase : Tuple , ): super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = attention_head_dim SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = conv_glu_dim SCREAMING_SNAKE_CASE = conv_dropout SCREAMING_SNAKE_CASE = num_conv_layers SCREAMING_SNAKE_CASE = input_feat_per_channel SCREAMING_SNAKE_CASE = input_channels SCREAMING_SNAKE_CASE = conv_channels SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # prevents config testing fail with exporting to json SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
16
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : List[str] = get_logger() __A : Optional[dict] = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict ): super().__init__(features=__lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f"Expected {device} to be a `str` not {type(__lowerCamelCase )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE = device if isinstance(__lowerCamelCase , __lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE = jnp_array_kwargs @staticmethod def _snake_case ( ): import jax return {str(__lowerCamelCase ): device for device in jax.devices()} def _snake_case ( self : Any , __lowerCamelCase : List[Any] ): import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCamelCase , axis=0 ) return column def _snake_case ( self : int , __lowerCamelCase : Dict ): import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE = {"dtype": jnp.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE = np.asarray(__lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self : List[Any] , __lowerCamelCase : int ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , jax.Array ): SCREAMING_SNAKE_CASE = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : dict ): return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : pa.Table ): SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : pa.Table ): SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._consolidate(__lowerCamelCase ) return column def _snake_case ( self : int , __lowerCamelCase : pa.Table ): SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_batch(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: SCREAMING_SNAKE_CASE = self._consolidate(batch[column_name] ) return batch
16
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict=3 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : Optional[int]=[10, 20, 30, 40] , __lowerCamelCase : Any=[1, 1, 2, 1] , __lowerCamelCase : int=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : int="relu" , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Optional[int]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Optional[int] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = TFRegNetModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , training=__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _snake_case ( self : Any ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _snake_case ( self : Tuple ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _snake_case ( self : str ): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _snake_case ( self : List[str] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): def check_hidden_states_output(__lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict={} ): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple() def recursive_check(__lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): if isinstance(__lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ): recursive_check(__lowerCamelCase , __lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : str ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE = model(**__lowerCamelCase , training=__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 )
16
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
1
def __a ( A__ : int = 2000000 ): SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , A__ ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for i in range(A__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
16
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __a ( A__ : str = "laptop" ): SCREAMING_SNAKE_CASE = F"https://www.amazon.in/laptop/s?k={product}" SCREAMING_SNAKE_CASE = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(A__ , headers=A__ ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: SCREAMING_SNAKE_CASE = item.ha.text SCREAMING_SNAKE_CASE = "https://www.amazon.in/" + item.ha.a["href"] SCREAMING_SNAKE_CASE = item.find("span" , attrs={"class": "a-offscreen"} ).text try: SCREAMING_SNAKE_CASE = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: SCREAMING_SNAKE_CASE = "Not available" try: SCREAMING_SNAKE_CASE = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: SCREAMING_SNAKE_CASE = "" try: SCREAMING_SNAKE_CASE = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: SCREAMING_SNAKE_CASE = float("nan" ) except AttributeError: pass SCREAMING_SNAKE_CASE = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE = " " SCREAMING_SNAKE_CASE = " " data_frame.index += 1 return data_frame if __name__ == "__main__": __A : Optional[Any] = 'headphones' get_amazon_product_data(product).to_csv(f'Amazon Product Data for {product}.csv')
16
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
1
from __future__ import annotations from math import pow, sqrt def __a ( A__ : float , A__ : float , A__ : float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(A__ , 2 ) - pow(A__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A__ , 2 ) - pow(A__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A__ , 2 ) + pow(A__ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
16
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __A : Tuple = 2_9_9_7_9_2_4_5_8 # Symbols __A , __A , __A , __A : Dict = symbols('ct x y z') def __a ( A__ : float ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def __a ( A__ : float ): return 1 / sqrt(1 - beta(A__ ) ** 2 ) def __a ( A__ : float ): return np.array( [ [gamma(A__ ), -gamma(A__ ) * beta(A__ ), 0, 0], [-gamma(A__ ) * beta(A__ ), gamma(A__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __a ( A__ : float , A__ : np.ndarray | None = None ): # Ensure event is not empty if event is None: SCREAMING_SNAKE_CASE = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(A__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __A : List[str] = transform(2_9_9_7_9_2_4_5) print('Example of four vector: ') print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values __A : List[str] = {ct: c, x: 1, y: 1, z: 1} __A : str = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
16
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
1