code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : List[Any] ="" lowerCamelCase : int =( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase : Union[str, Any] =None # compression type in fsspec. ex: "gzip" lowerCamelCase : str =None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Any , lowerCAmelCase : str = "" , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[dict] = None , **lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __lowerCAmelCase : Any = fsspec.open( __snake_case , mode="""rb""" , protocol=__snake_case , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __lowerCAmelCase : Union[str, Any] = os.path.basename(self.file.path.split("""::""" )[0] ) __lowerCAmelCase : Optional[int] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) __lowerCAmelCase : Optional[Any] = None @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , lowerCAmelCase : str ) -> int: """simple docstring""" return super()._strip_protocol(__snake_case ).lstrip("""/""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" if self.dir_cache is None: __lowerCAmelCase : Optional[Any] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __lowerCAmelCase : Optional[Any] = {f["""name"""]: f} def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.file.open().read() def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str = "rb" , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Any=None , **lowerCAmelCase : Any , ) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : Optional[Any] ="bz2" lowerCamelCase : int ="bz2" lowerCamelCase : List[Any] =".bz2" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : List[Any] ="gzip" lowerCamelCase : Any ="gzip" lowerCamelCase : int =".gz" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : Union[str, Any] ="lz4" lowerCamelCase : List[str] ="lz4" lowerCamelCase : int =".lz4" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : int ="xz" lowerCamelCase : str ="xz" lowerCamelCase : Union[str, Any] =".xz" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : List[str] ="zstd" lowerCamelCase : Any ="zstd" lowerCamelCase : Dict =".zst" def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str = "rb" , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[dict] = None , lowerCAmelCase : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase : List[Any] , ) -> Dict: """simple docstring""" super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __lowerCAmelCase : Dict = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = file_ def __enter__( self : Dict ) -> List[str]: """simple docstring""" self._file.__enter__() return self def __exit__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Any ) -> List[str]: """simple docstring""" self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Tuple ) -> Optional[int]: """simple docstring""" return iter(self._file ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return next(self._file ) def __getattr__( self : Any , lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" return getattr(self._file , __snake_case ) def fixed_enter(*lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : int ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) __lowerCAmelCase : List[str] = fixed_enter
651
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor A_ : Union[str, Any] =logging.getLogger(__name__) A_ : Optional[Any] =5_0 # max width of layer names A_ : Optional[int] =7_0 # max width of quantizer names def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> Tuple: _lowerCamelCase = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=snake_case , type=snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def SCREAMING_SNAKE_CASE_ ( snake_case : Dict )-> Union[str, Any]: if args.calibrator == "max": _lowerCamelCase = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _lowerCamelCase = """histogram""" elif args.calibrator == "mse": _lowerCamelCase = """histogram""" else: raise ValueError(f'Invalid calibrator {args.calibrator}' ) _lowerCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=snake_case ) _lowerCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : List[str] , snake_case : Tuple=False , snake_case : Dict=False )-> Dict: logger.info('Configuring Model for Quantization' ) logger.info(f'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(snake_case , ['embeddings'] , which='weight' , _disabled=snake_case ) if args.quant_disable: set_quantizer_by_name(snake_case , [''] , _disabled=snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(snake_case , args.quant_disable_keyword , _disabled=snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(snake_case , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(snake_case , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=snake_case ) if args.recalibrate_weights: recalibrate_weights(snake_case ) if args.fuse_qkv: fuse_qkv(snake_case , snake_case ) if args.clip_gelu: clip_gelu(snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] )-> Tuple: logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'{name:80}: {module}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] , snake_case : Optional[Any] )-> Dict: logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : List[str] )-> Tuple: def fusea(snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : List[str] ): for mod in [qq, qk, qv]: if not hasattr(snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _lowerCamelCase = qq._amax.detach().item() _lowerCamelCase = qk._amax.detach().item() _lowerCamelCase = qv._amax.detach().item() _lowerCamelCase = max(snake_case , snake_case , snake_case ) qq._amax.fill_(snake_case ) qk._amax.fill_(snake_case ) qv._amax.fill_(snake_case ) logger.info(f' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] , snake_case : Optional[int] )-> Optional[Any]: for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _lowerCamelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=snake_case ) _lowerCamelCase = mod._input_quantizer._amax.data.detach().item() logger.info(f'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : Dict )-> List[Any]: for name, mod in model.named_modules(): if hasattr(snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _lowerCamelCase = mod.weight.shape[0] _lowerCamelCase = mod._weight_quantizer._amax.detach() _lowerCamelCase = torch.ones(snake_case , dtype=amax.dtype , device=amax.device ) * amax print(f'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Any: for name, mod in model.named_modules(): if hasattr(snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _lowerCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _lowerCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set _lowerCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=snake_case , keepdims=snake_case ).detach() logger.info(f'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) _lowerCamelCase = amax def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : str=25 , snake_case : int=180 , snake_case : Any=None )-> Optional[Any]: if ignore is None: _lowerCamelCase = [] elif not isinstance(snake_case , snake_case ): _lowerCamelCase = [ignore] _lowerCamelCase = 0 for name, mod in model.named_modules(): if not hasattr(snake_case , 'weight' ): continue _lowerCamelCase = max(snake_case , len(snake_case ) ) for name, mod in model.named_modules(): _lowerCamelCase = getattr(snake_case , '_input_quantizer' , snake_case ) _lowerCamelCase = getattr(snake_case , '_weight_quantizer' , snake_case ) if not hasattr(snake_case , 'weight' ): continue if type(snake_case ) in ignore: continue if [True for s in ignore if type(snake_case ) is str and s in name]: continue _lowerCamelCase = f'Act:{input_q.extra_repr()}' _lowerCamelCase = f'Wgt:{weight_q.extra_repr()}' _lowerCamelCase = f'{name:{name_width}} {act_str} {wgt_str}' if len(snake_case ) <= line_width: logger.info(snake_case ) else: logger.info(f'{name:{name_width}} {act_str}' ) logger.info(f'{" ":{name_width}} {wgt_str}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[Any] )-> Optional[int]: _lowerCamelCase = 0 for name, mod in model.named_modules(): if isinstance(snake_case , pytorch_quantization.nn.TensorQuantizer ): print(f'{name:80} {mod}' ) count += 1 print(f'{count} TensorQuantizers found in model' ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : int , snake_case : Optional[int] , snake_case : List[Any] , snake_case : str )-> Any: _lowerCamelCase = getattr(snake_case , snake_case , snake_case ) if quantizer_mod is not None: assert hasattr(snake_case , snake_case ) setattr(snake_case , snake_case , snake_case ) else: logger.warning(f'{name} has no {quantizer}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : Optional[Any] , snake_case : Dict="both" , **snake_case : List[str] )-> Tuple: _lowerCamelCase = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += f' {k}={v}' if which in ["input", "both"]: set_quantizer(snake_case , snake_case , '_input_quantizer' , snake_case , snake_case ) if which in ["weight", "both"]: set_quantizer(snake_case , snake_case , '_weight_quantizer' , snake_case , snake_case ) logger.info(snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : List[Any] , **snake_case : int )-> Optional[Any]: for name, mod in model.named_modules(): if hasattr(snake_case , '_input_quantizer' ) or hasattr(snake_case , '_weight_quantizer' ): for n in names: if re.search(snake_case , snake_case ): set_quantizers(snake_case , snake_case , **snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(snake_case , snake_case ): _lowerCamelCase = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += f' {k}={v}' setattr(snake_case , snake_case , snake_case ) logger.info(snake_case )
650
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase : int =False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :int=18 , lowerCAmelCase__ :str=30 , lowerCAmelCase__ :int=400 , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Tuple=None , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = size if size is not None else {"""height""": 20, """width""": 20} __SCREAMING_SNAKE_CASE : Optional[Any] = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Optional[int] = num_channels __SCREAMING_SNAKE_CASE : List[Any] = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : str = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = size __SCREAMING_SNAKE_CASE : Any = do_normalize __SCREAMING_SNAKE_CASE : int = do_convert_rgb __SCREAMING_SNAKE_CASE : Any = [512, 1_024, 2_048, 4_096] __SCREAMING_SNAKE_CASE : List[Any] = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def __magic_name__( self :Dict ) -> Dict: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" __SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _lowercase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = PixaStructImageProcessingTester(self ) @property def __magic_name__( self :str ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[Any] ) -> str: __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_convert_rgb''' ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) __SCREAMING_SNAKE_CASE : str = 2_048 __SCREAMING_SNAKE_CASE : Tuple = image_processor(__snake_case , return_tensors='''pt''' , max_patches=__snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def __magic_name__( self :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __SCREAMING_SNAKE_CASE : List[str] = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __magic_name__( self :Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 __SCREAMING_SNAKE_CASE : List[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches __SCREAMING_SNAKE_CASE : Optional[int] = """Hello""" __SCREAMING_SNAKE_CASE : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case , header_text=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) __SCREAMING_SNAKE_CASE : List[Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __SCREAMING_SNAKE_CASE : str = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __SCREAMING_SNAKE_CASE : str = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _lowercase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def __magic_name__( self :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) __SCREAMING_SNAKE_CASE : Optional[int] = 3 @property def __magic_name__( self :Any ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_convert_rgb''' ) ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : str = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __SCREAMING_SNAKE_CASE : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = image_processor( __snake_case , return_tensors='''pt''' , max_patches=__snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
696
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class UpperCamelCase_ ( UpperCamelCase__ ): _A : List[Any] = 'mvp' _A : Dict = ['past_key_values'] _A : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , snake_case__=5_02_67 , snake_case__=10_24 , snake_case__=12 , snake_case__=40_96 , snake_case__=16 , snake_case__=12 , snake_case__=40_96 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=10_24 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=1_00 , snake_case__=8_00 , **snake_case__ , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = classifier_dropout UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = use_prompt UpperCAmelCase = prompt_length UpperCAmelCase = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): UpperCAmelCase = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
673
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( UpperCamelCase__ ): """simple docstring""" __lowerCamelCase = (IPNDMScheduler,) __lowerCamelCase = (('num_inference_steps', 50),) def UpperCamelCase ( self , **lowercase ) -> str: '''simple docstring''' A__ = {"""num_train_timesteps""": 1000} config.update(**__snake_case ) return config def UpperCamelCase ( self , lowercase=0 , **lowercase ) -> Optional[Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , __snake_case ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**__snake_case ) A__ = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals A__ = dummy_past_residuals[:] if time_step is None: A__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) A__ = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals A__ = dummy_past_residuals[:] A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample A__ = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample A__ = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCamelCase ( self , lowercase=0 , **lowercase ) -> Dict: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , __snake_case ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[:] if time_step is None: A__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) A__ = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[:] A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample A__ = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample A__ = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase ( self , **lowercase ) -> Optional[int]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**__snake_case ) A__ = scheduler_class(**__snake_case ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): A__ = model(__snake_case , __snake_case ) A__ = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): A__ = model(__snake_case , __snake_case ) A__ = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , __snake_case ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**__snake_case ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , "set_timesteps" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , "set_timesteps" ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A__ = dummy_past_residuals[:] A__ = scheduler.timesteps[5] A__ = scheduler.timesteps[6] A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample A__ = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self ) -> int: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case , time_step=__snake_case ) def UpperCamelCase ( self ) -> str: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__snake_case , time_step=__snake_case ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.full_loop() A__ = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 2540529 ) < 10
514
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCAmelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCAmelCase = [ord(letter) for letter in string.ascii_lowercase] UpperCAmelCase = {ord(char) for char in VALID_CHARS} UpperCAmelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Optional[Any] , lowerCAmelCase_: List[str] ): snake_case_ : str = "" snake_case_ : int snake_case_ : int snake_case_ : int for keychar, cipherchar in zip(cycle(lowerCAmelCase_ ) , lowerCAmelCase_ ): snake_case_ : int = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCAmelCase_ ) return decoded def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ): snake_case_ : list[str] = [] for key in product(lowerCAmelCase_ , repeat=3 ): snake_case_ : Any = try_key(lowerCAmelCase_ , lowerCAmelCase_ ) if encoded is not None: possibles.append(lowerCAmelCase_ ) return possibles def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Optional[int] , lowerCAmelCase_: List[str] ): return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Any = "p059_cipher.txt" ): snake_case_ : list[int] snake_case_ : list[str] snake_case_ : str snake_case_ : str snake_case_ : str = Path(lowerCAmelCase_ ).parent.joinpath(lowerCAmelCase_ ).read_text(encoding="utf-8" ) snake_case_ : List[str] = [int(lowerCAmelCase_ ) for number in data.strip().split("," )] snake_case_ : Any = filter_valid_chars(lowerCAmelCase_ ) for common_word in COMMON_WORDS: snake_case_ : Any = filter_common_word(lowerCAmelCase_ , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) == 1: break snake_case_ : Dict = possibles[0] return sum(ord(lowerCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
666
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class lowercase : def __init__( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : bool = True , _UpperCamelCase : bool = False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(__snake_case , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def __snake_case( self : List[str] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__snake_case , **__snake_case ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__snake_case , **__snake_case ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(__snake_case ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__snake_case , **__snake_case ) else: self.scheduler.step(*__snake_case , **__snake_case ) def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.scheduler.get_last_lr() def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.scheduler.state_dict() def __snake_case( self : Union[str, Any] , _UpperCamelCase : Dict ) -> Tuple: '''simple docstring''' self.scheduler.load_state_dict(__snake_case ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.scheduler.get_lr() def __snake_case( self : Any , *_UpperCamelCase : int , **_UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' return self.scheduler.print_lr(*__snake_case , **__snake_case )
403
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ = 1_000 ): lowerCamelCase_ = 2**power lowerCamelCase_ = 0 while n: lowerCamelCase_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
29
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 32 def UpperCAmelCase ( a__ , a__ = 16 ): '''simple docstring''' lowerCAmelCase :List[str] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase :str = load_dataset('glue' , 'mrpc' ) def tokenize_function(a__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase :List[str] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase :int = datasets.map( a__ , batched=a__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase :Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase :List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase :List[str] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase :Tuple = 8 else: lowerCAmelCase :Dict = None return tokenizer.pad( a__ , padding='longest' , max_length=a__ , pad_to_multiple_of=a__ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase :Tuple = DataLoader( tokenized_datasets['train'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) lowerCAmelCase :Dict = DataLoader( tokenized_datasets['validation'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE = mocked_dataloaders # noqa: F811 def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , a__ ) == "1": lowerCAmelCase :Tuple = 2 # New Code # lowerCAmelCase :List[Any] = int(args.gradient_accumulation_steps ) lowerCAmelCase :int = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase :List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=a__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase :List[str] = config["""lr"""] lowerCAmelCase :Dict = int(config['num_epochs'] ) lowerCAmelCase :Optional[int] = int(config['seed'] ) lowerCAmelCase :Tuple = int(config['batch_size'] ) lowerCAmelCase :Dict = evaluate.load('glue' , 'mrpc' ) set_seed(a__ ) lowerCAmelCase :Union[str, Any] = get_dataloaders(a__ , a__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase :str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase :List[str] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase :Tuple = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler lowerCAmelCase :Dict = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=1_00 , num_training_steps=(len(a__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase :List[Any] = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() with LocalSGD( accelerator=a__ , model=a__ , local_sgd_steps=a__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(a__ ): lowerCAmelCase :Tuple = model(**a__ ) lowerCAmelCase :Optional[int] = output.loss accelerator.backward(a__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase :int = model(**a__ ) lowerCAmelCase :int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase :Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a__ , references=a__ , ) lowerCAmelCase :Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , a__ ) def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :List[str] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a__ , default=a__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=a__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=a__ , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase :Tuple = parser.parse_args() lowerCAmelCase :Any = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(a__ , a__ ) if __name__ == "__main__": main()
553
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
"""simple docstring""" class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__ ): snake_case_ : int = name snake_case_ : Optional[int] = val def __str__(self ): return f'{self.__class__.__name__}({self.name}, {self.val})' def __lt__(self , lowercase__ ): return self.val < other.val class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Optional[Any] = {} snake_case_ : Optional[int] = {} snake_case_ : Union[str, Any] = self.build_heap(__snake_case ) def __getitem__(self , lowercase__ ): return self.get_value(__snake_case ) def __UpperCamelCase (self , lowercase__ ): return (idx - 1) // 2 def __UpperCamelCase (self , lowercase__ ): return idx * 2 + 1 def __UpperCamelCase (self , lowercase__ ): return idx * 2 + 2 def __UpperCamelCase (self , lowercase__ ): return self.heap_dict[key] def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = len(__snake_case ) - 1 snake_case_ : List[Any] = self.get_parent_idx(__snake_case ) for idx, i in enumerate(__snake_case ): snake_case_ : Dict = idx snake_case_ : str = i.val for i in range(__snake_case , -1 , -1 ): self.sift_down(__snake_case , __snake_case ) return array def __UpperCamelCase (self , lowercase__ , lowercase__ ): while True: snake_case_ : int = self.get_left_child_idx(__snake_case ) # noqa: E741 snake_case_ : List[str] = self.get_right_child_idx(__snake_case ) snake_case_ : Tuple = idx if l < len(__snake_case ) and array[l] < array[idx]: snake_case_ : Dict = l if r < len(__snake_case ) and array[r] < array[smallest]: snake_case_ : List[str] = r if smallest != idx: snake_case_ : int = array[smallest], array[idx] ( snake_case_ ) : int = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ : Any = smallest else: break def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = self.get_parent_idx(__snake_case ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ : str = self.heap[idx], self.heap[p] snake_case_ : Dict = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ : Union[str, Any] = p snake_case_ : Tuple = self.get_parent_idx(__snake_case ) def __UpperCamelCase (self ): return self.heap[0] def __UpperCamelCase (self ): snake_case_ : List[Any] = self.heap[-1], self.heap[0] snake_case_ : Optional[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __UpperCamelCase (self , lowercase__ ): self.heap.append(__snake_case ) snake_case_ : Dict = len(self.heap ) - 1 snake_case_ : List[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def __UpperCamelCase (self ): return len(self.heap ) == 0 def __UpperCamelCase (self , lowercase__ , lowercase__ ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ : Dict = new_value snake_case_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) a_ = Node('''R''', -1) a_ = Node('''B''', 6) a_ = Node('''A''', 3) a_ = Node('''X''', 1) a_ = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array a_ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
480
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a: str = logging.get_logger(__name__) __a: List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __a: Union[str, Any] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } __a: Any = { "gpt2": 1024, "gpt2-medium": 1024, "gpt2-large": 1024, "gpt2-xl": 1024, "distilgpt2": 1024, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = GPTaTokenizer def __init__( self : Dict , lowerCamelCase : int=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Any=None , lowerCamelCase : List[str]="<|endoftext|>" , lowerCamelCase : int="<|endoftext|>" , lowerCamelCase : Union[str, Any]="<|endoftext|>" , lowerCamelCase : Optional[int]=False , **lowerCamelCase : Optional[Any] , ) -> List[Any]: """simple docstring""" super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) _UpperCAmelCase = kwargs.pop("""add_bos_token""" , __snake_case ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __snake_case ) != add_prefix_space: _UpperCAmelCase = getattr(__snake_case , pre_tok_state.pop("""type""" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__snake_case ) _UpperCAmelCase = add_prefix_space def lowerCamelCase ( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Dict ) -> Any: """simple docstring""" _UpperCAmelCase = kwargs.get("""is_split_into_words""" , __snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def lowerCamelCase ( self : str , *lowerCamelCase : List[str] , **lowerCamelCase : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = kwargs.get("""is_split_into_words""" , __snake_case ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__snake_case , **__snake_case ) def lowerCamelCase ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : "Conversation" ) -> Tuple: """simple docstring""" _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__snake_case , add_special_tokens=__snake_case ) + [self.eos_token_id] ) if len(__snake_case ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
108
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def snake_case_ (__A : Tuple , __A : Union[str, Any] ) -> Dict: __lowerCAmelCase : List[Any] = XCLIPTextConfig() # derive patch size from model name __lowerCAmelCase : int = model_name.find("""patch""" ) __lowerCAmelCase : str = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) __lowerCAmelCase : Dict = XCLIPVisionConfig(patch_size=__A , num_frames=__A ) if "large" in model_name: __lowerCAmelCase : int = 7_6_8 __lowerCAmelCase : Tuple = 3_0_7_2 __lowerCAmelCase : str = 1_2 __lowerCAmelCase : Optional[Any] = 1_0_2_4 __lowerCAmelCase : List[str] = 4_0_9_6 __lowerCAmelCase : Union[str, Any] = 1_6 __lowerCAmelCase : Union[str, Any] = 2_4 __lowerCAmelCase : Tuple = 7_6_8 __lowerCAmelCase : Union[str, Any] = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase : Dict = 3_3_6 __lowerCAmelCase : Any = XCLIPConfig.from_text_vision_configs(__A , __A ) if "large" in model_name: __lowerCAmelCase : int = 7_6_8 return config def snake_case_ (__A : int ) -> Union[str, Any]: # text encoder if name == "token_embedding.weight": __lowerCAmelCase : int = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": __lowerCAmelCase : Union[str, Any] = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: __lowerCAmelCase : Union[str, Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase : int = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase : Optional[Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase : Any = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): __lowerCAmelCase : List[str] = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: __lowerCAmelCase : Optional[Any] = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: __lowerCAmelCase : str = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": __lowerCAmelCase : Optional[int] = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": __lowerCAmelCase : Dict = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): __lowerCAmelCase : Optional[int] = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: __lowerCAmelCase : Any = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: __lowerCAmelCase : Optional[Any] = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: __lowerCAmelCase : Optional[int] = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: __lowerCAmelCase : List[Any] = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: __lowerCAmelCase : Optional[int] = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: __lowerCAmelCase : Union[str, Any] = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: __lowerCAmelCase : List[Any] = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": __lowerCAmelCase : Union[str, Any] = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): __lowerCAmelCase : Union[str, Any] = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): __lowerCAmelCase : int = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def snake_case_ (__A : Union[str, Any] , __A : Optional[Any] ) -> Tuple: for key in orig_state_dict.copy().keys(): __lowerCAmelCase : Dict = orig_state_dict.pop(__A ) if "attn.in_proj" in key: __lowerCAmelCase : Any = key.split(""".""" ) if key.startswith("""visual""" ): __lowerCAmelCase : Tuple = key_split[3] __lowerCAmelCase : Dict = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __lowerCAmelCase : Optional[Any] = val[ :dim, : ] __lowerCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] __lowerCAmelCase : Any = val[ -dim:, : ] else: __lowerCAmelCase : Union[str, Any] = val[ :dim ] __lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] __lowerCAmelCase : int = val[ -dim: ] else: if "weight" in key: __lowerCAmelCase : str = val[ :dim, : ] __lowerCAmelCase : Any = val[ dim : dim * 2, : ] __lowerCAmelCase : Any = val[ -dim:, : ] else: __lowerCAmelCase : Any = val[:dim] __lowerCAmelCase : List[str] = val[ dim : dim * 2 ] __lowerCAmelCase : Any = val[-dim:] elif key.startswith("""mit""" ): __lowerCAmelCase : Dict = key_split[2] __lowerCAmelCase : str = config.vision_config.mit_hidden_size if "weight" in key: __lowerCAmelCase : Optional[int] = val[:dim, :] __lowerCAmelCase : Union[str, Any] = val[dim : dim * 2, :] __lowerCAmelCase : int = val[-dim:, :] else: __lowerCAmelCase : List[Any] = val[:dim] __lowerCAmelCase : Tuple = val[dim : dim * 2] __lowerCAmelCase : Any = val[-dim:] else: __lowerCAmelCase : Union[str, Any] = key_split[2] __lowerCAmelCase : int = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase : List[str] = val[:dim, :] __lowerCAmelCase : List[str] = val[ dim : dim * 2, : ] __lowerCAmelCase : List[Any] = val[-dim:, :] else: __lowerCAmelCase : Optional[Any] = val[:dim] __lowerCAmelCase : str = val[ dim : dim * 2 ] __lowerCAmelCase : Optional[int] = val[-dim:] else: __lowerCAmelCase : Optional[int] = rename_key(__A ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __lowerCAmelCase : Any = val.T __lowerCAmelCase : Optional[Any] = val return orig_state_dict def snake_case_ (__A : Optional[Any] ) -> Optional[int]: if num_frames == 8: __lowerCAmelCase : Union[str, Any] = """eating_spaghetti_8_frames.npy""" elif num_frames == 1_6: __lowerCAmelCase : Union[str, Any] = """eating_spaghetti.npy""" elif num_frames == 3_2: __lowerCAmelCase : Union[str, Any] = """eating_spaghetti_32_frames.npy""" __lowerCAmelCase : str = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=__A , repo_type="""dataset""" , ) __lowerCAmelCase : Union[str, Any] = np.load(__A ) return list(__A ) def snake_case_ (__A : Optional[int] , __A : Any=None , __A : str=False ) -> Tuple: __lowerCAmelCase : Tuple = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } __lowerCAmelCase : List[str] = model_to_url[model_name] __lowerCAmelCase : List[Any] = 8 if "16-frames" in model_name: __lowerCAmelCase : Any = 1_6 elif "shot" in model_name: __lowerCAmelCase : Optional[int] = 3_2 __lowerCAmelCase : Union[str, Any] = get_xclip_config(__A , __A ) __lowerCAmelCase : Any = XCLIPModel(__A ) model.eval() if "drive" in checkpoint_url: __lowerCAmelCase : Optional[int] = """pytorch_model.bin""" gdown.cached_download(__A , __A , quiet=__A ) __lowerCAmelCase : Optional[int] = torch.load(__A , map_location="""cpu""" )["""model"""] else: __lowerCAmelCase : Optional[Any] = torch.hub.load_state_dict_from_url(__A )["""model"""] __lowerCAmelCase : Optional[Any] = convert_state_dict(__A , __A ) __lowerCAmelCase : Any = XCLIPModel(__A ) __lowerCAmelCase : Dict = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __lowerCAmelCase : str = 3_3_6 if model_name == """xclip-large-patch14-16-frames""" else 2_2_4 __lowerCAmelCase : Union[str, Any] = VideoMAEImageProcessor(size=__A ) __lowerCAmelCase : Any = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase : List[str] = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase : Tuple = XCLIPProcessor(image_processor=__A , tokenizer=__A ) __lowerCAmelCase : str = prepare_video(__A ) __lowerCAmelCase : List[Any] = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=__A , return_tensors="""pt""" , padding=__A ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): __lowerCAmelCase : Any = model(**__A ) # Verify outputs __lowerCAmelCase : Dict = outputs.logits_per_video __lowerCAmelCase : Optional[Any] = logits_per_video.softmax(dim=1 ) print("""Probs:""" , __A ) # kinetics-400 if model_name == "xclip-base-patch32": __lowerCAmelCase : Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __lowerCAmelCase : Tuple = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": __lowerCAmelCase : str = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __lowerCAmelCase : List[Any] = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": __lowerCAmelCase : Optional[int] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase : Union[str, Any] = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __lowerCAmelCase : Any = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __lowerCAmelCase : str = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __lowerCAmelCase : Dict = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __lowerCAmelCase : str = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __lowerCAmelCase : Tuple = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __lowerCAmelCase : List[str] = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __lowerCAmelCase : List[str] = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __lowerCAmelCase : Optional[Any] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __lowerCAmelCase : int = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __lowerCAmelCase : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __lowerCAmelCase : Any = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __lowerCAmelCase : int = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(__A , __A , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(__A , organization="""nielsr""" ) processor.push_to_hub(__A , organization="""nielsr""" ) slow_tokenizer.push_to_hub(__A , organization="""nielsr""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : Dict ={ "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any =[ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str =[ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict =[ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
650
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Optional[Any] ={ "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =[ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase_ : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowerCAmelCase_ : int = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCAmelCase_ : Optional[Any] = BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase_ : Optional[Any] = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'https://google.com{link.get("href")}')
673
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Any: '''simple docstring''' A__ = [False] * len(SCREAMING_SNAKE_CASE_ ) A__ = [-1] * len(SCREAMING_SNAKE_CASE_ ) def dfs(SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[int] ): A__ = True A__ = c for u in graph[v]: if not visited[u]: dfs(SCREAMING_SNAKE_CASE_ , 1 - c ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if not visited[i]: dfs(SCREAMING_SNAKE_CASE_ , 0 ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
514
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class snake_case__ ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE : Tuple = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : List[str] = Features({"question": Value("string" ), "context": Value("string" )} ) _SCREAMING_SNAKE_CASE : Optional[int] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) _SCREAMING_SNAKE_CASE : Union[str, Any] = "question" _SCREAMING_SNAKE_CASE : Optional[int] = "context" _SCREAMING_SNAKE_CASE : str = "answers" @property def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : str = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
403
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } A_ = {"allegro/herbert-base-cased": 514} A_ = {} class __lowerCamelCase ( UpperCamelCase__ ): a__: Optional[Any] = VOCAB_FILES_NAMES a__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__: Any = PRETRAINED_INIT_CONFIGURATION a__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Any = HerbertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="</s>" , **UpperCAmelCase , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sep_token=__snake_case , **__snake_case , ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): lowerCamelCase_ = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
29
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __SCREAMING_SNAKE_CASE = 50_00_00 __SCREAMING_SNAKE_CASE = os.path.split(__file__) __SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCAmelCase ( a__ , **a__ ): '''simple docstring''' lowerCAmelCase :Tuple = dataset.map(**a__ ) @get_duration def UpperCAmelCase ( a__ , **a__ ): '''simple docstring''' lowerCAmelCase :List[str] = dataset.filter(**a__ ) def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :Optional[int] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase :str = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) lowerCAmelCase :str = generate_example_dataset( os.path.join(a__ , 'dataset.arrow' ) , a__ , num_examples=a__ ) lowerCAmelCase :Dict = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=a__ ) def tokenize(a__ ): return tokenizer(examples['text'] ) lowerCAmelCase :Union[str, Any] = map(a__ ) lowerCAmelCase :List[Any] = map(a__ , batched=a__ ) lowerCAmelCase :Optional[int] = map(a__ , function=lambda a__ : None , batched=a__ ) with dataset.formatted_as(type='numpy' ): lowerCAmelCase :Optional[Any] = map(a__ , function=lambda a__ : None , batched=a__ ) with dataset.formatted_as(type='pandas' ): lowerCAmelCase :int = map(a__ , function=lambda a__ : None , batched=a__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): lowerCAmelCase :List[Any] = map(a__ , function=lambda a__ : None , batched=a__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): lowerCAmelCase :Optional[Any] = map(a__ , function=lambda a__ : None , batched=a__ ) lowerCAmelCase :Optional[Any] = map(a__ , function=a__ , batched=a__ ) lowerCAmelCase :Optional[int] = filter(a__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(a__ , 'wb' ) as f: f.write(json.dumps(a__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
553
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process a_ = logging.getLogger(__name__) a_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) a_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : """simple docstring""" _A : Dict = field( default=UpperCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _A : int = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__)} , ) _A : List[str] = field( default=UpperCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _A : str = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) _A : Tuple = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) _A : Dict = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _A : Optional[int] = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _A : Optional[int] = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _A : Any = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __UpperCamelCase (self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __lowercase : """simple docstring""" _A : Any = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""}) _A : Optional[Any] = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _A : Dict = field(default=UpperCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""}) _A : Any = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) _A : int = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) _A : Optional[int] = field( default=UpperCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) _A : str = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) _A : Tuple = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _A : List[Any] = field( default=UpperCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) _A : Optional[Any] = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _A : Dict = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""}) _A : Any = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def __UpperCamelCase (self ): if self.train_file is not None: snake_case_ : Dict = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case_ : Union[str, Any] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Any = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in f.read().splitlines() if (len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace())] assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = {c: dataset[c] for c in dataset.column_names} snake_case_ : List[str] = refs return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[:{data_args.validation_split_percentage}%]' , ) snake_case_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[{data_args.validation_split_percentage}%:]' , ) else: snake_case_ : str = {} if data_args.train_file is not None: snake_case_ : List[Any] = data_args.train_file if data_args.validation_file is not None: snake_case_ : str = data_args.validation_file snake_case_ : List[Any] = data_args.train_file.split(""".""" )[-1] if extension == "txt": snake_case_ : List[str] = """text""" snake_case_ : Optional[Any] = load_dataset(SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : List[Any] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ : Tuple = AutoConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ : int = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Any = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) snake_case_ : Any = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case_ : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: snake_case_ : List[str] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case_ : List[str] = AutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case_ : Union[str, Any] = datasets["""train"""].column_names else: snake_case_ : List[str] = datasets["""validation"""].column_names snake_case_ : Optional[Any] = """text""" if """text""" in column_names else column_names[0] snake_case_ : Union[str, Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(SCREAMING_SNAKE_CASE__ : Dict ): # Remove empty lines snake_case_ : Tuple = [line for line in examples["""text"""] if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=data_args.max_seq_length ) snake_case_ : List[Any] = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case_ : str = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case_ : List[Any] = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case_ : str = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case_ : Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. snake_case_ : Any = DataCollatorForWholeWordMask(tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case_ : Tuple = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ : str = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case_ : Union[str, Any] = model_args.model_name_or_path else: snake_case_ : int = None snake_case_ : Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ : List[str] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation snake_case_ : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ : Tuple = trainer.evaluate() snake_case_ : Optional[int] = math.exp(eval_output["""eval_loss"""] ) snake_case_ : List[Any] = perplexity snake_case_ : Optional[int] = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" main() if __name__ == "__main__": main()
480
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> int: return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Any: _UpperCAmelCase = [] _UpperCAmelCase = 1_1 _UpperCAmelCase = int("""1""" + """0""" * digit_len ) for num in range(__snake_case , __snake_case ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(__snake_case , __snake_case ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 _UpperCAmelCase = 1_0 return solutions def _SCREAMING_SNAKE_CASE ( __snake_case = 2 ) -> Tuple: _UpperCAmelCase = 1.0 for fraction in fraction_list(__snake_case ): _UpperCAmelCase = Fraction(__snake_case ) result *= frac.denominator / frac.numerator return int(__snake_case ) if __name__ == "__main__": print(solution())
108
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : List[str] ) -> Any: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __lowerCAmelCase : str = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__snake_case ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" __lowerCAmelCase : Dict = """sshleifer/tiny-gpt2""" __lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__snake_case , multi_process=__snake_case , ) __lowerCAmelCase : List[str] = TensorFlowBenchmark(__snake_case ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = """sgugger/tiny-distilbert-classification""" __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , only_pretrain_model=__snake_case , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(__snake_case ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = """sshleifer/tiny-gpt2""" __lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __lowerCAmelCase : int = TensorFlowBenchmark(__snake_case ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = """sshleifer/tiny-gpt2""" __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(__snake_case ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__snake_case , multi_process=__snake_case , ) __lowerCAmelCase : str = TensorFlowBenchmark(__snake_case , [config] ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = """sshleifer/tiny-gpt2""" __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(__snake_case ) __lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __lowerCAmelCase : Union[str, Any] = TensorFlowBenchmark(__snake_case , [config] ) __lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = """sshleifer/tiny-gpt2""" __lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__snake_case ) __lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2""" __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(__snake_case ) __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__snake_case , [config] ) __lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = """patrickvonplaten/t5-tiny-random""" __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__snake_case ) __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) __lowerCAmelCase : List[Any] = TensorFlowBenchmark(__snake_case , configs=[config] ) __lowerCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = """sshleifer/tiny-gpt2""" __lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__snake_case , multi_process=__snake_case , ) __lowerCAmelCase : List[str] = TensorFlowBenchmark(__snake_case ) __lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: """simple docstring""" __lowerCAmelCase : int = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__snake_case , save_to_csv=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__snake_case , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__snake_case , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__snake_case , """env.csv""" ) , multi_process=__snake_case , ) __lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(__snake_case , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , """env.csv""" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowerCAmelCase : Dict ): self.assertTrue(hasattr(__snake_case , """sequential""" ) ) self.assertTrue(hasattr(__snake_case , """cumulative""" ) ) self.assertTrue(hasattr(__snake_case , """current""" ) ) self.assertTrue(hasattr(__snake_case , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__snake_case , """log.txt""" ) , log_print=__snake_case , trace_memory_line_by_line=__snake_case , eager_mode=__snake_case , multi_process=__snake_case , ) __lowerCAmelCase : List[Any] = TensorFlowBenchmark(__snake_case ) __lowerCAmelCase : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__snake_case , """log.txt""" ) ).exists() )
651
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A_ : Union[str, Any] =subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") A_ : Optional[Any] =( subprocess.check_output(f'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() ) A_ : int ="|".join(sys.argv[1:]) A_ : Union[str, Any] =re.compile(Rf'^({joined_dirs}).*?\.py$') A_ : List[Any] =[x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
650
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowerCAmelCase : int ="\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __lowerCAmelCase : Any ="\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __lowerCAmelCase : Tuple ="\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__="binary" ): __SCREAMING_SNAKE_CASE : Optional[int] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ , average=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = {} for id_pred, label in zip(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' __SCREAMING_SNAKE_CASE : Any = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __SCREAMING_SNAKE_CASE : Optional[int] = [(pred, label)] __SCREAMING_SNAKE_CASE : Dict = [], [] for question, preds_labels in question_map.items(): __SCREAMING_SNAKE_CASE : Tuple = zip(*lowercase__ ) __SCREAMING_SNAKE_CASE : str = fa_score(y_true=lowercase__ , y_pred=lowercase__ , average='''macro''' ) fas.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase__ ) ) ems.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = float(sum(lowercase__ ) / len(lowercase__ ) ) __SCREAMING_SNAKE_CASE : str = sum(lowercase__ ) / len(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = float(fa_score(y_true=lowercase__ , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :str ) -> List[str]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __magic_name__( self :int ) -> Optional[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] ) -> int: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "cb": return acc_and_fa(__snake_case , __snake_case , fa_avg='''macro''' ) elif self.config_name == "record": __SCREAMING_SNAKE_CASE : List[str] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __SCREAMING_SNAKE_CASE : Optional[int] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(__snake_case , __snake_case )[0] elif self.config_name == "multirc": return evaluate_multirc(__snake_case , __snake_case ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' )
696
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [0] * len(lowerCAmelCase ) UpperCAmelCase = [] UpperCAmelCase = [1] * len(lowerCAmelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase ) ): if indegree[i] == 0: queue.append(lowerCAmelCase ) while queue: UpperCAmelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase ) print(max(lowerCAmelCase ) ) # Adjacency list of Graph lowerCAmelCase_ : List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
673
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class a__ ( UpperCamelCase__ ): """simple docstring""" __lowerCamelCase = 'philschmid/bart-large-cnn-samsum' __lowerCamelCase = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) __lowerCamelCase = 'summarizer' __lowerCamelCase = AutoTokenizer __lowerCamelCase = AutoModelForSeqaSeqLM __lowerCamelCase = ['text'] __lowerCamelCase = ['text'] def UpperCamelCase ( self , lowercase ) -> Optional[Any]: '''simple docstring''' return self.pre_processor(__snake_case , return_tensors="pt" , truncation=__snake_case ) def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' return self.model.generate(**__snake_case )[0] def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' return self.pre_processor.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )
514
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] = 2_0_0 ): snake_case_ : Tuple = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] snake_case_ : Optional[int] = [0] * (pence + 1) snake_case_ : int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
666
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = "tiny-wmt19-en-ru" # Build # borrowed from a test _lowerCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _lowerCamelCase : List[Any] = dict(zip(vocab, range(len(vocab)))) _lowerCamelCase : List[Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Union[str, Any] = Path(tmpdirname) _lowerCamelCase : Tuple = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] _lowerCamelCase : List[str] = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] _lowerCamelCase : List[str] = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) _lowerCamelCase : Tuple = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _lowerCamelCase : List[Any] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=10_00, tgt_vocab_size=10_00, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _lowerCamelCase : List[Any] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test _lowerCamelCase : str = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _lowerCamelCase : str = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
403
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
29
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( a__=None , a__=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=a__ ) @dataclass class __UpperCamelCase : lowercase_ : List[Any] = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) lowercase_ : Any = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowercase_ : List[Any] = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) lowercase_ : Optional[int] = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) lowercase_ : Dict = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) lowercase_ : Tuple = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowercase_ : int = field(default=UpperCamelCase__ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowercase_ : Optional[int] = field(default=UpperCamelCase__ , metadata={"""help""": """Benchmark training of model"""} ) lowercase_ : Optional[Any] = field(default=UpperCamelCase__ , metadata={"""help""": """Verbose memory tracing"""} ) lowercase_ : str = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) lowercase_ : Optional[int] = field( default=UpperCamelCase__ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) lowercase_ : Optional[int] = field(default=UpperCamelCase__ , metadata={"""help""": """Trace memory line by line"""} ) lowercase_ : Optional[int] = field(default=UpperCamelCase__ , metadata={"""help""": """Save result to a CSV file"""} ) lowercase_ : Union[str, Any] = field(default=UpperCamelCase__ , metadata={"""help""": """Save all print statements in a log file"""} ) lowercase_ : Any = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to print environment information"""} ) lowercase_ : Dict = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) lowercase_ : Dict = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) lowercase_ : Any = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) lowercase_ : Optional[int] = field( default=f"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) lowercase_ : int = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) lowercase_ : int = field( default=f"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) lowercase_ : Optional[Any] = field( default=f"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) lowercase_ : List[str] = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) lowercase_ : Optional[Any] = field( default=UpperCamelCase__ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def UpperCAmelCase__ ( self : List[Any] ) -> int: warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , __snake_case , ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
553
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" _A : List[str] = DDIMPipeline _A : str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _A : int = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } _A : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _A : Union[str, Any] = False def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) snake_case_ : str = DDIMScheduler() snake_case_ : str = {"""unet""": unet, """scheduler""": scheduler} return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): if str(__snake_case ).startswith("""mps""" ): snake_case_ : List[str] = torch.manual_seed(__snake_case ) else: snake_case_ : List[str] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case_ : str = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Any = """cpu""" snake_case_ : Tuple = self.get_dummy_components() snake_case_ : Union[str, Any] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case_ : str = self.get_dummy_inputs(__snake_case ) snake_case_ : int = pipe(**__snake_case ).images snake_case_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) snake_case_ : List[str] = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) snake_case_ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def __UpperCamelCase (self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCamelCase (self ): super().test_save_load_local(expected_max_difference=3e-3 ) def __UpperCamelCase (self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __UpperCamelCase (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Optional[Any] = """google/ddpm-cifar10-32""" snake_case_ : Dict = UNetaDModel.from_pretrained(__snake_case ) snake_case_ : Dict = DDIMScheduler() snake_case_ : Optional[int] = DDIMPipeline(unet=__snake_case , scheduler=__snake_case ) ddim.to(__snake_case ) ddim.set_progress_bar_config(disable=__snake_case ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : int = ddim(generator=__snake_case , eta=0.0 , output_type="""numpy""" ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : List[Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[Any] = """google/ddpm-ema-bedroom-256""" snake_case_ : str = UNetaDModel.from_pretrained(__snake_case ) snake_case_ : Any = DDIMScheduler.from_pretrained(__snake_case ) snake_case_ : Any = DDIMPipeline(unet=__snake_case , scheduler=__snake_case ) ddpm.to(__snake_case ) ddpm.set_progress_bar_config(disable=__snake_case ) snake_case_ : Union[str, Any] = torch.manual_seed(0 ) snake_case_ : List[str] = ddpm(generator=__snake_case , output_type="""numpy""" ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ : Union[str, Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
480
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a: Optional[Any] = logging.get_logger(__name__) __a: Union[str, Any] = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , lowerCamelCase : Optional[int]=224 , lowerCamelCase : str=4 , lowerCamelCase : Tuple=3 , lowerCamelCase : Any=96 , lowerCamelCase : Any=[2, 2, 6, 2] , lowerCamelCase : Union[str, Any]=[3, 6, 12, 24] , lowerCamelCase : Optional[int]=7 , lowerCamelCase : str=4.0 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Any=0.0 , lowerCamelCase : int=0.0 , lowerCamelCase : int=0.1 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Any=False , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : Dict=1E-5 , lowerCamelCase : Dict=32 , lowerCamelCase : Any=None , lowerCamelCase : List[str]=None , **lowerCamelCase : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(**__snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(__snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(__snake_case ) - 1) ) _UpperCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(__snake_case ) + 1 )] _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return 1E-4
108
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ) -> Any: """simple docstring""" __lowerCAmelCase : str = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowerCAmelCase : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __lowerCAmelCase : Union[str, Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowerCAmelCase : Any = {"""unk_token""": """<unk>"""} __lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) __lowerCAmelCase : List[str] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __lowerCAmelCase : str = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE ( self : Dict , **lowerCAmelCase : Any ) -> Any: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE ( self : Tuple , **lowerCAmelCase : List[Any] ) -> str: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_rust_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_image_processor() __lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) __lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCAmelCase : Dict = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) __lowerCAmelCase : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Dict = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : Union[str, Any] = image_processor(__snake_case , return_tensors="""np""" ) __lowerCAmelCase : Any = processor(images=__snake_case , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Tuple = self.get_tokenizer() __lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __lowerCAmelCase : Any = """lower newer""" __lowerCAmelCase : Tuple = processor(text=__snake_case ) __lowerCAmelCase : Dict = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: """simple docstring""" __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __lowerCAmelCase : List[Any] = """lower newer""" __lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() __lowerCAmelCase : Optional[Any] = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : str = self.get_tokenizer() __lowerCAmelCase : int = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __lowerCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : Optional[Any] = processor.batch_decode(__snake_case ) __lowerCAmelCase : Dict = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : List[str] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) __lowerCAmelCase : Optional[int] = """lower newer""" __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : int = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
651
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ : List[str] = "Pix2StructImageProcessor" SCREAMING_SNAKE_CASE__ : str = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , a__ , a__ ): _lowerCamelCase = False super().__init__(__snake_case , __snake_case ) def __call__( self , a__=None , a__ = None , a__ = True , a__ = False , a__ = None , a__ = None , a__ = 20_48 , a__ = 0 , a__ = None , a__ = None , a__ = False , a__ = False , a__ = False , a__ = False , a__ = False , a__ = True , a__ = None , **a__ , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _lowerCamelCase = self.tokenizer _lowerCamelCase = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _lowerCamelCase = self.image_processor( __snake_case , return_tensors=__snake_case , max_patches=__snake_case , **__snake_case ) else: # add pixel_values and bbox _lowerCamelCase = self.image_processor( __snake_case , return_tensors=__snake_case , max_patches=__snake_case , header_text=__snake_case , **__snake_case ) if text is not None and not self.image_processor.is_vqa: _lowerCamelCase = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) if "attention_mask" in text_encoding: _lowerCamelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _lowerCamelCase = text_encoding.pop('input_ids' ) else: _lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(__snake_case ) return encoding_image_processor def snake_case_ ( self , *a__ , **a__ ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def snake_case_ ( self , *a__ , **a__ ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def snake_case_ ( self ): _lowerCamelCase = self.tokenizer.model_input_names _lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
650
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
import math import tensorflow as tf from packaging import version def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(math.pi , x.dtype ) __SCREAMING_SNAKE_CASE : int = tf.cast(0.04_4715 , x.dtype ) __SCREAMING_SNAKE_CASE : Tuple = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowercase__ , 3 )) )) return x * cdf def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor(lowercase__ ) return x * tf.tanh(tf.math.softplus(lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.cast(0.04_4715 , x.dtype ) __SCREAMING_SNAKE_CASE : Tuple = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor(lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCamelCase ( lowercase__ ): return tf.clip_by_value(_gelu(lowercase__ ) , -10 , 10 ) def _UpperCamelCase ( lowercase__ , lowercase__=-1 ): __SCREAMING_SNAKE_CASE : List[Any] = tf.split(lowercase__ , 2 , axis=lowercase__ ) return a * tf.math.sigmoid(lowercase__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def _UpperCamelCase ( lowercase__ ): return tf.keras.activations.gelu(lowercase__ , approximate=lowercase__ ) __lowerCAmelCase : List[str] =tf.keras.activations.gelu __lowerCAmelCase : Dict =approximate_gelu_wrap else: __lowerCAmelCase : Dict =_gelu __lowerCAmelCase : str =_gelu_new __lowerCAmelCase : Any ={ "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def _UpperCamelCase ( lowercase__ ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
696
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase_ : Tuple = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCamelCase_ ( UpperCamelCase__ ): _A : int = field(default=UpperCamelCase__ , metadata={'help': 'Whether to use SortishSampler or not.'} ) _A : Optional[Any] = field( default=UpperCamelCase__ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _A : Any = field( default=UpperCamelCase__ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) _A : Any = field( default=UpperCamelCase__ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) _A : int = field( default=UpperCamelCase__ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(__snake_case , __snake_case ): UpperCAmelCase = v.to_dict() return d
673
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return 12 @property def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' return 12 @property def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) A__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__snake_case ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A__ = 12 A__ = 12 A__ = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } A__ = TransformeraDModel(**__snake_case ) return model def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = """cpu""" A__ = self.dummy_vqvae A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_transformer A__ = VQDiffusionScheduler(self.num_embed ) A__ = LearnedClassifierFreeSamplingEmbeddings(learnable=__snake_case ) A__ = VQDiffusionPipeline( vqvae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , transformer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) A__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A__ = """teddy bear playing in the pool""" A__ = torch.Generator(device=__snake_case ).manual_seed(0 ) A__ = pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type="np" ) A__ = output.images A__ = torch.Generator(device=__snake_case ).manual_seed(0 ) A__ = pipe( [prompt] , generator=__snake_case , output_type="np" , return_dict=__snake_case , num_inference_steps=2 )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) A__ = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = """cpu""" A__ = self.dummy_vqvae A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_transformer A__ = VQDiffusionScheduler(self.num_embed ) A__ = LearnedClassifierFreeSamplingEmbeddings( learnable=__snake_case , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) A__ = VQDiffusionPipeline( vqvae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , transformer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) A__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A__ = """teddy bear playing in the pool""" A__ = torch.Generator(device=__snake_case ).manual_seed(0 ) A__ = pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type="np" ) A__ = output.images A__ = torch.Generator(device=__snake_case ).manual_seed(0 ) A__ = pipe( [prompt] , generator=__snake_case , output_type="np" , return_dict=__snake_case , num_inference_steps=2 )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) A__ = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) A__ = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) A__ = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though A__ = torch.Generator(device=__snake_case ).manual_seed(0 ) A__ = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=__snake_case , output_type="np" , ) A__ = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
514
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( UpperCamelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = KandinskyInpaintPipeline _SCREAMING_SNAKE_CASE : List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] _SCREAMING_SNAKE_CASE : Dict = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] _SCREAMING_SNAKE_CASE : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Tuple = False @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ) -> str: '''simple docstring''' return 1_00 @property def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' snake_case_ : Dict = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def UpperCAmelCase__ ( self : str ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) snake_case_ : Tuple = MultilingualCLIP(__snake_case ) snake_case_ : Optional[int] = text_encoder.eval() return text_encoder @property def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**__snake_case ) return model @property def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : Tuple ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Dict = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = self.dummy_text_encoder snake_case_ : Optional[Any] = self.dummy_tokenizer snake_case_ : Optional[Any] = self.dummy_unet snake_case_ : Tuple = self.dummy_movq snake_case_ : List[str] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="epsilon" , thresholding=__snake_case , ) snake_case_ : str = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase__ ( self : str , A__ : Optional[Any] , A__ : int=0 ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case_ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image snake_case_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : str = Image.fromarray(np.uinta(__snake_case ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask snake_case_ : Dict = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : Any = 0 if str(__snake_case ).startswith("mps" ): snake_case_ : Dict = torch.manual_seed(__snake_case ) else: snake_case_ : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case_ : List[Any] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' snake_case_ : Tuple = """cpu""" snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : Union[str, Any] = self.pipeline_class(**__snake_case ) snake_case_ : Tuple = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case_ : Tuple = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case_ : List[Any] = output.images snake_case_ : Any = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case_ : int = image[0, -3:, -3:, -1] snake_case_ : str = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) snake_case_ : Optional[Any] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCAmelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) snake_case_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case_ : List[Any] = np.ones((7_68, 7_68) , dtype=np.floataa ) snake_case_ : Any = 0 snake_case_ : int = """a hat""" snake_case_ : int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case_ : Dict = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) snake_case_ : int = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case_ : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ : Dict = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="" , ).to_tuple() snake_case_ : Optional[Any] = pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): SCREAMING_SNAKE_CASE = n - k # Calculate C(n,k) for i in range(UpperCAmelCase__ ): result *= n - i result //= i + 1 return result def __lowerCamelCase (UpperCAmelCase__ : List[str] ): return binomial_coefficient(2 * node_count , UpperCAmelCase__ ) // (node_count + 1) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): if n < 0: raise ValueError("factorial() not defined for negative values" ) SCREAMING_SNAKE_CASE = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): return catalan_number(UpperCAmelCase__ ) * factorial(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
403
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): debug_launcher(test_script.main ) def UpperCAmelCase__ ( self ): debug_launcher(test_ops.main )
29
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase ( a__ = 8 ): '''simple docstring''' lowerCAmelCase :Optional[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(a__ ) for _ in range(a__ ) ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' i -= len(a__ ) lowerCAmelCase :Union[str, Any] = i // 3 lowerCAmelCase :List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase :Union[str, Any] = ( chars_incl + random(a__ , quotient + remainder ) + random(a__ , a__ ) + random(a__ , a__ ) ) lowerCAmelCase :Optional[int] = list(a__ ) shuffle(a__ ) return "".join(a__ ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' return "".join(secrets.choice(a__ ) for _ in range(a__ ) ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase ( a__ , a__ = 8 ): '''simple docstring''' if len(a__ ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase :int = any(char in ascii_uppercase for char in password ) lowerCAmelCase :Optional[int] = any(char in ascii_lowercase for char in password ) lowerCAmelCase :Any = any(char in digits for char in password ) lowerCAmelCase :List[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :str = int(input('Please indicate the max length of your password: ' ).strip() ) lowerCAmelCase :int = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(a__ ) ) print( 'Alternative Password generated:' , alternative_password_generator(a__ , a__ ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
553
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( UpperCamelCase__ , UpperCamelCase__): """simple docstring""" @register_to_config def __init__(self , lowercase__ , lowercase__ = None , lowercase__ = None ): super().__init__() snake_case_ : int = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ : Dict = torch.zeros(__snake_case , __snake_case ) else: snake_case_ : Tuple = None snake_case_ : int = torch.nn.Parameter(__snake_case ) class __lowercase ( UpperCamelCase__): """simple docstring""" _A : Optional[int] = 42 _A : Optional[int] = 42 _A : Optional[Any] = 42 _A : Tuple = 42 _A : int = 42 _A : Tuple = 42 def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[str] = len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings snake_case_ : str = self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case_ : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) snake_case_ : List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ : Optional[Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt snake_case_ : Any = prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ : Union[str, Any] = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ : Optional[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: snake_case_ : Any = [""""""] * batch_size snake_case_ : List[str] = text_input_ids.shape[-1] snake_case_ : Tuple = self.tokenizer( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""pt""" , ) snake_case_ : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ : Any = negative_prompt_embeds.shape[1] snake_case_ : str = negative_prompt_embeds.repeat(1 , __snake_case , 1 ) snake_case_ : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self , lowercase__ , lowercase__ = 1_00 , lowercase__ = 5.0 , lowercase__ = 1.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , ): if isinstance(__snake_case , __snake_case ): snake_case_ : str = 1 elif isinstance(__snake_case , __snake_case ): snake_case_ : List[str] = len(__snake_case ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__snake_case )}' ) snake_case_ : List[str] = batch_size * num_images_per_prompt snake_case_ : Dict = guidance_scale > 1.0 snake_case_ : Union[str, Any] = self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) # get the initial completely masked latents unless the user supplied it snake_case_ : List[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ : List[Any] = self.transformer.num_vector_embeds - 1 snake_case_ : Union[str, Any] = torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) snake_case_ : Dict = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) snake_case_ : Optional[Any] = self.scheduler.timesteps.to(self.device ) snake_case_ : List[Any] = latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance snake_case_ : Dict = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ : List[str] = self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: snake_case_ : List[str] = model_output.chunk(2 ) snake_case_ : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) snake_case_ : Any = self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) snake_case_ : Union[str, Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Union[str, Any] = self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) snake_case_ : Tuple = self.vqvae.config.vq_embed_dim snake_case_ : str = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ : Optional[int] = self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) snake_case_ : Any = self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample snake_case_ : Any = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Union[str, Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = torch.sort(__snake_case , 1 , descending=__snake_case ) snake_case_ : Any = torch.exp(__snake_case ) snake_case_ : Dict = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ : Dict = torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) snake_case_ : str = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ : Tuple = keep_mask[:, :-1, :] snake_case_ : Optional[int] = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ : Optional[int] = log_p_x_0.clone() snake_case_ : Union[str, Any] = -torch.inf # -inf = log(0) return rv
480
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Tuple = logging.get_logger(__name__) __a: Tuple = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = '''mra''' def __init__( self : Tuple , lowerCamelCase : int=5_0265 , lowerCamelCase : Optional[int]=768 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : List[Any]=12 , lowerCamelCase : int=3072 , lowerCamelCase : str="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Union[str, Any]=512 , lowerCamelCase : Any=1 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Dict=1E-5 , lowerCamelCase : int="absolute" , lowerCamelCase : Any=4 , lowerCamelCase : Tuple="full" , lowerCamelCase : int=0 , lowerCamelCase : str=0 , lowerCamelCase : str=1 , lowerCamelCase : str=0 , lowerCamelCase : Tuple=2 , **lowerCamelCase : List[Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = block_per_row _UpperCAmelCase = approx_mode _UpperCAmelCase = initial_prior_first_n_blocks _UpperCAmelCase = initial_prior_diagonal_n_blocks
108
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
from random import shuffle import tensorflow as tf from numpy import array def snake_case_ (__A : int , __A : Optional[Any] ) -> int: __lowerCAmelCase : List[str] = int(__A ) assert noofclusters < len(__A ) # Find out the dimensionality __lowerCAmelCase : Union[str, Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors __lowerCAmelCase : List[Any] = list(range(len(__A ) ) ) shuffle(__A ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __lowerCAmelCase : Any = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __lowerCAmelCase : Any = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __lowerCAmelCase : Dict = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__A ) ] ##These nodes will assign the centroid Variables the appropriate ##values __lowerCAmelCase : List[Any] = tf.placeholder("""float64""" , [dim] ) __lowerCAmelCase : Optional[Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(__A , __A ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __lowerCAmelCase : Union[str, Any] = [tf.Variable(0 ) for i in range(len(__A ) )] ##These nodes will assign an assignment Variable the appropriate ##value __lowerCAmelCase : Optional[Any] = tf.placeholder("""int32""" ) __lowerCAmelCase : List[str] = [] for assignment in assignments: cluster_assigns.append(tf.assign(__A , __A ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __lowerCAmelCase : List[str] = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __lowerCAmelCase : List[str] = tf.reduce_mean(__A , 0 ) ##Node for computing Euclidean distances # Placeholders for input __lowerCAmelCase : Union[str, Any] = tf.placeholder("""float""" , [dim] ) __lowerCAmelCase : Any = tf.placeholder("""float""" , [dim] ) __lowerCAmelCase : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__A , __A ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __lowerCAmelCase : Any = tf.placeholder("""float""" , [noofclusters] ) __lowerCAmelCase : Tuple = tf.argmin(__A , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __lowerCAmelCase : str = tf.initialize_all_variables() # Initialize all variables sess.run(__A ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __lowerCAmelCase : List[str] = 1_0_0 for _ in range(__A ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__A ) ): __lowerCAmelCase : List[str] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __lowerCAmelCase : Optional[Any] = [ sess.run(__A , feed_dict={va: vect, va: sess.run(__A )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __lowerCAmelCase : Tuple = sess.run( __A , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__A ): # Collect all the vectors assigned to this cluster __lowerCAmelCase : List[str] = [ vectors[i] for i in range(len(__A ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __lowerCAmelCase : Tuple = sess.run( __A , feed_dict={mean_input: array(__A )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __lowerCAmelCase : List[Any] = sess.run(__A ) __lowerCAmelCase : int = sess.run(__A ) return centroids, assignments
651
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
"""simple docstring""" from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : Dict = 0.0 , snake_case : int = 1.0 )-> Union[str, Any]: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
650
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
def _UpperCamelCase ( lowercase__ , lowercase__ ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
696
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase_ ( UpperCamelCase__ ): _A : Tuple = 42 _A : Dict = None def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=0.9_99 , lowerCAmelCase="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase = [] for i in range(lowerCAmelCase ): UpperCAmelCase = i / num_diffusion_timesteps UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase ) / alpha_bar_fn(lowerCAmelCase ) , lowerCAmelCase ) ) return torch.tensor(lowerCAmelCase , dtype=torch.floataa ) class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self , snake_case__ = 10_00 , snake_case__ = "fixed_small_log" , snake_case__ = True , snake_case__ = 1.0 , snake_case__ = "epsilon" , snake_case__ = "squaredcos_cap_v2" , ) -> Any: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase = betas_for_alpha_bar(__snake_case ) UpperCAmelCase = 1.0 - self.betas UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase = 1.0 # setable values UpperCAmelCase = None UpperCAmelCase = torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() ) UpperCAmelCase = variance_type def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Any: """simple docstring""" return sample def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = num_inference_steps UpperCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase = (np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase = torch.from_numpy(__snake_case ).to(__snake_case ) def UpperCamelCase_ ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None ) -> Optional[Any]: """simple docstring""" if prev_timestep is None: UpperCAmelCase = t - 1 UpperCAmelCase = self.alphas_cumprod[t] UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase = self.betas[t] else: UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase = torch.log(torch.clamp(__snake_case , min=1e-20 ) ) UpperCAmelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase = variance.log() UpperCAmelCase = beta.log() UpperCAmelCase = (predicted_variance + 1) / 2 UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=None , snake_case__ = True , ) -> List[str]: """simple docstring""" UpperCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase = torch.split(__snake_case , sample.shape[1] , dim=1 ) else: UpperCAmelCase = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase = t - 1 UpperCAmelCase = self.alphas_cumprod[t] UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase = self.betas[t] UpperCAmelCase = self.alphas[t] else: UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase = torch.clamp( __snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase = 0 if t > 0: UpperCAmelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device ) UpperCAmelCase = self._get_variance( __snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , ) if self.variance_type == "fixed_small_log": UpperCAmelCase = variance elif self.variance_type == "learned_range": UpperCAmelCase = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) UpperCAmelCase = variance * variance_noise UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase = timesteps.to(original_samples.device ) UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
673
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} lowerCAmelCase__ = [ { "type": "header", "text": { "type": "plain_text", "text": f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", "emoji": True, }, } ] lowerCAmelCase__ = 0 for log in Path().glob("""*.log"""): lowerCAmelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCAmelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCAmelCase__ = line["nodeid"] if line.get("""duration""", None) is not None: lowerCAmelCase__ = f"""{line['duration']:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase__ = [] log.unlink() lowerCAmelCase__ = "" lowerCAmelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase__ = [] lowerCAmelCase__ = {} for test in failed_tests: lowerCAmelCase__ = test[0].split("""::""") lowerCAmelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCAmelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase__ = [test[0] for test in failed_table] lowerCAmelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: lowerCAmelCase__ = "Too many failed tests, please see the full report in the Action results." lowerCAmelCase__ = len(err) + 1_0 lowerCAmelCase__ = message[: 3_0_0_0 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowerCAmelCase__ = "No failed tests! 🤗" print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCAmelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCAmelCase__ = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) lowerCAmelCase__ = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) lowerCAmelCase__ = { "type": "context", "elements": [ { "type": "plain_text", "text": f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCAmelCase__ = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase__ = "" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase__ = row[0] else: lowerCAmelCase__ = "" lowerCAmelCase__ = { "type": "section", "text": { "type": "mrkdwn", "text": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
514
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = ["model.decoder.embed_positions.weights"] def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Optional[int] ): if "emb" in name: snake_case_ : List[str] = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: snake_case_ : Optional[int] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: snake_case_ : List[str] = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: snake_case_ : Tuple = name.replace("linear1" , "fc1" ) if "linear2" in name: snake_case_ : Tuple = name.replace("linear2" , "fc2" ) if "norm1" in name: snake_case_ : Optional[int] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: snake_case_ : Optional[int] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: snake_case_ : str = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: snake_case_ : Any = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: snake_case_ : Dict = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case_ : List[str] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Any , lowerCAmelCase_: int ): snake_case_ : List[Any] = list(state_dict.keys() ) snake_case_ : List[Any] = {} for key in keys: snake_case_ : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) snake_case_ : List[Any] = rename_keys(lowerCAmelCase_ ) if "in_proj_weight" in key: # split fused qkv proj snake_case_ : Optional[Any] = val[:hidden_size, :] snake_case_ : Optional[int] = val[hidden_size : 2 * hidden_size, :] snake_case_ : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case_ : List[Any] = val else: snake_case_ : Dict = val return state_dict, enc_dec_proj_state_dict def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Any ): if checkpoint == "small": # default config values snake_case_ : int = 1_0_2_4 snake_case_ : str = 2_4 snake_case_ : int = 1_6 elif checkpoint == "medium": snake_case_ : int = 1_5_3_6 snake_case_ : List[Any] = 4_8 snake_case_ : List[str] = 2_4 elif checkpoint == "large": snake_case_ : List[Any] = 2_0_4_8 snake_case_ : Any = 4_8 snake_case_ : Union[str, Any] = 3_2 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) snake_case_ : Tuple = MusicgenDecoderConfig( hidden_size=lowerCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCAmelCase_ , num_attention_heads=lowerCAmelCase_ , ) return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] , lowerCAmelCase_: Tuple=None , lowerCAmelCase_: List[Any]=None , lowerCAmelCase_: Union[str, Any]="cpu" ): snake_case_ : str = MusicGen.get_pretrained(lowerCAmelCase_ , device=lowerCAmelCase_ ) snake_case_ : List[Any] = decoder_config_from_checkpoint(lowerCAmelCase_ ) snake_case_ : int = fairseq_model.lm.state_dict() snake_case_ : Optional[int] = rename_state_dict( lowerCAmelCase_ , hidden_size=decoder_config.hidden_size ) snake_case_ : List[Any] = TaEncoderModel.from_pretrained("t5-base" ) snake_case_ : List[Any] = EncodecModel.from_pretrained("facebook/encodec_32khz" ) snake_case_ : Any = MusicgenForCausalLM(lowerCAmelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case_ : List[str] = decoder.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(lowerCAmelCase_ ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model snake_case_ : List[Any] = MusicgenForConditionalGeneration(text_encoder=lowerCAmelCase_ , audio_encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCAmelCase_ ) # check we can do a forward pass snake_case_ : Any = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case_ : Dict = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case_ : int = model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError("Incorrect shape for logits" ) # now construct the processor snake_case_ : Dict = AutoTokenizer.from_pretrained("t5-base" ) snake_case_ : List[Any] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) snake_case_ : Optional[int] = MusicgenProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) # set the appropriate bos/pad token ids snake_case_ : List[str] = 2_0_4_8 snake_case_ : Optional[int] = 2_0_4_8 # set other default generation config params snake_case_ : str = int(3_0 * audio_encoder.config.frame_rate ) snake_case_ : Union[str, Any] = True snake_case_ : Any = 3.0 if pytorch_dump_folder is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(lowerCAmelCase_ ) processor.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) UpperCAmelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
666
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowercase ( UpperCamelCase__ ): def __snake_case( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case( self : int ) -> List[str]: '''simple docstring''' with self.assertRaises(__snake_case ): SCREAMING_SNAKE_CASE = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __snake_case( self : Tuple ) -> Tuple: '''simple docstring''' with self.assertRaises(__snake_case ): SCREAMING_SNAKE_CASE = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __snake_case( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __snake_case( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __snake_case( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __snake_case( self : int ) -> Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __snake_case( self : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __snake_case( self : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __snake_case( self : Optional[Any] ) -> Dict: '''simple docstring''' import PIL.Image SCREAMING_SNAKE_CASE = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=__snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) SCREAMING_SNAKE_CASE = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , __snake_case ) self.assertFalse(kwargs["optimize_list_casting"] ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = pa.BufferReader(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , pa.Buffer ) else pa.memory_map(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = pa.ipc.open_stream(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() SCREAMING_SNAKE_CASE = pa.schema(UpperCAmelCase__ ) if fields else None with ArrowWriter(stream=UpperCAmelCase__ , schema=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(UpperCAmelCase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() SCREAMING_SNAKE_CASE = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=UpperCAmelCase__ , features=UpperCAmelCase__ ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE = pa.ipc.open_stream(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = f.read_all() SCREAMING_SNAKE_CASE = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(UpperCAmelCase__ ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() with ArrowWriter( stream=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ , hash_salt="split_name" , check_duplicates=UpperCAmelCase__ , ) as writer: with pytest.raises(UpperCAmelCase__ ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) SCREAMING_SNAKE_CASE = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def __lowerCamelCase (UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() with ArrowWriter( stream=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ , hash_salt="split_name" , check_duplicates=UpperCAmelCase__ , ) as writer: with pytest.raises(UpperCAmelCase__ ): writer.write({"col_1": "foo", "col_2": 1} , key=1_0 ) writer.write({"col_1": "bar", "col_2": 2} , key=1_0 ) SCREAMING_SNAKE_CASE = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() with ArrowWriter( stream=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ , hash_salt="split_name" , check_duplicates=UpperCAmelCase__ , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() SCREAMING_SNAKE_CASE = pa.schema(UpperCAmelCase__ ) if fields else None with ArrowWriter(stream=UpperCAmelCase__ , schema=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(UpperCAmelCase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() SCREAMING_SNAKE_CASE = pa.schema(UpperCAmelCase__ ) if fields else None with ArrowWriter(stream=UpperCAmelCase__ , schema=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(UpperCAmelCase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() SCREAMING_SNAKE_CASE = pa.schema(UpperCAmelCase__ ) if fields else None with ArrowWriter(stream=UpperCAmelCase__ , schema=UpperCAmelCase__ , writer_batch_size=UpperCAmelCase__ ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(UpperCAmelCase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowerCamelCase (): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = {"""col_1""": pa.string(), """col_2""": pa.intaa()} SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , "test.arrow" ) with ArrowWriter(path=UpperCAmelCase__ , schema=pa.schema(UpperCAmelCase__ ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(UpperCAmelCase__ , metadata=writer._schema.metadata ) _check_output(UpperCAmelCase__ , 1 ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] ): if pa.types.is_list(UpperCAmelCase__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict ): if isinstance(lst[0] , UpperCAmelCase__ ): change_first_primitive_element_in_list(lst[0] , UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = pa.array(TypedSequence(UpperCAmelCase__ , optimized_int_type=UpperCAmelCase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : str ): # in range SCREAMING_SNAKE_CASE = pa.array(OptimizedTypedSequence(UpperCAmelCase__ , col=UpperCAmelCase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE = copy.deepcopy(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = pa.array(OptimizedTypedSequence(UpperCAmelCase__ , col=UpperCAmelCase__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ): SCREAMING_SNAKE_CASE = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=UpperCAmelCase__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = """mock://dataset-train.arrow""" with ArrowWriter(path=UpperCAmelCase__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(UpperCAmelCase__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = pa.BufferOutputStream() with ParquetWriter(stream=UpperCAmelCase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) SCREAMING_SNAKE_CASE = writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE = pq.read_table(UpperCAmelCase__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict ): import PIL.Image SCREAMING_SNAKE_CASE = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(UpperCAmelCase__ , format="png" ) SCREAMING_SNAKE_CASE = pa.BufferOutputStream() with ParquetWriter( stream=UpperCAmelCase__ , features=Features({"image": Image()} ) , embed_local_files=UpperCAmelCase__ ) as writer: writer.write({"image": image_path} ) writer.finalize() SCREAMING_SNAKE_CASE = pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE = pq.read_table(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , UpperCAmelCase__ ) with open(UpperCAmelCase__ , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __lowerCamelCase (): SCREAMING_SNAKE_CASE = pa.schema([pa.field("col_1" , pa.string() , nullable=UpperCAmelCase__ )] ) SCREAMING_SNAKE_CASE = pa.BufferOutputStream() with ArrowWriter(stream=UpperCAmelCase__ ) as writer: writer._build_writer(inferred_schema=UpperCAmelCase__ ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
403
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCamelCase ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , **UpperCAmelCase , ): super().__init__( __snake_case , split=__snake_case , features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , ) lowerCamelCase_ = path_or_paths if isinstance(__snake_case , __snake_case ) else {self.split: path_or_paths} lowerCamelCase_ = Text( cache_dir=__snake_case , data_files=__snake_case , features=__snake_case , **__snake_case , ) def UpperCAmelCase__ ( self ): if self.streaming: lowerCamelCase_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None self.builder.download_and_prepare( download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , ) lowerCamelCase_ = self.builder.as_dataset( split=self.split , verification_mode=__snake_case , in_memory=self.keep_in_memory ) return dataset
29
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCAmelCase ( a__ ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __SCREAMING_SNAKE_CASE = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __UpperCamelCase ( UpperCamelCase__ ): @staticmethod def UpperCAmelCase__ ( UpperCAmelCase : ArgumentParser ) -> List[Any]: lowerCAmelCase :List[str] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=__snake_case , required=__snake_case , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=__snake_case , required=__snake_case , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=__snake_case , required=__snake_case , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=__snake_case , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=__snake_case , default=__snake_case , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=__snake_case ) def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , *UpperCAmelCase : Optional[Any] , ) -> Any: lowerCAmelCase :Union[str, Any] = logging.get_logger('transformers-cli/converting' ) self._logger.info(f"""Loading model {model_type}""" ) lowerCAmelCase :List[Any] = model_type lowerCAmelCase :List[str] = tf_checkpoint lowerCAmelCase :Union[str, Any] = pytorch_dump_output lowerCAmelCase :Tuple = config lowerCAmelCase :Optional[int] = finetuning_task_name def UpperCAmelCase__ ( self : int ) -> Dict: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__snake_case ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase :Tuple = self._tf_checkpoint lowerCAmelCase :Tuple = """""" else: lowerCAmelCase :List[Any] = self._tf_checkpoint lowerCAmelCase :List[str] = """""" convert_transfo_xl_checkpoint_to_pytorch( __snake_case , self._config , self._pytorch_dump_output , __snake_case ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__snake_case ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
553
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowercase ( unittest.TestCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=4 , ): snake_case_ : str = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : List[str] = is_training snake_case_ : List[Any] = use_attention_mask snake_case_ : List[str] = use_token_type_ids snake_case_ : Any = use_labels snake_case_ : List[str] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : Optional[int] = type_sequence_label_size snake_case_ : Any = initializer_range snake_case_ : Any = num_choices def __UpperCamelCase (self ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Dict = None if self.use_attention_mask: snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : str = None if self.use_token_type_ids: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Dict = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase (self ): snake_case_ : int = self.prepare_config_and_inputs() snake_case_ : Dict = config_and_inputs snake_case_ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ : Dict = config_and_inputs snake_case_ : int = True snake_case_ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowercase ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" _A : List[Any] = True _A : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = FlaxRobertaPreLayerNormModelTester(self ) @slow def __UpperCamelCase (self ): for model_class_name in self.all_model_classes: snake_case_ : List[str] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__snake_case ) snake_case_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : List[Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__snake_case ) snake_case_ : int = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) snake_case_ : Optional[int] = model(__snake_case )[0] snake_case_ : str = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , __snake_case ) # compare the actual values for a slice. snake_case_ : List[Any] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def __UpperCamelCase (self ): snake_case_ : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__snake_case ) snake_case_ : int = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) snake_case_ : List[Any] = model(__snake_case )[0] # compare the actual values for a slice. snake_case_ : List[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __snake_case , atol=1e-4 ) )
480
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __a: Any = logging.get_logger(__name__) __a: Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = '''blenderbot-small''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Any , lowerCamelCase : Optional[int]=5_0265 , lowerCamelCase : Any=512 , lowerCamelCase : Tuple=8 , lowerCamelCase : Optional[Any]=2048 , lowerCamelCase : List[Any]=16 , lowerCamelCase : Any=8 , lowerCamelCase : Union[str, Any]=2048 , lowerCamelCase : Any=16 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : str=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=512 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Optional[int]=1 , lowerCamelCase : str=False , lowerCamelCase : List[Any]=0 , lowerCamelCase : int=1 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]=2 , **lowerCamelCase : str , ) -> Dict: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): '''simple docstring''' @property def lowerCamelCase ( self : Any ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _UpperCAmelCase = {0: """batch"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _UpperCAmelCase = {0: """batch""", 1: """decoder_sequence"""} _UpperCAmelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _UpperCAmelCase = self.num_layers for i in range(__snake_case ): _UpperCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: _UpperCAmelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCamelCase ( self : Any ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super().outputs else: _UpperCAmelCase = super(__snake_case , self ).outputs if self.use_past: _UpperCAmelCase = self.num_layers for i in range(__snake_case ): _UpperCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCamelCase ( self : List[Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ) -> int: """simple docstring""" _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Generate decoder inputs _UpperCAmelCase = seq_length if not self.use_past else 1 _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) _UpperCAmelCase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase = dict(**__snake_case , **__snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _UpperCAmelCase = common_inputs["""input_ids"""].shape _UpperCAmelCase = common_inputs["""decoder_input_ids"""].shape[1] _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = decoder_seq_length + 3 _UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__snake_case , __snake_case )] , dim=1 ) _UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase = self.num_layers _UpperCAmelCase = min(__snake_case , __snake_case ) _UpperCAmelCase = max(__snake_case , __snake_case ) - min_num_layers _UpperCAmelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), torch.zeros(__snake_case ), ) ) # TODO: test this. _UpperCAmelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__snake_case , __snake_case ): common_inputs["past_key_values"].append((torch.zeros(__snake_case ), torch.zeros(__snake_case )) ) return common_inputs def lowerCamelCase ( self : List[str] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _UpperCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase = self.num_layers _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = common_inputs["""attention_mask"""].dtype _UpperCAmelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) _UpperCAmelCase = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(__snake_case ) ] return common_inputs def lowerCamelCase ( self : Any , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ) -> int: """simple docstring""" _UpperCAmelCase = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = tokenizer.num_special_tokens_to_add(__snake_case ) _UpperCAmelCase = compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase = dict(tokenizer(__snake_case , return_tensors=__snake_case ) ) return common_inputs def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : PreTrainedTokenizer , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[TensorType] = None , ) -> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) elif self.task == "causal-lm": _UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) else: _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) return common_inputs def lowerCamelCase ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Any ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case ) else: _UpperCAmelCase = super(__snake_case , self )._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case )
108
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
from typing import Any def snake_case_ (__A : Union[str, Any] , __A : Tuple , __A : Optional[int] , __A : List[str] , __A : Tuple , ) -> List[Any]: _validation( __A , __A , __A , __A , __A , ) # Creates data structures and fill initial step __lowerCAmelCase : dict = {} __lowerCAmelCase : dict = {} for state in states_space: __lowerCAmelCase : Optional[int] = observations_space[0] __lowerCAmelCase : List[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __lowerCAmelCase : Any = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__A ) ): __lowerCAmelCase : List[str] = observations_space[o] __lowerCAmelCase : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __lowerCAmelCase : Union[str, Any] = """""" __lowerCAmelCase : int = -1 for k_state in states_space: __lowerCAmelCase : Any = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __lowerCAmelCase : Tuple = probability __lowerCAmelCase : List[str] = k_state # Update probabilities and pointers dicts __lowerCAmelCase : Optional[int] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __lowerCAmelCase : List[str] = arg_max # The final observation __lowerCAmelCase : Optional[Any] = observations_space[len(__A ) - 1] # argmax for given final observation __lowerCAmelCase : List[Any] = """""" __lowerCAmelCase : List[str] = -1 for k_state in states_space: __lowerCAmelCase : Any = probabilities[(k_state, final_observation)] if probability > max_probability: __lowerCAmelCase : List[str] = probability __lowerCAmelCase : List[str] = k_state __lowerCAmelCase : Tuple = arg_max # Process pointers backwards __lowerCAmelCase : Any = last_state __lowerCAmelCase : List[Any] = [] for o in range(len(__A ) - 1 , -1 , -1 ): result.append(__A ) __lowerCAmelCase : Tuple = pointers[previous, observations_space[o]] result.reverse() return result def snake_case_ (__A : List[str] , __A : Dict , __A : str , __A : Dict , __A : Optional[int] , ) -> Tuple: _validate_not_empty( __A , __A , __A , __A , __A , ) _validate_lists(__A , __A ) _validate_dicts( __A , __A , __A ) def snake_case_ (__A : List[Any] , __A : int , __A : Dict , __A : str , __A : str , ) -> str: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def snake_case_ (__A : Optional[int] , __A : int ) -> Tuple: _validate_list(__A , """observations_space""" ) _validate_list(__A , """states_space""" ) def snake_case_ (__A : Union[str, Any] , __A : List[Any] ) -> Any: if not isinstance(_object , __A ): __lowerCAmelCase : Any = f'''{var_name} must be a list''' raise ValueError(__A ) else: for x in _object: if not isinstance(__A , __A ): __lowerCAmelCase : List[str] = f'''{var_name} must be a list of strings''' raise ValueError(__A ) def snake_case_ (__A : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , ) -> str: _validate_dict(__A , """initial_probabilities""" , __A ) _validate_nested_dict(__A , """transition_probabilities""" ) _validate_nested_dict(__A , """emission_probabilities""" ) def snake_case_ (__A : Optional[int] , __A : int ) -> Optional[Any]: _validate_dict(_object , __A , __A ) for x in _object.values(): _validate_dict(__A , __A , __A , __A ) def snake_case_ (__A : List[Any] , __A : Tuple , __A : Optional[int] , __A : str = False ) -> Union[str, Any]: if not isinstance(_object , __A ): __lowerCAmelCase : int = f'''{var_name} must be a dict''' raise ValueError(__A ) if not all(isinstance(__A , __A ) for x in _object ): __lowerCAmelCase : Tuple = f'''{var_name} all keys must be strings''' raise ValueError(__A ) if not all(isinstance(__A , __A ) for x in _object.values() ): __lowerCAmelCase : Tuple = """nested dictionary """ if nested else """""" __lowerCAmelCase : Any = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(__A ) if __name__ == "__main__": from doctest import testmod testmod()
651
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE_ ( snake_case : int , snake_case : Dict , snake_case : Tuple=0 )-> List[str]: # Format the message. if name is None: _lowerCamelCase = None else: _lowerCamelCase = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _lowerCamelCase = fmt.format(snake_case ) # Print and recurse (if needed). if isinstance(snake_case , snake_case ): if msg is not None: print(snake_case ) for k in val.keys(): recursive_print(snake_case , val[k] , spaces + 2 ) elif isinstance(snake_case , torch.Tensor ): print(snake_case , ':' , val.size() ) else: print(snake_case , ':' , snake_case ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : int , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> Dict: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _lowerCamelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCamelCase = param.view(*snake_case ) _lowerCamelCase = param.transpose(0 , 2 ) _lowerCamelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCamelCase = param.view(*snake_case ) _lowerCamelCase = param.transpose(0 , 1 ).contiguous() _lowerCamelCase = param.view(*snake_case ) return param def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Tuple )-> Union[str, Any]: # The converted output model. _lowerCamelCase = {} # old versions did not store training args _lowerCamelCase = input_state_dict.get('args' , snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCamelCase = ds_args.padded_vocab_size _lowerCamelCase = ds_args.max_position_embeddings _lowerCamelCase = ds_args.hidden_size _lowerCamelCase = ds_args.num_layers _lowerCamelCase = ds_args.num_attention_heads _lowerCamelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCamelCase = config.n_head # The hidden_size per head. _lowerCamelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCamelCase = input_state_dict["""checkpoint_version"""] else: _lowerCamelCase = 0.0 # The model. _lowerCamelCase = input_state_dict["""model"""] # The language model. _lowerCamelCase = model["""language_model"""] # The embeddings. _lowerCamelCase = lm["""embedding"""] # The word embeddings. _lowerCamelCase = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _lowerCamelCase = word_embeddings[: config.vocab_size, :] _lowerCamelCase = word_embeddings # The position embeddings. _lowerCamelCase = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCamelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. _lowerCamelCase = pos_embeddings # The transformer. _lowerCamelCase = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _lowerCamelCase = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _lowerCamelCase = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCamelCase = layer_re.match(snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCamelCase = int(m.group(1 ) ) # The name of the operation. _lowerCamelCase = m.group(2 ) # Is it a weight or a bias? _lowerCamelCase = m.group(3 ) # The name of the layer. _lowerCamelCase = f'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _lowerCamelCase = """ln_1""" if op_name.startswith('input' ) else """ln_2""" _lowerCamelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , snake_case , snake_case ) _lowerCamelCase = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCamelCase = torch.tensor(-1e4 , dtype=torch.floataa ) _lowerCamelCase = masked_bias _lowerCamelCase = fix_query_key_value_ordering(snake_case , snake_case , 3 , snake_case , snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCamelCase = out_val.transpose(0 , 1 ).contiguous() # Store. _lowerCamelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCamelCase = fix_query_key_value_ordering(snake_case , snake_case , 3 , snake_case , snake_case ) # Store. No change of shape. _lowerCamelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCamelCase = megatron_to_transformers[op_name] _lowerCamelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCamelCase = megatron_to_transformers[op_name] _lowerCamelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCamelCase = transformer["""final_layernorm.weight"""] _lowerCamelCase = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCamelCase = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE_ ( )-> Union[str, Any]: # Create the argument parser. _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=snake_case , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=snake_case , help='An optional config json file describing the pre-trained model.' , ) _lowerCamelCase = parser.parse_args() # Extract the basename. _lowerCamelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _lowerCamelCase = torch.load(snake_case , map_location='cpu' ) else: _lowerCamelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) _lowerCamelCase = input_state_dict.get('args' , snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCamelCase = """gelu_fast""" elif ds_args.openai_gelu: _lowerCamelCase = """gelu_new""" else: _lowerCamelCase = """gelu""" else: # in the very early days this used to be "gelu_new" _lowerCamelCase = """gelu_new""" # Spell out all parameters in case the defaults change. _lowerCamelCase = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type='cls_index' , summary_use_proj=snake_case , summary_activation=snake_case , summary_proj_to_labels=snake_case , summary_first_dropout=0.1 , scale_attn_weights=snake_case , use_cache=snake_case , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _lowerCamelCase = GPTaConfig.from_json_file(args.config_file ) _lowerCamelCase = ["""GPT2LMHeadModel"""] # Convert. print('Converting' ) _lowerCamelCase = convert_megatron_checkpoint(snake_case , snake_case , snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case , snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCamelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCamelCase = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _lowerCamelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'Unrecognized tokenizer_type {tokenizer_type}' ) else: _lowerCamelCase = """gpt2""" _lowerCamelCase = AutoTokenizer.from_pretrained(snake_case ) _lowerCamelCase = type(snake_case ).__name__ _lowerCamelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(snake_case ) # Save tokenizer based on args print(f'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(snake_case ) # Store the state_dict to file. _lowerCamelCase = os.path.join(snake_case , 'pytorch_model.bin' ) print(f'Saving checkpoint to \"{output_checkpoint_file}\"' ) torch.save(snake_case , snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
650
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowerCAmelCase : Optional[Any] =datasets.utils.logging.get_logger(__name__) @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = 10_000 SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ParquetConfig def __magic_name__( self :Union[str, Any] ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __SCREAMING_SNAKE_CASE : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): __SCREAMING_SNAKE_CASE : Optional[Any] = data_files if isinstance(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : List[str] = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __SCREAMING_SNAKE_CASE : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : Union[str, Any] = [dl_manager.iter_files(__snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__snake_case ): with open(__snake_case , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(__snake_case ) ) break splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={'''files''': files} ) ) return splits def __magic_name__( self :List[Any] , lowerCAmelCase__ :pa.Table ) -> List[str]: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE : Union[str, Any] = table_cast(__snake_case , self.info.features.arrow_schema ) return pa_table def __magic_name__( self :Tuple , lowerCAmelCase__ :str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Optional[Any] = pq.ParquetFile(__snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(__snake_case ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise
696
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = sorted(numsa + numsa ) UpperCAmelCase = divmod(len(lowerCAmelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Union[str, Any] = [float(x) for x in input('''Enter the elements of first array: ''').split()] lowerCAmelCase_ : Dict = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
673
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __A ( tf.keras.layers.Layer ): def __init__( self :Optional[int] , __snake_case :Dict[str, int] , __snake_case :List[str] , __snake_case :int = None , __snake_case :int = None ): '''simple docstring''' super().__init__() __magic_name__ : Optional[int] =pad_token_id __magic_name__ : List[Any] =max_length __magic_name__ : Dict =vocab __magic_name__ : int =merges __magic_name__ : Optional[int] =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def A__ ( cls :List[Any] , __snake_case :GPTaTokenizer , *__snake_case :int , **__snake_case :Any ): '''simple docstring''' __magic_name__ : List[Any] =[""" """.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : str =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Dict , __snake_case :Union[str, os.PathLike] , *__snake_case :Union[str, Any] , **__snake_case :int ): '''simple docstring''' __magic_name__ : Dict =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def A__ ( cls :Optional[Any] , __snake_case :List[Any] ): '''simple docstring''' return cls(**__snake_case ) def A__ ( self :Union[str, Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self :List[Any] , __snake_case :Dict , __snake_case :int = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self.tf_tokenizer(__snake_case ) __magic_name__ : Tuple =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : Tuple =max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ , __magic_name__ : Tuple =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
21
0
lowerCAmelCase__ = range(2, 2_0 + 1) lowerCAmelCase__ = [1_0**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> str: '''simple docstring''' A__ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ) A__ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) ) A__ = 0, 0 A__ = n - i A__ = memo.get(SCREAMING_SNAKE_CASE_ ) if sub_memo is not None: A__ = sub_memo.get(SCREAMING_SNAKE_CASE_ ) if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: # find and make the largest jump without going over A__ = -1 for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ = _k break if max_jump >= 0: A__ = jumps[max_jump] # since the difference between jumps is cached, add c A__ = diff + c for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ): A__ = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) if new_c > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: A__ = [] else: A__ = {c: []} A__ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped A__ = sub_memo[c] # keep jumps sorted by # of terms skipped A__ = 0 while j < len(SCREAMING_SNAKE_CASE_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Optional[int] ) -> Optional[int]: '''simple docstring''' if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE_ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ = i A__ = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ = ds_c + ds_b diff += addend A__ = 0 for j in range(SCREAMING_SNAKE_CASE_ ): A__ = a_i[j] + addend A__ = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return diff, i - start_i def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Tuple ) -> Union[str, Any]: '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): A__ = digits[j] + addend if s >= 1_0: A__ = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) A__ = addend // 1_0 + quotient else: A__ = s A__ = addend // 1_0 if addend == 0: break while addend > 0: A__ = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) digits.append(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] = 1_0**1_5 ) -> Optional[Any]: '''simple docstring''' A__ = [1] A__ = 1 A__ = 0 while True: A__ = next_term(SCREAMING_SNAKE_CASE_ , 2_0 , i + dn , SCREAMING_SNAKE_CASE_ ) dn += terms_jumped if dn == n - i: break A__ = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
514
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case__ ( UpperCamelCase__ ): _SCREAMING_SNAKE_CASE : str = "xlm-roberta-xl" def __init__( self : Dict , A__ : Optional[Any]=25_08_80 , A__ : List[Any]=25_60 , A__ : Optional[Any]=36 , A__ : Any=32 , A__ : int=1_02_40 , A__ : List[Any]="gelu" , A__ : Union[str, Any]=0.1 , A__ : Optional[Any]=0.1 , A__ : str=5_14 , A__ : Union[str, Any]=1 , A__ : Optional[int]=0.02 , A__ : str=1E-05 , A__ : str=1 , A__ : int=0 , A__ : Tuple=2 , A__ : Optional[int]="absolute" , A__ : str=True , A__ : Any=None , **A__ : Dict , ) -> int: '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) snake_case_ : List[str] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Any = hidden_act snake_case_ : List[str] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : Any = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Dict = position_embedding_type snake_case_ : Any = use_cache snake_case_ : Dict = classifier_dropout class snake_case__ ( UpperCamelCase__ ): @property def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
666
from collections.abc import Sequence def lowerCAmelCase_ ( lowerCamelCase = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __magic_name__ : str =nums[0] for i in range(1 , len(lowerCamelCase ) ): __magic_name__ : Any =nums[i] __magic_name__ : Dict =max(lowerCamelCase , ans + num , lowerCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : List[str] = int(input("Enter number of elements : ").strip()) UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
21
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class lowercase ( UpperCamelCase__ , UpperCamelCase__ ): lowercase__ : Any = """nat""" lowercase__ : Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , _UpperCamelCase : Tuple=4 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=64 , _UpperCamelCase : Optional[Any]=[3, 4, 6, 5] , _UpperCamelCase : Tuple=[2, 4, 8, 16] , _UpperCamelCase : Optional[int]=7 , _UpperCamelCase : Optional[int]=3.0 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[int]=None , **_UpperCamelCase : List[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__snake_case ) SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(__snake_case ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__snake_case ) - 1) ) SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(__snake_case ) + 1 )] SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names )
403
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __A : UpperCamelCase = 42 UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""Translation""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def __call__( self :Union[str, Any] ): '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def A__ ( self :List[Any] ): '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __A : UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # Automatically constructed UpperCamelCase = "dict" UpperCamelCase = None UpperCamelCase = field(default="""TranslationVariableLanguages""" , init=UpperCamelCase__ , repr=UpperCamelCase__ ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None __magic_name__ : Optional[int] =len(self.languages ) if self.languages else None def __call__( self :List[str] ): '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def A__ ( self :str , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[int] =set(self.languages ) if self.languages and set(__snake_case ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(__snake_case ) - lang_set ) )}) are not in valid set ({', '.join(__snake_case )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Any =[] for lang, text in translation_dict.items(): if isinstance(__snake_case , __snake_case ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : List[str] =zip(*sorted(__snake_case ) ) return {"language": languages, "translation": translations} def A__ ( self :List[Any] ): '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
21
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase ( lowerCAmelCase__="ro" ,lowerCAmelCase__="en" ,lowerCAmelCase__="wmt16" ,lowerCAmelCase__=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) lowerCamelCase_ = f"{src_lang}-{tgt_lang}" print(f"Converting {dataset}-{pair}" ) lowerCamelCase_ = datasets.load_dataset(lowerCAmelCase__ ,lowerCAmelCase__ ) if save_dir is None: lowerCamelCase_ = f"{dataset}-{pair}" lowerCamelCase_ = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(f"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets lowerCamelCase_ = """val""" if split == """validation""" else split lowerCamelCase_ = save_dir.joinpath(f"{fn}.source" ) lowerCamelCase_ = save_dir.joinpath(f"{fn}.target" ) lowerCamelCase_ = src_path.open('''w+''' ) lowerCamelCase_ = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowerCamelCase_ = x["""translation"""] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
29
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
0
"""simple docstring""" def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowerCAmelCase :Tuple = str(bin(a__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowerCAmelCase :List[Any] = str(bin(a__ ) )[2:] if shift_amount >= len(a__ ): return "0b0" lowerCAmelCase :Tuple = binary_number[: len(a__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if number >= 0: # Get binary representation of positive number lowerCAmelCase :List[str] = """0""" + str(bin(a__ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number lowerCAmelCase :str = len(bin(a__ )[3:] ) # Find 2's complement of number lowerCAmelCase :List[Any] = bin(abs(a__ ) - (1 << binary_number_length) )[3:] lowerCAmelCase :Union[str, Any] = ( """1""" + """0""" * (binary_number_length - len(a__ )) + binary_number ) if shift_amount >= len(a__ ): return "0b" + binary_number[0] * len(a__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(a__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
553
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) snake_case_ : int = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
480
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _lowerCamelCase = 1 @register_to_config def __init__( self : Any , lowerCamelCase : Tuple=2000 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Any=20 , lowerCamelCase : Optional[int]=1E-3 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None def lowerCamelCase ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, torch.device] = None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def lowerCamelCase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : List[str]=None ) -> Union[str, Any]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _UpperCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _UpperCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): _UpperCAmelCase = std.unsqueeze(-1 ) _UpperCAmelCase = -score / std # compute _UpperCAmelCase = -1.0 / len(self.timesteps ) _UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _UpperCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _UpperCAmelCase = beta_t.unsqueeze(-1 ) _UpperCAmelCase = -0.5 * beta_t * x _UpperCAmelCase = torch.sqrt(__snake_case ) _UpperCAmelCase = drift - diffusion**2 * score _UpperCAmelCase = x + drift * dt # add noise _UpperCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) _UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.config.num_train_timesteps
108
UpperCAmelCase_ : Tuple = 0 # The first color of the flag. UpperCAmelCase_ : Any = 1 # The second color of the flag. UpperCAmelCase_ : str = 2 # The third color of the flag. UpperCAmelCase_ : Tuple = (red, white, blue) def lowerCAmelCase_ ( lowerCamelCase ): if not sequence: return [] if len(lowerCamelCase ) == 1: return list(lowerCamelCase ) __magic_name__ : int =0 __magic_name__ : str =len(lowerCamelCase ) - 1 __magic_name__ : Optional[Any] =0 while mid <= high: if sequence[mid] == colors[0]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __magic_name__ , __magic_name__ : Optional[Any] =sequence[high], sequence[mid] high -= 1 else: __magic_name__ : Optional[int] =F"The elements inside the sequence must contains only {colors} values" raise ValueError(lowerCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = input("Enter numbers separated by commas:\n").strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
21
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ (__A : Union[str, Any] , __A : Union[str, Any] ) -> Optional[int]: assert isinstance(__A , __A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def snake_case_ (__A : Union[str, Any] , __A : Optional[Any] , __A : Tuple ) -> Tuple: __lowerCAmelCase : Dict = tmp_path / """cache""" __lowerCAmelCase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase : Dict = ParquetDatasetReader(__A , cache_dir=__A , keep_in_memory=__A ).read() _check_parquet_dataset(__A , __A ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def snake_case_ (__A : Tuple , __A : List[Any] , __A : Optional[int] ) -> List[str]: __lowerCAmelCase : Union[str, Any] = tmp_path / """cache""" __lowerCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowerCAmelCase : List[str] = features.copy() if features else default_expected_features __lowerCAmelCase : Any = ( Features({feature: Value(__A ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase : Dict = ParquetDatasetReader(__A , features=__A , cache_dir=__A ).read() _check_parquet_dataset(__A , __A ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def snake_case_ (__A : Tuple , __A : int , __A : List[Any] ) -> Union[str, Any]: __lowerCAmelCase : str = tmp_path / """cache""" __lowerCAmelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowerCAmelCase : Optional[Any] = ParquetDatasetReader(__A , cache_dir=__A , split=__A ).read() _check_parquet_dataset(__A , __A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def snake_case_ (__A : int , __A : Any , __A : Tuple ) -> List[Any]: if issubclass(__A , __A ): __lowerCAmelCase : Dict = parquet_path elif issubclass(__A , __A ): __lowerCAmelCase : str = [parquet_path] __lowerCAmelCase : str = tmp_path / """cache""" __lowerCAmelCase : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowerCAmelCase : List[str] = ParquetDatasetReader(__A , cache_dir=__A ).read() _check_parquet_dataset(__A , __A ) def snake_case_ (__A : int , __A : str , __A : Dict=("train",) ) -> Any: assert isinstance(__A , __A ) for split in splits: __lowerCAmelCase : Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def snake_case_ (__A : Optional[int] , __A : Optional[int] , __A : Any ) -> int: __lowerCAmelCase : Optional[int] = tmp_path / """cache""" __lowerCAmelCase : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase : str = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__A , keep_in_memory=__A ).read() _check_parquet_datasetdict(__A , __A ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def snake_case_ (__A : Dict , __A : List[Any] , __A : int ) -> Tuple: __lowerCAmelCase : Optional[int] = tmp_path / """cache""" __lowerCAmelCase : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowerCAmelCase : List[str] = features.copy() if features else default_expected_features __lowerCAmelCase : Optional[Any] = ( Features({feature: Value(__A ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase : Union[str, Any] = ParquetDatasetReader({"""train""": parquet_path} , features=__A , cache_dir=__A ).read() _check_parquet_datasetdict(__A , __A ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def snake_case_ (__A : str , __A : int , __A : str ) -> List[Any]: if split: __lowerCAmelCase : Optional[int] = {split: parquet_path} else: __lowerCAmelCase : int = """train""" __lowerCAmelCase : Dict = {"""train""": parquet_path, """test""": parquet_path} __lowerCAmelCase : Dict = tmp_path / """cache""" __lowerCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowerCAmelCase : List[str] = ParquetDatasetReader(__A , cache_dir=__A ).read() _check_parquet_datasetdict(__A , __A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ (__A : Any , __A : List[str] ) -> Optional[int]: __lowerCAmelCase : str = ParquetDatasetWriter(__A , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __lowerCAmelCase : Any = pq.ParquetFile(tmp_path / """foo.parquet""" ) __lowerCAmelCase : Optional[int] = pf.read() assert dataset.data.table == output_table def snake_case_ (__A : int , __A : Union[str, Any] ) -> int: __lowerCAmelCase : str = str(shared_datadir / """test_image_rgb.jpg""" ) __lowerCAmelCase : Tuple = {"""image""": [image_path]} __lowerCAmelCase : str = Features({"""image""": Image()} ) __lowerCAmelCase : Any = Dataset.from_dict(__A , features=__A ) __lowerCAmelCase : int = ParquetDatasetWriter(__A , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __lowerCAmelCase : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features __lowerCAmelCase : Any = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__A ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def snake_case_ (__A : str , __A : Any ) -> Union[str, Any]: assert get_writer_batch_size(__A ) == expected
651
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : List[Any] = None , snake_case : Optional[int] = None )-> int: if start is None: _lowerCamelCase = 0 if end is None: _lowerCamelCase = len(snake_case ) - 1 if start >= end: return _lowerCamelCase = (start + end) // 2 slowsort(snake_case , snake_case , snake_case ) slowsort(snake_case , mid + 1 , snake_case ) if sequence[end] < sequence[mid]: _lowerCamelCase = sequence[mid], sequence[end] slowsort(snake_case , snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
650
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :List[str] , __snake_case :int , __snake_case :int , __snake_case :float , **__snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =feature_size __magic_name__ : Union[str, Any] =sampling_rate __magic_name__ : List[Any] =padding_value __magic_name__ : List[str] =kwargs.pop("""padding_side""" , """right""" ) __magic_name__ : Tuple =kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def A__ ( self :Any , __snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case :Union[bool, str, PaddingStrategy] = True , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__ : Union[str, Any] ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) __magic_name__ : int =processed_features[self.model_input_names[0]] __magic_name__ : Union[str, Any] =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__ : List[str] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__ : Optional[int] =required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__ : Optional[Any] =0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__ : List[str] =required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__ : int ="""tf""" elif is_torch_tensor(__snake_case ): __magic_name__ : str ="""pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__ : List[Any] ="""np""" else: raise ValueError( f"type of {first_element} unknown: {type(__snake_case )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__ : List[str] =to_numpy(__snake_case ) else: __magic_name__ : str =[to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__ : Dict =self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__ : Optional[Any] =processed_features[self.model_input_names[0]] __magic_name__ : Dict =len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__ : Optional[int] =[] for i in range(__snake_case ): __magic_name__ : Any ={k: v[i] for k, v in processed_features.items()} # truncation __magic_name__ : List[str] =self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__ : Optional[int] =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__ : Tuple =PaddingStrategy.MAX_LENGTH __magic_name__ : str ={} for i in range(__snake_case ): # padding __magic_name__ : List[str] =self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__ : Dict =[] if value.dtype is np.dtype(np.floataa ): __magic_name__ : Optional[int] =value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A__ ( self :Any , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' __magic_name__ : Dict =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__ : Any =len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : Dict =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : List[Any] =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__ : int =np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__ : List[Any] =max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__ : Tuple =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__ : str =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__ : str =np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__ : Optional[int] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__ : List[Any] =np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self :Optional[Any] , __snake_case :Union[Dict[str, np.ndarray], BatchFeature] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__ : Union[str, Any] =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__ : List[str] =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__ : Any =len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__ : List[Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__ : List[str] =processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self :List[Any] , __snake_case :str=False , __snake_case :Optional[int]=None ): '''simple docstring''' if padding is not False: if padding is True: __magic_name__ : Union[str, Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__ : Optional[int] =PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__ : Any =padding else: __magic_name__ : Any =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
21
0
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = mf_knapsack(i - 1 , lowercase__ , lowercase__ , lowercase__ ) else: __SCREAMING_SNAKE_CASE : Tuple = max( mf_knapsack(i - 1 , lowercase__ , lowercase__ , lowercase__ ) , mf_knapsack(i - 1 , lowercase__ , lowercase__ , j - wt[i - 1] ) + val[i - 1] , ) __SCREAMING_SNAKE_CASE : Any = val return f[i][j] def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __SCREAMING_SNAKE_CASE : Optional[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __SCREAMING_SNAKE_CASE : str = dp[i - 1][w_] return dp[n][w_], dp def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if not (isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) if num_items != len(lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( """The number of weights must be the same as the number of values.\n""" F'''But got {num_items} weights and {len(lowercase__ )} values''' ) raise ValueError(lowercase__ ) for i in range(lowercase__ ): if not isinstance(wt[i] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = ( """All weights must be integers but got weight of """ F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : set = set() _construct_solution(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return optimal_val, example_optional_set def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase__ , lowercase__ , i - 1 , lowercase__ , lowercase__ ) else: optimal_set.add(lowercase__ ) _construct_solution(lowercase__ , lowercase__ , i - 1 , j - wt[i - 1] , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =[3, 2, 4, 4] __lowerCAmelCase : str =[4, 3, 2, 3] __lowerCAmelCase : Any =4 __lowerCAmelCase : List[str] =6 __lowerCAmelCase : Tuple =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __lowerCAmelCase : Dict =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __lowerCAmelCase : Any =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
696
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : str = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' print("""Loading config file...""" ) def flatten_yaml_as_dict(lowerCAmelCase , lowerCAmelCase="" , lowerCAmelCase="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(lowerCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCAmelCase , lowerCAmelCase , sep=lowerCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(lowerCAmelCase ) UpperCAmelCase = argparse.Namespace() with open(lowerCAmelCase , """r""" ) as yaml_file: try: UpperCAmelCase = yaml.load(lowerCAmelCase , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(lowerCAmelCase ) for k, v in flat_cfg.items(): setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(lowerCAmelCase , str(lowerCAmelCase ) ) ) return config def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith("""imagenet1k_""" ): UpperCAmelCase = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): UpperCAmelCase = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = """ade20k-id2label.json""" UpperCAmelCase = True elif task_name.startswith("""voc_""" ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = """pascal-voc-id2label.json""" UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(lowerCAmelCase ) assert getattr(lowerCAmelCase , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(lowerCAmelCase , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(lowerCAmelCase , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(lowerCAmelCase , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(lowerCAmelCase , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(lowerCAmelCase , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) UpperCAmelCase = getattr(lowerCAmelCase , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) UpperCAmelCase = getattr(lowerCAmelCase , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = dct.pop(lowerCAmelCase ) UpperCAmelCase = val def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' if base_model: UpperCAmelCase = """""" else: UpperCAmelCase = """mobilevitv2.""" UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: UpperCAmelCase = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: UpperCAmelCase = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: UpperCAmelCase = k_new.replace("""conv_1.""" , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: UpperCAmelCase = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: UpperCAmelCase = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: UpperCAmelCase = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: UpperCAmelCase = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(lowerCAmelCase ) for k in keys_to_ignore: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = get_mobilevitva_config(lowerCAmelCase , lowerCAmelCase ) # load original state_dict UpperCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(lowerCAmelCase ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(lowerCAmelCase ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(lowerCAmelCase ) UpperCAmelCase = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load modified state_dict model.load_state_dict(lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase = model(**lowerCAmelCase ) # verify classification model if task_name.startswith("""imagenet""" ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , lowerCAmelCase , atol=1e-4 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' '''\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ : Optional[int] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
673
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase = False @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 32 @property def A__ ( self :List[Any] ): '''simple docstring''' return self.time_input_dim @property def A__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self :List[Any] ): '''simple docstring''' return 1_00 @property def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : str =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __magic_name__ : Tuple =MultilingualCLIP(__snake_case ) __magic_name__ : Optional[int] =text_encoder.eval() return text_encoder @property def A__ ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Optional[Any] ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __magic_name__ : Union[str, Any] =UNetaDConditionModel(**__snake_case ) return model @property def A__ ( self :List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Dict =VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.dummy_text_encoder __magic_name__ : Optional[Any] =self.dummy_tokenizer __magic_name__ : Optional[Any] =self.dummy_unet __magic_name__ : Tuple =self.dummy_movq __magic_name__ : List[str] =DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) __magic_name__ : str ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self :str , __snake_case :Optional[Any] , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Union[str, Any] =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : Dict =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image __magic_name__ : str =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : str =Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __magic_name__ : Dict =np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : Any =0 if str(__snake_case ).startswith("""mps""" ): __magic_name__ : Dict =torch.manual_seed(__snake_case ) else: __magic_name__ : Tuple =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__ : List[Any] ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple ="""cpu""" __magic_name__ : List[Any] =self.get_dummy_components() __magic_name__ : Union[str, Any] =self.pipeline_class(**__snake_case ) __magic_name__ : Tuple =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Tuple =pipe(**self.get_dummy_inputs(__snake_case ) ) __magic_name__ : List[Any] =output.images __magic_name__ : Any =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __magic_name__ : int =image[0, -3:, -3:, -1] __magic_name__ : str =image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : Optional[Any] =np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self :Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __magic_name__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __magic_name__ : List[Any] =np.ones((7_68, 7_68) , dtype=np.floataa ) __magic_name__ : Any =0 __magic_name__ : int ="""a hat""" __magic_name__ : int =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __magic_name__ : Dict =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __magic_name__ : int =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __magic_name__ : Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) __magic_name__ , __magic_name__ : Dict =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __magic_name__ : Optional[Any] =pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __magic_name__ : Optional[int] =output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
21
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a__ ( UpperCamelCase__ ): """simple docstring""" __lowerCamelCase = 'nllb-moe' __lowerCamelCase = ['past_key_values'] __lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowercase=128112 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.05 , lowercase=0.05 , lowercase=True , lowercase=True , lowercase="relu" , lowercase=1024 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=False , lowercase="float32" , lowercase=False , lowercase=128 , lowercase=64 , lowercase=4 , lowercase=4 , lowercase=0.001 , lowercase=0.001 , lowercase="all" , lowercase=False , lowercase=False , lowercase=1.0 , lowercase=0.2 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=False , **lowercase , ) -> Union[str, Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True A__ = router_z_loss_coef A__ = router_aux_loss_coef A__ = decoder_sparse_step A__ = encoder_sparse_step A__ = num_experts A__ = expert_capacity A__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) A__ = router_dtype A__ = router_ignore_padding_tokens A__ = batch_prioritized_routing A__ = second_expert_policy A__ = normalize_router_prob_before_dropping A__ = moe_eval_capacity_token_fraction A__ = moe_token_dropout A__ = output_router_logits super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
514
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self :int , __snake_case :List[Any] , __snake_case :List[Any]=2 , __snake_case :Dict=True , __snake_case :Tuple=False , __snake_case :List[str]=10 , __snake_case :List[str]=3 , __snake_case :Union[str, Any]=32 * 8 , __snake_case :Optional[int]=32 * 8 , __snake_case :Any=4 , __snake_case :Union[str, Any]=64 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : List[Any] =batch_size __magic_name__ : List[str] =is_training __magic_name__ : List[str] =use_auxiliary_loss __magic_name__ : Union[str, Any] =num_queries __magic_name__ : str =num_channels __magic_name__ : Union[str, Any] =min_size __magic_name__ : Union[str, Any] =max_size __magic_name__ : Optional[int] =num_labels __magic_name__ : Tuple =hidden_dim __magic_name__ : Any =hidden_dim def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) __magic_name__ : List[Any] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) __magic_name__ : List[str] =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() __magic_name__ : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() __magic_name__ : str =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Dict =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __magic_name__ : str =self.num_queries __magic_name__ : Dict =self.num_labels __magic_name__ : int =[1, 1, 1, 1] __magic_name__ : List[str] =self.num_channels __magic_name__ : str =64 __magic_name__ : List[str] =1_28 __magic_name__ : Optional[Any] =self.hidden_dim __magic_name__ : Tuple =self.hidden_dim __magic_name__ : Optional[int] =self.hidden_dim return config def A__ ( self :Any ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =self.prepare_config_and_inputs() __magic_name__ : Optional[Any] ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self :Union[str, Any] , __snake_case :Tuple , __snake_case :Dict ): '''simple docstring''' __magic_name__ : int =output.encoder_hidden_states __magic_name__ : List[str] =output.pixel_decoder_hidden_states __magic_name__ : int =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_layers ) def A__ ( self :List[Any] , __snake_case :Optional[Any] , __snake_case :int , __snake_case :str , __snake_case :str=False ): '''simple docstring''' with torch.no_grad(): __magic_name__ : List[str] =MaskaFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__ : Union[str, Any] =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : int =model(__snake_case , output_hidden_states=__snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def A__ ( self :Optional[Any] , __snake_case :List[str] , __snake_case :List[Any] , __snake_case :int , __snake_case :Any , __snake_case :Union[str, Any] ): '''simple docstring''' __magic_name__ : str =MaskaFormerForUniversalSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case :List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __magic_name__ : int =model(pixel_values=__snake_case , pixel_mask=__snake_case ) __magic_name__ : List[str] =model(__snake_case ) comm_check_on_output(__snake_case ) __magic_name__ : Any =model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MaskaFormerModelTester(self ) __magic_name__ : Union[str, Any] =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self :List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self :Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self :Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self :int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self :Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self :Union[str, Any] ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple =model_class(__snake_case ) __magic_name__ : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple =[*signature.parameters.keys()] __magic_name__ : Optional[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __magic_name__ : int =MaskaFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =(self.model_tester.min_size,) * 2 __magic_name__ : Union[str, Any] ={ """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } __magic_name__ : Optional[Any] =self.model_tester.get_config() __magic_name__ : Dict =MaskaFormerForUniversalSegmentation(__snake_case ).to(__snake_case ) __magic_name__ : Any =model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ , __magic_name__ : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] =model_class(__snake_case ).to(__snake_case ) __magic_name__ : Optional[int] =model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def A__ ( self :int ): '''simple docstring''' if not self.model_tester.is_training: return __magic_name__ : List[Any] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Dict =model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__ : Optional[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =self.all_model_classes[1] __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =self.model_tester.prepare_config_and_inputs() __magic_name__ : Tuple =True __magic_name__ : Optional[int] =True __magic_name__ : int =model_class(__snake_case ).to(__snake_case ) model.train() __magic_name__ : List[Any] =model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) __magic_name__ : Optional[int] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __magic_name__ : Union[str, Any] =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __magic_name__ : Optional[int] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ : Dict = 1e-4 def lowerCAmelCase_ ( ): __magic_name__ : Dict =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __A ( unittest.TestCase ): @cached_property def A__ ( self :int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self :int ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__snake_case ) __magic_name__ : int =self.default_image_processor __magic_name__ : List[Any] =prepare_img() __magic_name__ : Any =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Dict =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : List[str] =model(**__snake_case ) __magic_name__ : Any =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Dict =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) __magic_name__ : Any =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Optional[int] =self.default_image_processor __magic_name__ : Tuple =prepare_img() __magic_name__ : List[Any] =image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) __magic_name__ : Union[str, Any] =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __magic_name__ : str =model(**__snake_case ) # masks_queries_logits __magic_name__ : List[Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __magic_name__ : List[Any] =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __magic_name__ : Dict =torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits __magic_name__ : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __magic_name__ : int =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__snake_case ).eval() __magic_name__ : Any =self.default_image_processor __magic_name__ : Union[str, Any] =image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __magic_name__ : str =inputs["""pixel_values"""].to(__snake_case ) __magic_name__ : Tuple =[el.to(__snake_case ) for el in inputs["""mask_labels"""]] __magic_name__ : Union[str, Any] =[el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): __magic_name__ : Dict =model(**__snake_case ) self.assertTrue(outputs.loss is not None )
21
0
from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Any = None ): if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) snake_case_ : str = nums[0] for i in range(1 , len(lowerCAmelCase_ ) ): snake_case_ : Any = nums[i] snake_case_ : Dict = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase = int(input("Enter number of elements : ").strip()) UpperCAmelCase = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
666
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , ): SCREAMING_SNAKE_CASE = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } SCREAMING_SNAKE_CASE = input_paths_and_base_extractors[compression_format] if input_path is None: SCREAMING_SNAKE_CASE = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) assert base_extractor.is_extractable(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE = file_path.read_text(encoding="utf-8" ) else: SCREAMING_SNAKE_CASE = output_path.read_text(encoding="utf-8" ) SCREAMING_SNAKE_CASE = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } SCREAMING_SNAKE_CASE = input_paths[compression_format] if input_path is None: SCREAMING_SNAKE_CASE = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = Extractor.infer_extractor_format(UpperCAmelCase__ ) assert extractor_format is not None SCREAMING_SNAKE_CASE = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE = file_path.read_text(encoding="utf-8" ) else: SCREAMING_SNAKE_CASE = output_path.read_text(encoding="utf-8" ) SCREAMING_SNAKE_CASE = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ): import tarfile SCREAMING_SNAKE_CASE = tmp_path / """data_dot_dot""" directory.mkdir() SCREAMING_SNAKE_CASE = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCAmelCase__ , "w" ) as f: f.add(UpperCAmelCase__ , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def __lowerCamelCase (UpperCAmelCase__ : str ): import tarfile SCREAMING_SNAKE_CASE = tmp_path / """data_sym_link""" directory.mkdir() SCREAMING_SNAKE_CASE = directory / """tar_file_with_sym_link.tar""" os.symlink(".." , directory / "subdir" , target_is_directory=UpperCAmelCase__ ) with tarfile.TarFile(UpperCAmelCase__ , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } SCREAMING_SNAKE_CASE = insecure_tar_files[insecure_tar_file] SCREAMING_SNAKE_CASE = tmp_path / """extracted""" TarExtractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCamelCase (UpperCAmelCase__ : Tuple ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number SCREAMING_SNAKE_CASE = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 SCREAMING_SNAKE_CASE = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("wb" ) as f: f.write(UpperCAmelCase__ ) assert zipfile.is_zipfile(str(UpperCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCAmelCase__ ) # but we're right
403
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowercase ( ): lowerCamelCase_ = 10 lowerCamelCase_ = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) lowerCamelCase_ = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(lowerCAmelCase__ ) ), } ,features=lowerCAmelCase__ ,) return dataset @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=lowerCAmelCase__ ) return filename # FILE_CONTENT + files A_ = "\\n Text data.\n Second line of data." @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt""" lowerCamelCase_ = FILE_CONTENT with open(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ) return filename @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): import bza lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.bz2""" lowerCamelCase_ = bytes(lowerCAmelCase__ ,'''utf-8''' ) with bza.open(lowerCAmelCase__ ,'''wb''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): import gzip lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) lowerCamelCase_ = bytes(lowerCAmelCase__ ,'''utf-8''' ) with gzip.open(lowerCAmelCase__ ,'''wb''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.lz4""" lowerCamelCase_ = bytes(lowerCAmelCase__ ,'''utf-8''' ) with lza.frame.open(lowerCAmelCase__ ,'''wb''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCAmelCase__ ,'''w''' ) as archive: archive.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): import tarfile lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.tar""" with tarfile.TarFile(lowerCAmelCase__ ,'''w''' ) as f: f.add(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): import lzma lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.xz""" lowerCamelCase_ = bytes(lowerCAmelCase__ ,'''utf-8''' ) with lzma.open(lowerCAmelCase__ ,'''wb''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): import zipfile lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.txt.zst""" lowerCamelCase_ = bytes(lowerCAmelCase__ ,'''utf-8''' ) with zstd.open(lowerCAmelCase__ ,'''wb''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """file.xml""" lowerCamelCase_ = textwrap.dedent( '''\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ) return filename A_ = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] A_ = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] A_ = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } A_ = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] A_ = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='''session''' ) def lowercase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = datasets.Dataset.from_dict(lowerCAmelCase__ ) lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(lowerCAmelCase__ ) ) as con: lowerCamelCase_ = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' ,tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(lowerCAmelCase__ ,'''w''' ,newline='''''' ) as f: lowerCamelCase_ = csv.DictWriter(lowerCAmelCase__ ,fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(lowerCAmelCase__ ,'''w''' ,newline='''''' ) as f: lowerCamelCase_ = csv.DictWriter(lowerCAmelCase__ ,fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): import bza lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.csv.bz2""" with open(lowerCAmelCase__ ,'''rb''' ) as f: lowerCamelCase_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase__ ,'''wb''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename(csv_path.replace('''.csv''' ,'''.CSV''' ) ) ) f.write(lowerCAmelCase__ ,arcname=os.path.basename(csva_path.replace('''.csv''' ,'''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.join('''main_dir''' ,os.path.basename(lowerCAmelCase__ ) ) ) f.write(lowerCAmelCase__ ,arcname=os.path.join('''main_dir''' ,os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) lowerCamelCase_ = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(lowerCAmelCase__ ,'''wb''' ) as f: lowerCamelCase_ = pq.ParquetWriter(lowerCAmelCase__ ,schema=lowerCAmelCase__ ) lowerCamelCase_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase__ ) )] for k in DATA[0]} ,schema=lowerCAmelCase__ ) writer.write_table(lowerCAmelCase__ ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowerCamelCase_ = {"""data""": DATA} with open(lowerCAmelCase__ ,'''w''' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowerCamelCase_ = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCAmelCase__ ,'''w''' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): import gzip lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(lowerCAmelCase__ ,'''rb''' ) as orig_file: with gzip.open(lowerCAmelCase__ ,'''wb''' ) as zipped_file: zipped_file.writelines(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): import gzip lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(lowerCAmelCase__ ,'''rb''' ) as orig_file: with gzip.open(lowerCAmelCase__ ,'''wb''' ) as zipped_file: zipped_file.writelines(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.join('''nested''' ,os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.join('''main_dir''' ,os.path.basename(lowerCAmelCase__ ) ) ) f.write(lowerCAmelCase__ ,arcname=os.path.join('''main_dir''' ,os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCAmelCase__ ,'''w''' ) as f: f.add(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) f.add(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCAmelCase__ ,'''w''' ) as f: f.add(lowerCAmelCase__ ,arcname=os.path.join('''nested''' ,os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = ["""0""", """1""", """2""", """3"""] lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = ["""0""", """1""", """2""", """3"""] lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(lowerCAmelCase__ ,'''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = ["""0""", """1""", """2""", """3"""] lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.abc""" with open(lowerCAmelCase__ ,'''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.join('''main_dir''' ,os.path.basename(lowerCAmelCase__ ) ) ) f.write(lowerCAmelCase__ ,arcname=os.path.join('''main_dir''' ,os.path.basename(lowerCAmelCase__ ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename('''unsupported.ext''' ) ) f.write(lowerCAmelCase__ ,arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = """\n""".join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) lowerCamelCase_ = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(lowerCAmelCase__ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture(scope='''session''' ) def lowercase ( ): return os.path.join('''tests''' ,'''features''' ,'''data''' ,'''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowercase ( ): return os.path.join('''tests''' ,'''features''' ,'''data''' ,'''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data''' ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCAmelCase__ ,'''w''' ) as f: f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ) ) f.write(lowerCAmelCase__ ,arcname=os.path.basename(lowerCAmelCase__ ).replace('''.jpg''' ,'''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' ,'''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' ,'''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' ,'''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' ,'''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' ,'''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
29
UpperCAmelCase_ : int = range(2, 20 + 1) UpperCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] UpperCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =sum(a_i[j] for j in range(lowerCamelCase , len(lowerCamelCase ) ) ) __magic_name__ : Any =sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ) , lowerCamelCase ) ) ) __magic_name__ , __magic_name__ : Tuple =0, 0 __magic_name__ : Optional[Any] =n - i __magic_name__ : Union[str, Any] =memo.get(lowerCamelCase ) if sub_memo is not None: __magic_name__ : int =sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over __magic_name__ : Dict =-1 for _k in range(len(lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __magic_name__ : Optional[Any] =_k break if max_jump >= 0: __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =jumps[max_jump] # since the difference between jumps is cached, add c __magic_name__ : Tuple =diff + c for j in range(min(lowerCamelCase , len(lowerCamelCase ) ) ): __magic_name__ , __magic_name__ : Tuple =divmod(lowerCamelCase , 10 ) if new_c > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __magic_name__ : str =[] else: __magic_name__ : List[str] ={c: []} __magic_name__ : List[str] =sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __magic_name__ , __magic_name__ : Union[str, Any] =next_term(lowerCamelCase , k - 1 , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __magic_name__ , __magic_name__ : Optional[int] =compute(lowerCamelCase , lowerCamelCase , i + dn , lowerCamelCase ) diff += _diff dn += terms_jumped __magic_name__ : Tuple =sub_memo[c] # keep jumps sorted by # of terms skipped __magic_name__ : List[Any] =0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __magic_name__ : Tuple =i __magic_name__ , __magic_name__ , __magic_name__ : Tuple =0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __magic_name__ : Optional[Any] =ds_c + ds_b diff += addend __magic_name__ : str =0 for j in range(lowerCamelCase ): __magic_name__ : int =a_i[j] + addend __magic_name__ , __magic_name__ : Any =divmod(lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for j in range(lowerCamelCase , len(lowerCamelCase ) ): __magic_name__ : Tuple =digits[j] + addend if s >= 10: __magic_name__ , __magic_name__ : int =divmod(lowerCamelCase , 10 ) __magic_name__ : int =addend // 10 + quotient else: __magic_name__ : Dict =s __magic_name__ : Any =addend // 10 if addend == 0: break while addend > 0: __magic_name__ , __magic_name__ : Union[str, Any] =divmod(lowerCamelCase , 10 ) digits.append(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase = 10**15 ): __magic_name__ : List[str] =[1] __magic_name__ : str =1 __magic_name__ : str =0 while True: __magic_name__ , __magic_name__ : List[str] =next_term(lowerCamelCase , 20 , i + dn , lowerCamelCase ) dn += terms_jumped if dn == n - i: break __magic_name__ : int =0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
21
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __SCREAMING_SNAKE_CASE = parser.parse_args() if args.model_type == "bert": __SCREAMING_SNAKE_CASE = BertForMaskedLM.from_pretrained(args.model_name) __SCREAMING_SNAKE_CASE = "bert" else: raise ValueError('args.model_type should be \"bert\".') __SCREAMING_SNAKE_CASE = model.state_dict() __SCREAMING_SNAKE_CASE = {} for w in ["word_embeddings", "position_embeddings"]: __SCREAMING_SNAKE_CASE = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] __SCREAMING_SNAKE_CASE = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __SCREAMING_SNAKE_CASE = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __SCREAMING_SNAKE_CASE = state_dict["cls.predictions.decoder.weight"] __SCREAMING_SNAKE_CASE = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: __SCREAMING_SNAKE_CASE = state_dict[F"""cls.predictions.transform.dense.{w}"""] __SCREAMING_SNAKE_CASE = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
553
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowercase ( UpperCamelCase__): """simple docstring""" _A : str = """autoformer""" _A : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self , lowercase__ = None , lowercase__ = None , lowercase__ = "student_t" , lowercase__ = "nll" , lowercase__ = 1 , lowercase__ = [1, 2, 3, 4, 5, 6, 7] , lowercase__ = True , lowercase__ = 0 , lowercase__ = 0 , lowercase__ = 0 , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = 64 , lowercase__ = 2 , lowercase__ = 2 , lowercase__ = 2 , lowercase__ = 2 , lowercase__ = 32 , lowercase__ = 32 , lowercase__ = "gelu" , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 1_00 , lowercase__ = 0.02 , lowercase__ = True , lowercase__=True , lowercase__ = 10 , lowercase__ = 25 , lowercase__ = 3 , **lowercase__ , ): snake_case_ : Tuple = prediction_length snake_case_ : Any = context_length if context_length is not None else prediction_length snake_case_ : Union[str, Any] = distribution_output snake_case_ : int = loss snake_case_ : Dict = input_size snake_case_ : int = num_time_features snake_case_ : List[Any] = lags_sequence snake_case_ : Optional[int] = scaling snake_case_ : Optional[int] = num_dynamic_real_features snake_case_ : str = num_static_real_features snake_case_ : Optional[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : List[Any] = cardinality else: snake_case_ : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ : Any = embedding_dimension else: snake_case_ : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ : Any = num_parallel_samples # Transformer architecture configuration snake_case_ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ : str = d_model snake_case_ : Optional[int] = encoder_attention_heads snake_case_ : Tuple = decoder_attention_heads snake_case_ : int = encoder_ffn_dim snake_case_ : List[str] = decoder_ffn_dim snake_case_ : List[Any] = encoder_layers snake_case_ : Dict = decoder_layers snake_case_ : str = dropout snake_case_ : str = attention_dropout snake_case_ : Optional[int] = activation_dropout snake_case_ : int = encoder_layerdrop snake_case_ : Optional[int] = decoder_layerdrop snake_case_ : List[str] = activation_function snake_case_ : str = init_std snake_case_ : Optional[int] = use_cache # Autoformer snake_case_ : Any = label_length snake_case_ : Tuple = moving_average snake_case_ : Dict = autocorrelation_factor super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def __UpperCamelCase (self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
480
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ : Dict = 2048 UpperCAmelCase_ : int = 4096 UpperCAmelCase_ : Any = 42 UpperCAmelCase_ : Optional[int] = os.environ.pop("PROCESS_TRAIN", "false") UpperCAmelCase_ : str = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def lowerCAmelCase_ ( lowerCamelCase ): def choose_first(lowerCamelCase , lowerCamelCase=False ): assert isinstance(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) == 1: __magic_name__ : List[str] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ : Tuple ={k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a __magic_name__ : str ={"""id""": example["""id"""]} __magic_name__ : List[Any] =example["""annotations"""] __magic_name__ : List[str] =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ : Optional[int] =["""yes"""] if 1 in yes_no_answer else ["""no"""] __magic_name__ : List[str] =[] __magic_name__ : Dict =[] __magic_name__ : str =["""<cls>"""] else: __magic_name__ : Tuple =["""short"""] __magic_name__ : Optional[int] =choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available __magic_name__ : Tuple =["""long"""] __magic_name__ : Tuple =choose_first(annotation["""long_answer"""] , is_long_answer=lowerCamelCase ) __magic_name__ : List[Any] =[] answer.update(lowerCamelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ : Any =True else: __magic_name__ : List[str] =False __magic_name__ : int =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , lowerCamelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =_get_single_answer(lowerCamelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : Any =example["""document"""]["""tokens"""] __magic_name__ : str =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ : Dict =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ : Tuple =example["""document"""]["""tokens"""] __magic_name__ : Optional[int] =answer["""start_token"""] __magic_name__ : List[Any] =answer["""end_token"""] __magic_name__ : Optional[Any] =[] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ : Optional[int] =""" """.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ : List[str] =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : str =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] __magic_name__ : Dict =""" """.join([old[i] for i in range(len(lowerCamelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , lowerCamelCase , end="""\n""" ) print("""Old:""" , lowerCamelCase , end="""\n\n""" ) return { "context": " ".join(lowerCamelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=True ): # overlap will be of doc_stride - q_len __magic_name__ : Any =get_context_and_ans(lowerCamelCase , assertion=lowerCamelCase ) __magic_name__ : Union[str, Any] =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ : List[Any] =tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids __magic_name__ : Dict =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ : List[str] =[] __magic_name__ : int =[] __magic_name__ : List[str] =input_ids[:q_len] __magic_name__ : Dict =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Tuple =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase ), "end_token": [-100] * len(lowerCamelCase ), "category": category, }, } __magic_name__ : int =out["""context"""].split() __magic_name__ : Any =splitted_context[answer["""end_token"""]] __magic_name__ : str =len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=lowerCamelCase , ).input_ids ) __magic_name__ : Optional[int] =len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=lowerCamelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ : Union[str, Any] =len(tokenizer(lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ : str =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive __magic_name__ : Dict =answer["""start_token"""] __magic_name__ : int =answer["""end_token"""] if assertion: __magic_name__ : Any =tokenizer.decode(lowerCamelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , lowerCamelCase , end="""\n\n""" ) if len(lowerCamelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ : Any =input_ids[:q_len] __magic_name__ : Union[str, Any] =range(lowerCamelCase , len(lowerCamelCase ) , max_length - doc_stride ) __magic_name__ : Any =[] __magic_name__ : List[str] =[] __magic_name__ : List[str] =[] __magic_name__ : str =[] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ : List[Any] =i + max_length - q_len __magic_name__ : Dict =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ : List[Any] =start_token - i + q_len __magic_name__ : Optional[Any] =end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: __magic_name__ : Optional[Any] =-100 __magic_name__ : Optional[Any] =-100 answers_category.append("""null""" ) __magic_name__ : Optional[int] =inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase ) answers_end_token.append(lowerCamelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(lowerCamelCase ) ) print("""Old:""" , tokenizer.decode(lowerCamelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=2048 , lowerCamelCase=4096 , lowerCamelCase=False ): __magic_name__ : List[Any] =get_strided_contexts_and_ans( lowerCamelCase , lowerCamelCase , doc_stride=lowerCamelCase , max_length=lowerCamelCase , assertion=lowerCamelCase , ) return example def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with jsonlines.open(lowerCamelCase , """a""" ) as writer: for example in tqdm(lowerCamelCase , total=len(lowerCamelCase ) , desc="""Saving samples ... """ ): __magic_name__ : int =example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ : Optional[int] = load_dataset("natural_questions") UpperCAmelCase_ : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") UpperCAmelCase_ : str = data["train" if PROCESS_TRAIN == "true" else "validation"] UpperCAmelCase_ : Optional[int] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } UpperCAmelCase_ : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ : Optional[Any] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) UpperCAmelCase_ : int = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
21
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _SCREAMING_SNAKE_CASE ( ) -> Tuple: _UpperCAmelCase = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _UpperCAmelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("""RGB""" ) return image def _SCREAMING_SNAKE_CASE ( __snake_case ) -> List[Any]: _UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Dict: _UpperCAmelCase = dct.pop(__snake_case ) _UpperCAmelCase = val def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) _UpperCAmelCase = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(__snake_case , requires_grad=__snake_case ), v_bias) ) _UpperCAmelCase = qkv_bias def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[str]: _UpperCAmelCase = 3_6_4 if """coco""" in model_name else 2_2_4 _UpperCAmelCase = BlipaVisionConfig(image_size=__snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=__snake_case ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=__snake_case ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _UpperCAmelCase = BlipaConfig(vision_config=__snake_case , text_config=__snake_case ) return config, image_size @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case=None , __snake_case=False ) -> Optional[Any]: _UpperCAmelCase = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _UpperCAmelCase = tokenizer("""\n""" , add_special_tokens=__snake_case ).input_ids[0] _UpperCAmelCase = get_blipa_config(__snake_case , eos_token_id=__snake_case ) _UpperCAmelCase = BlipaForConditionalGeneration(__snake_case ).eval() _UpperCAmelCase = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _UpperCAmelCase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" _UpperCAmelCase = load_model_and_preprocess( name=__snake_case , model_type=__snake_case , is_eval=__snake_case , device=__snake_case ) original_model.eval() print("""Done!""" ) # update state dict keys _UpperCAmelCase = original_model.state_dict() _UpperCAmelCase = create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase = state_dict.pop(__snake_case ) if key.startswith("""Qformer.bert""" ): _UpperCAmelCase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _UpperCAmelCase = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _UpperCAmelCase = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _UpperCAmelCase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _UpperCAmelCase = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _UpperCAmelCase = key.replace("""t5""" , """language""" ) _UpperCAmelCase = val # read in qv biases read_in_q_v_bias(__snake_case , __snake_case ) _UpperCAmelCase = hf_model.load_state_dict(__snake_case , strict=__snake_case ) assert len(__snake_case ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase = load_demo_image() _UpperCAmelCase = vis_processors["""eval"""](__snake_case ).unsqueeze(0 ).to(__snake_case ) _UpperCAmelCase = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(__snake_case ) # create processor _UpperCAmelCase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__snake_case , image_std=__snake_case ) _UpperCAmelCase = BlipaProcessor(image_processor=__snake_case , tokenizer=__snake_case ) _UpperCAmelCase = processor(images=__snake_case , return_tensors="""pt""" ).pixel_values.to(__snake_case ) # make sure processor creates exact same pixel values assert torch.allclose(__snake_case , __snake_case ) original_model.to(__snake_case ) hf_model.to(__snake_case ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _UpperCAmelCase = hf_model(__snake_case , __snake_case ).logits else: _UpperCAmelCase = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _UpperCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) _UpperCAmelCase = hf_model(__snake_case , __snake_case , labels=__snake_case ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase = torch.tensor( [[-4_1.5_8_5_0, -4.4440, -8.9922], [-4_7.4_3_2_2, -5.9143, -1.7340]] , device=__snake_case ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase = torch.tensor( [[-5_7.0_1_0_9, -9.8967, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__snake_case ) else: # cast to same type _UpperCAmelCase = logits.dtype assert torch.allclose(original_logits.to(__snake_case ) , __snake_case , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _UpperCAmelCase = """""" _UpperCAmelCase = tokenizer(__snake_case , return_tensors="""pt""" ).input_ids.to(__snake_case ) _UpperCAmelCase = original_model.generate({"""image""": original_pixel_values} ) _UpperCAmelCase = hf_model.generate( __snake_case , __snake_case , do_sample=__snake_case , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , __snake_case ) _UpperCAmelCase = input_ids.shape[1] _UpperCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__snake_case ) _UpperCAmelCase = [text.strip() for text in output_text] print("""HF generation:""" , __snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__snake_case ) hf_model.save_pretrained(__snake_case ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": __a: Dict = argparse.ArgumentParser() __a: Dict = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __a: Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
108
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __A ( UpperCamelCase__ ): UpperCamelCase = """xlm-roberta-xl""" def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__ : List[str] =vocab_size __magic_name__ : List[str] =hidden_size __magic_name__ : Union[str, Any] =num_hidden_layers __magic_name__ : Any =num_attention_heads __magic_name__ : Any =hidden_act __magic_name__ : List[str] =intermediate_size __magic_name__ : Any =hidden_dropout_prob __magic_name__ : Union[str, Any] =attention_probs_dropout_prob __magic_name__ : Any =max_position_embeddings __magic_name__ : Any =type_vocab_size __magic_name__ : List[str] =initializer_range __magic_name__ : Optional[int] =layer_norm_eps __magic_name__ : Dict =position_embedding_type __magic_name__ : Any =use_cache __magic_name__ : Dict =classifier_dropout class __A ( UpperCamelCase__ ): @property def A__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
21
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =BlenderbotConfig lowerCamelCase : Union[str, Any] ={} lowerCamelCase : Optional[Any] ="gelu" def __init__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Dict=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : List[str]=37 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Union[str, Any]=20 , lowerCAmelCase : int=2 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Any=0 , ) -> int: """simple docstring""" __lowerCAmelCase : Dict = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Union[str, Any] = is_training __lowerCAmelCase : int = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Tuple = attention_probs_dropout_prob __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : int = eos_token_id __lowerCAmelCase : Optional[int] = pad_token_id __lowerCAmelCase : Optional[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase : List[str] = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = TFBlenderbotModel(config=__snake_case ).get_decoder() __lowerCAmelCase : Union[str, Any] = inputs_dict["""input_ids"""] __lowerCAmelCase : Any = input_ids[:1, :] __lowerCAmelCase : List[str] = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase : Dict = inputs_dict["""head_mask"""] __lowerCAmelCase : Optional[Any] = 1 # first forward pass __lowerCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) __lowerCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case )[0] __lowerCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1e-3 ) def snake_case_ (__A : Dict , __A : List[str] , __A : Optional[int] , __A : Any=None , __A : int=None , __A : int=None , __A : Union[str, Any]=None , __A : List[Any]=None , ) -> Tuple: if attention_mask is None: __lowerCAmelCase : Optional[int] = tf.cast(tf.math.not_equal(__A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase : List[Any] =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : List[Any] =( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : Optional[Any] =True lowerCamelCase : Dict =False lowerCamelCase : List[Any] =False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = TFBlenderbotModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=__snake_case ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] =["My friends are cool but they eat too many carbs."] lowerCamelCase : Dict ="facebook/blenderbot-400M-distill" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = self.tokenizer(self.src_text , return_tensors="""tf""" ) __lowerCAmelCase : Optional[int] = self.model.generate( model_inputs.input_ids , ) __lowerCAmelCase : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
651
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple )-> Optional[Any]: def decorator(snake_case : List[str] ): _lowerCamelCase = getattr(snake_case , 'handle_key' , [] ) handle += [key] setattr(snake_case , 'handle_key' , snake_case ) return func return decorator def SCREAMING_SNAKE_CASE_ ( *snake_case : str )-> Union[str, Any]: def decorator(snake_case : int ): _lowerCamelCase = getattr(snake_case , 'handle_key' , [] ) handle += keys setattr(snake_case , 'handle_key' , snake_case ) return func return decorator class __a ( UpperCamelCase__ ): def __new__( cls , a__ , a__ , a__ ): _lowerCamelCase = super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , 'key_handler' ): setattr(__snake_case , 'key_handler' , {} ) setattr(__snake_case , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): _lowerCamelCase = getattr(__snake_case , 'handle_key' , [] ) for key in handled_keys: _lowerCamelCase = value return new_cls @staticmethod def snake_case_ ( cls ): _lowerCamelCase = get_character() if char != KEYMAP["undefined"]: _lowerCamelCase = ord(__snake_case ) _lowerCamelCase = cls.key_handler.get(__snake_case ) if handler: _lowerCamelCase = char return handler(cls ) else: return None def SCREAMING_SNAKE_CASE_ ( cls : List[str] )-> List[str]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
650
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[] __magic_name__ : List[Any] =11 __magic_name__ : Tuple =int("""1""" + """0""" * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __magic_name__ : List[str] =10 return solutions def lowerCAmelCase_ ( lowerCamelCase = 2 ): __magic_name__ : str =1.0 for fraction in fraction_list(lowerCamelCase ): __magic_name__ : int =Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
21
0
import argparse import copy def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = {} with open(lowercase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __SCREAMING_SNAKE_CASE : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) __SCREAMING_SNAKE_CASE : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __SCREAMING_SNAKE_CASE : List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) __SCREAMING_SNAKE_CASE : Tuple = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _UpperCamelCase ( lowercase__ , lowercase__ ): with open(lowercase__ ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = f.read(1 ) __SCREAMING_SNAKE_CASE : Any = start_node __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Dict = start_node __SCREAMING_SNAKE_CASE : List[Any] = 0 while visiting not in first_solution: __SCREAMING_SNAKE_CASE : Dict = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowercase__ ) and k[0] not in first_solution: __SCREAMING_SNAKE_CASE : Tuple = k[1] __SCREAMING_SNAKE_CASE : str = k[0] first_solution.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = distance_of_first_solution + int(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = best_node first_solution.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for n in solution[1:-1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = solution.index(lowercase__ ) for kn in solution[1:-1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = solution.index(lowercase__ ) if n == kn: continue __SCREAMING_SNAKE_CASE : str = copy.deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = kn __SCREAMING_SNAKE_CASE : List[str] = n __SCREAMING_SNAKE_CASE : List[Any] = 0 for k in _tmp[:-1]: __SCREAMING_SNAKE_CASE : Optional[int] = _tmp[_tmp.index(lowercase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __SCREAMING_SNAKE_CASE : int = distance + int(i[1] ) _tmp.append(lowercase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __SCREAMING_SNAKE_CASE : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : List[str] = first_solution __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Dict = distance_of_first_solution __SCREAMING_SNAKE_CASE : Union[str, Any] = solution while count <= iters: __SCREAMING_SNAKE_CASE : Dict = find_neighborhood(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Any = neighborhood[index_of_best_solution] __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase__ ) - 1 __SCREAMING_SNAKE_CASE : List[str] = False while not found: __SCREAMING_SNAKE_CASE : Any = 0 while i < len(lowercase__ ): if best_solution[i] != solution[i]: __SCREAMING_SNAKE_CASE : Any = best_solution[i] __SCREAMING_SNAKE_CASE : Optional[Any] = solution[i] break __SCREAMING_SNAKE_CASE : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : List[str] = best_solution[:-1] __SCREAMING_SNAKE_CASE : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __SCREAMING_SNAKE_CASE : List[Any] = cost __SCREAMING_SNAKE_CASE : List[Any] = solution else: __SCREAMING_SNAKE_CASE : Optional[Any] = index_of_best_solution + 1 __SCREAMING_SNAKE_CASE : List[str] = neighborhood[index_of_best_solution] if len(lowercase__ ) >= size: tabu_list.pop(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = count + 1 return best_solution_ever, best_cost def _UpperCamelCase ( lowercase__=None ): __SCREAMING_SNAKE_CASE : int = generate_neighbours(args.File ) __SCREAMING_SNAKE_CASE : str = generate_first_solution( args.File , lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tabu_search( lowercase__ , lowercase__ , lowercase__ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
696
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : int = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class A ( _a ): lowercase_ = 'efficientnet' def __init__( self : str , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 6_00 , lowerCAmelCase_ : float = 2.0 , lowerCAmelCase_ : float = 3.1 , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCAmelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCAmelCase_ : List[int] = [] , lowerCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : float = 0.2_5 , lowerCAmelCase_ : str = "swish" , lowerCAmelCase_ : int = 25_60 , lowerCAmelCase_ : str = "mean" , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : float = 0.0_0_1 , lowerCAmelCase_ : float = 0.9_9 , lowerCAmelCase_ : float = 0.5 , lowerCAmelCase_ : float = 0.2 , **lowerCAmelCase_ : Optional[int] , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = num_channels _a = image_size _a = width_coefficient _a = depth_coefficient _a = depth_divisor _a = kernel_sizes _a = in_channels _a = out_channels _a = depthwise_padding _a = strides _a = num_block_repeats _a = expand_ratios _a = squeeze_expansion_ratio _a = hidden_act _a = hidden_dim _a = pooling_type _a = initializer_range _a = batch_norm_eps _a = batch_norm_momentum _a = dropout_rate _a = drop_connect_rate _a = sum(lowerCAmelCase_ ) * 4 class A ( _a ): lowercase_ = version.parse('1.11' ) @property def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self : Dict ) -> float: """simple docstring""" return 1e-5
22
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def snake_case_ (UpperCamelCase : SplitDict ): '''simple docstring''' _a = split_dict._to_yaml_list() assert len(UpperCamelCase ) == len(UpperCamelCase ) _a = SplitDict._from_yaml_list(UpperCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _a = None # the split name of split_dict takes over the name of the split info object _a = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=UpperCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] ) def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' _a = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
22
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A ( _a ,unittest.TestCase ): lowercase_ = XLMProphetNetTokenizer lowercase_ = False lowercase_ = True def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _a = '''[PAD]''' _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowerCAmelCase_ ) , 10_12 ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _a = XLMProphetNetTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) _a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) _a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _a = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _a = '''Hello World!''' _a = [3_53_89, 66_72, 49, 2] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _a = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
22
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A ( unittest.TestCase ): def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _a = self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]: """simple docstring""" _a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: _a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result _a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) _a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) _a = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''r''' ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , ) # Copy consistency with a really long name _a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
22
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : List[str] = TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (UpperCamelCase : List[DatasetType] , UpperCamelCase : Optional[List[float]] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[DatasetInfo] = None , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(UpperCamelCase ): if not isinstance(UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(UpperCamelCase )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase ).__name__}.' ) if i == 0: _a , _a = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase , UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase , UpperCamelCase , UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , stopping_strategy=UpperCamelCase ) else: return _interleave_iterable_datasets( UpperCamelCase , UpperCamelCase , UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , stopping_strategy=UpperCamelCase ) def snake_case_ (UpperCamelCase : List[DatasetType] , UpperCamelCase : Optional[DatasetInfo] = None , UpperCamelCase : Optional[NamedSplit] = None , UpperCamelCase : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(UpperCamelCase ): if not isinstance(UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(UpperCamelCase )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCamelCase ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase ).__name__}.' ) if i == 0: _a , _a = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase , UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , axis=UpperCamelCase ) else: return _concatenate_iterable_datasets(UpperCamelCase , info=UpperCamelCase , split=UpperCamelCase , axis=UpperCamelCase )
22
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } _snake_case : Union[str, Any] = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } _snake_case : Tuple = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class A ( _a ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = SqueezeBertTokenizer def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**lowerCAmelCase_ ) _a = do_lower_case def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]: """simple docstring""" _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
22
1
'''simple docstring''' import numpy as np def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : float = 1e-12 , UpperCamelCase : int = 100 , ): '''simple docstring''' assert np.shape(UpperCamelCase )[0] == np.shape(UpperCamelCase )[1] # Ensure proper dimensionality. assert np.shape(UpperCamelCase )[0] == np.shape(UpperCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCamelCase ) == np.iscomplexobj(UpperCamelCase ) _a = np.iscomplexobj(UpperCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a = False _a = 0 _a = 0 _a = 1e12 while not convergence: # Multiple matrix by the vector. _a = np.dot(UpperCamelCase , UpperCamelCase ) # Normalize the resulting output vector. _a = w / np.linalg.norm(UpperCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a = vector.conj().T if is_complex else vector.T _a = np.dot(UpperCamelCase , np.dot(UpperCamelCase , UpperCamelCase ) ) # Check convergence. _a = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a = True _a = lambda_ if is_complex: _a = np.real(lambda_ ) return lambda_, vector def snake_case_ (): '''simple docstring''' _a = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a = np.array([41, 4, 20] ) _a = real_input_matrix.astype(np.complexaaa ) _a = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a = real_input_matrix _a = real_vector elif problem_type == "complex": _a = complex_input_matrix _a = complex_vector # Our implementation. _a , _a = power_iteration(UpperCamelCase , UpperCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a , _a = np.linalg.eigh(UpperCamelCase ) # Last eigenvalue is the maximum one. _a = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCamelCase ) - np.abs(UpperCamelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
22
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : Dict = logging.get_logger(__name__) class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_resize _a = do_rescale _a = do_normalize _a = do_center_crop _a = crop_size _a = size _a = resample _a = rescale_factor _a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "shortest_edge" in size: _a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _a = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = do_rescale if do_rescale is not None else self.do_rescale _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ ) _a = resample if resample is not None else self.resample _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(lowerCAmelCase_ ) if not is_batched(lowerCAmelCase_ ): _a = [images] if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
22
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' _a = os.path.join(args.tf_model_dir , '''parameters.json''' ) _a = json.loads(open(UpperCamelCase ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): _a = args.output + '''.pt''' _a = OrderedDict() with tf.device('''/CPU:0''' ): _a = tf.train.load_checkpoint(args.tf_model_dir ) _a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _a = reader.get_tensor(UpperCamelCase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): _a = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): _a = 8 _a = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/moe''' ): _a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): _a = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/softmlp/kernel''' ): _a = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): _a = key_name[-9:-7] for i in range(16 ): _a = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) _a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/mlp''' ): _a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): _a = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/p1/bias''' ): _a = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/p2/kernel''' ): _a = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/p2/bias''' ): _a = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/ln''' ): _a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): _a = '''model.blocks.%d.feed_forward.norm.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/g''' ): _a = '''model.blocks.%d.feed_forward.norm.weight''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/att''' ): _a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): _a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _a = state[:, 0, :, :] _a = state[:, 1, :, :] _a = state[:, 2, :, :] _a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player _a = torch.tensor(UpperCamelCase ) _a = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player _a = torch.tensor(UpperCamelCase ) _a = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/o/kernel''' ): _a = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player _a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/an''' ): _a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): _a = '''model.blocks.%d.self_attn.norm.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/g''' ): _a = '''model.blocks.%d.self_attn.norm.weight''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): _a = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] _a = '''model.%s.weight''' % nlayer _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase ) if key_name.startswith('''model/wte''' ): _a = '''lm_head.weight''' _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/wob''' ): _a = '''final_logits_bias''' _a = vnp.copy() # same in embedded _a = state.reshape((1, -1) ) _a = torch.tensor(UpperCamelCase ) elif key_name == "model/dense/kernel": _a = '''model.last_project.weight''' _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name == "model/dense_1/bias": _a = '''model.last_project.bias''' _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) torch.save(UpperCamelCase , args.output ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _snake_case : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
22
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : str = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['LayoutLMv3FeatureExtractor'] _snake_case : Tuple = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
1
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : str = ['small', 'medium', 'large'] _snake_case : Any = 'lm_head.decoder.weight' _snake_case : int = 'lm_head.weight' def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = torch.load(UpperCamelCase ) _a = d.pop(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) torch.save(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) _snake_case : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Optional[Any] = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') _snake_case : Any = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
22
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A ( _a ): lowercase_ = (DDPMParallelScheduler,) def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" _a = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5 def __lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = len(lowerCAmelCase_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _a = torch.sum(torch.abs(lowerCAmelCase_ ) ) _a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = len(lowerCAmelCase_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(lowerCAmelCase_ ) ) _a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a = scheduler_class(**lowerCAmelCase_ ) _a = len(lowerCAmelCase_ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _a = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(lowerCAmelCase_ ) ) _a = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _a = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _a = -1 else: _a = timesteps[i + 1] _a = scheduler.previous_timestep(lowerCAmelCase_ ) _a = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [1_00, 87, 50, 51, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [1_00, 87, 50, 1, 0] _a = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**lowerCAmelCase_ ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
22
1
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class A ( _a ): lowercase_ = 'MCTCTFeatureExtractor' lowercase_ = 'AutoTokenizer' def __init__( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] ) -> str: """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _a = self.feature_extractor _a = False def __call__( self : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _a = kwargs.pop('''raw_speech''' ) else: _a = kwargs.pop('''audio''' , lowerCAmelCase_ ) _a = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ ) _a = kwargs.pop('''text''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _a = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None: _a = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings['''input_ids'''] return inputs def __lowerCAmelCase ( self : str , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : str ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCAmelCase_ , **lowerCAmelCase_ ) _a = kwargs.pop('''input_features''' , lowerCAmelCase_ ) _a = kwargs.pop('''labels''' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) if labels is not None: _a = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels['''input_ids'''] return input_features def __lowerCAmelCase ( self : str , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any] ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @contextmanager def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
22
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case_ (UpperCamelCase : dict ): '''simple docstring''' return (data["data"], data["target"]) def snake_case_ (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ): '''simple docstring''' _a = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(UpperCamelCase , UpperCamelCase ) # Predict target for test data _a = xgb.predict(UpperCamelCase ) _a = predictions.reshape(len(UpperCamelCase ) , 1 ) return predictions def snake_case_ (): '''simple docstring''' _a = fetch_california_housing() _a , _a = data_handling(UpperCamelCase ) _a , _a , _a , _a = train_test_split( UpperCamelCase , UpperCamelCase , test_size=0.25 , random_state=1 ) _a = xgboost(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(UpperCamelCase , UpperCamelCase )}' ) print(f'Mean Square Error : {mean_squared_error(UpperCamelCase , UpperCamelCase )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
22
1
'''simple docstring''' def snake_case_ (UpperCamelCase : list[list[int]] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : set ): '''simple docstring''' _a , _a = len(UpperCamelCase ), len(grid[0] ) if ( min(UpperCamelCase , UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a = 0 count += depth_first_search(UpperCamelCase , row + 1 , UpperCamelCase , UpperCamelCase ) count += depth_first_search(UpperCamelCase , row - 1 , UpperCamelCase , UpperCamelCase ) count += depth_first_search(UpperCamelCase , UpperCamelCase , col + 1 , UpperCamelCase ) count += depth_first_search(UpperCamelCase , UpperCamelCase , col - 1 , UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
22
'''simple docstring''' import qiskit def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _a = qiskit.Aer.get_backend('''aer_simulator''' ) _a = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator _a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": _snake_case : Tuple = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
22
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class A ( _a ): lowercase_ = 'megatron-bert' def __init__( self : str , lowerCAmelCase_ : Optional[int]=2_90_56 , lowerCAmelCase_ : str=10_24 , lowerCAmelCase_ : Any=24 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : Any=40_96 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Dict=5_12 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : List[str]=1e-12 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : List[str]="absolute" , lowerCAmelCase_ : Union[str, Any]=True , **lowerCAmelCase_ : str , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache
22
'''simple docstring''' from collections.abc import Generator from math import sin def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' if len(UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(UpperCamelCase , '''08x''' )[-8:] _a = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' _a = B'''''' for char in message: bit_string += format(UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' if len(UpperCamelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(UpperCamelCase ) , 512 ): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase , 2 ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' return (a + b) % 2**32 def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ (UpperCamelCase : bytes ): '''simple docstring''' _a = preprocess(UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67452301 _a = 0Xefcdab89 _a = 0X98badcfe _a = 0X10325476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(UpperCamelCase , left_rotate_aa(UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = sum_aa(UpperCamelCase , UpperCamelCase ) _a = reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) + reformat_hex(UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
22
1
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCamelCase ) _a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: _a = dataset_size < in_memory_max_size else: _a = False _a = is_small_dataset(UpperCamelCase ) assert result == expected
22
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A ( unittest.TestCase ): def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A ( _a ,unittest.TestCase ): lowercase_ = ImageGPTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = ImageGPTImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) _a = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' ) image_processor_first.to_json_file(lowerCAmelCase_ ) _a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase_ ) _a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) _a = Image.open(dataset[4]['''file'''] ) _a = Image.open(dataset[5]['''file'''] ) _a = [imagea, imagea] return images @require_vision @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) _a = prepare_images() # test non-batched _a = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _a = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ ) # test batched _a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _a = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
22
1
'''simple docstring''' import qiskit def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _a = qiskit.Aer.get_backend('''aer_simulator''' ) _a = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator _a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": _snake_case : Tuple = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
22
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _a = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _a = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _a = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _a = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) _a = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits _a = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean() _a = -(labels.shape[-1] * loss.item()) _a = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
22
1
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Dict ) -> Any: """simple docstring""" _a = [] def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : str ) -> int: """simple docstring""" return self.node_position[vertex] def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" _a = pos def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ) -> Union[str, Any]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _a = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _a = 2 * start + 1 else: _a = 2 * start + 2 if heap[smallest_child] < heap[start]: _a , _a = heap[smallest_child], positions[smallest_child] _a , _a = ( heap[start], positions[start], ) _a , _a = temp, tempa _a = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase_ ) self.top_to_bottom(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ) -> Tuple: """simple docstring""" _a = position[index] while index != 0: _a = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _a = heap[parent] _a = position[parent] self.set_position(position[parent] , lowerCAmelCase_ ) else: _a = val _a = temp self.set_position(lowerCAmelCase_ , lowerCAmelCase_ ) break _a = parent else: _a = val _a = temp self.set_position(lowerCAmelCase_ , 0 ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" _a = len(lowerCAmelCase_ ) // 2 - 1 for i in range(lowerCAmelCase_ , -1 , -1 ): self.top_to_bottom(lowerCAmelCase_ , lowerCAmelCase_ , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> Union[str, Any]: """simple docstring""" _a = positions[0] _a = sys.maxsize self.top_to_bottom(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return temp def snake_case_ (UpperCamelCase : Union[str, Any] ): '''simple docstring''' _a = Heap() _a = [0] * len(UpperCamelCase ) _a = [-1] * len(UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _a = [] # Heap of Distance of vertices from their neighboring vertex _a = [] for vertex in range(len(UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase ) heap.node_position.append(UpperCamelCase ) _a = [] _a = 1 _a = sys.maxsize for neighbor, distance in adjacency_list[0]: _a = 0 _a = distance heap.heapify(UpperCamelCase , UpperCamelCase ) for _ in range(1 , len(UpperCamelCase ) ): _a = heap.delete_minimum(UpperCamelCase , UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _a = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase )] ): _a = distance heap.bottom_to_top( UpperCamelCase , heap.get_position(UpperCamelCase ) , UpperCamelCase , UpperCamelCase ) _a = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _snake_case : Optional[Any] = int(input('Enter number of edges: ').strip()) _snake_case : List[str] = defaultdict(list) for _ in range(edges_number): _snake_case : List[str] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
22
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _snake_case : Optional[Any] = 8 def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ): '''simple docstring''' _a = x.device _a = (x * 255).int().clamp(0 , 255 ) _a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) _a = rearrange(UpperCamelCase , '''d -> d 1 1''' ) _a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' ) _a = ((x & mask) != 0).float() _a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' ) _a = bits * 2 - 1 return bits def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ): '''simple docstring''' _a = x.device _a = (x > 0).int() _a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) _a = rearrange(UpperCamelCase , '''d -> d 1 1''' ) _a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 ) _a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _a = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _a = self.alphas_cumprod[timestep] _a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _a = self.bit_scale if self.config.clip_sample: _a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _a = self._get_variance(UpperCamelCase , UpperCamelCase ) _a = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu''' _a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) _a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise _a = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ): '''simple docstring''' _a = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: _a = None # 1. compute alphas, betas _a = self.alphas_cumprod[t] _a = self.alphas_cumprod[t - 1] if t > 0 else self.one _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _a = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" _a = self.bit_scale if self.config.clip_sample: _a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _a = 0 if t > 0: _a = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) _a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class A ( _a ): def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int: """simple docstring""" super().__init__() _a = bit_scale _a = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _a = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) _a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale _a = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _a = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": _a = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
22
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : str = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class A ( _a ): lowercase_ = 'altclip_text_model' def __init__( self : Optional[int] , lowerCAmelCase_ : Dict=25_00_02 , lowerCAmelCase_ : int=10_24 , lowerCAmelCase_ : Any=24 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : List[str]=40_96 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=5_14 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : List[Any]=1e-05 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[int]=7_68 , **lowerCAmelCase_ : List[Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = initializer_factor _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = project_dim class A ( _a ): lowercase_ = 'altclip_vision_model' def __init__( self : Any , lowerCAmelCase_ : Optional[int]=7_68 , lowerCAmelCase_ : Tuple=30_72 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : str=2_24 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[Any]="quick_gelu" , lowerCAmelCase_ : Optional[int]=1e-5 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : Tuple=1.0 , **lowerCAmelCase_ : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = hidden_size _a = intermediate_size _a = projection_dim _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = patch_size _a = image_size _a = initializer_range _a = initializer_factor _a = attention_dropout _a = layer_norm_eps _a = hidden_act @classmethod def __lowerCAmelCase ( cls : int , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase_ ) _a , _a = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": _a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class A ( _a ): lowercase_ = 'altclip' lowercase_ = True def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=7_68 , lowerCAmelCase_ : List[Any]=2.6_5_9_2 , **lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = kwargs.pop('''text_config_dict''' , lowerCAmelCase_ ) _a = kwargs.pop('''vision_config_dict''' , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _a = {} # This is the complete result when using `text_config_dict`. _a = AltCLIPTextConfig(**lowerCAmelCase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _a = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: _a = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(lowerCAmelCase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _a = {} # This is the complete result when using `vision_config_dict`. _a = AltCLIPVisionConfig(**lowerCAmelCase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _a = { str(lowerCAmelCase_ ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _a = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: _a = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(lowerCAmelCase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _a = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: _a = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) _a = AltCLIPTextConfig(**lowerCAmelCase_ ) _a = AltCLIPVisionConfig(**lowerCAmelCase_ ) _a = projection_dim _a = logit_scale_init_value _a = 1.0 @classmethod def __lowerCAmelCase ( cls : List[Any] , lowerCAmelCase_ : AltCLIPTextConfig , lowerCAmelCase_ : AltCLIPVisionConfig , **lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.text_config.to_dict() _a = self.vision_config.to_dict() _a = self.__class__.model_type return output
22
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Any = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class A ( _a ): lowercase_ = 'roformer' def __init__( self : str , lowerCAmelCase_ : int=5_00_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : int=15_36 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : Dict=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=True , **lowerCAmelCase_ : Optional[int] , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size if embedding_size is None else embedding_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = rotary_value _a = use_cache class A ( _a ): @property def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
22
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _a = True if '''large''' in model_name or '''huge''' in model_name else False _a = True if '''large''' in model_name or '''huge''' in model_name else False _a = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _a = [3, 3, 3, 3] _a = [5, 5, 5, 5] elif "fl4" in model_name: _a = [4, 4, 4, 4] _a = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _a = [3, 3, 3, 3] if "lrf" in model_name: _a = [3, 3, 3, 3] else: _a = [2, 2, 2, 2] if "tiny" in model_name: _a = 96 elif "small" in model_name: _a = 96 elif "base" in model_name: _a = 128 elif "large" in model_name: _a = 192 elif "xlarge" in model_name: _a = 256 elif "huge" in model_name: _a = 352 # set label information _a = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _a = '''imagenet-22k-id2label.json''' else: _a = '''imagenet-1k-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = {v: k for k, v in idalabel.items()} _a = FocalNetConfig( embed_dim=UpperCamelCase , depths=UpperCamelCase , focal_levels=UpperCamelCase , focal_windows=UpperCamelCase , use_conv_embed=UpperCamelCase , idalabel=UpperCamelCase , labelaid=UpperCamelCase , use_post_layernorm=UpperCamelCase , use_layerscale=UpperCamelCase , ) return config def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _a = '''encoder.''' + name if "encoder.layers" in name: _a = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: _a = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: _a = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _a = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _a = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _a = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": _a = '''layernorm.weight''' if name == "norm.bias": _a = '''layernorm.bias''' if "head" in name: _a = name.replace('''head''' , '''classifier''' ) else: _a = '''focalnet.''' + name return name def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' _a = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _a = model_name_to_url[model_name] print('''Checkpoint URL: ''' , UpperCamelCase ) _a = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): _a = state_dict.pop(UpperCamelCase ) _a = val _a = get_focalnet_config(UpperCamelCase ) _a = FocalNetForImageClassification(UpperCamelCase ) model.eval() # load state dict model.load_state_dict(UpperCamelCase ) # verify conversion _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = BitImageProcessor( do_resize=UpperCamelCase , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase , crop_size=224 , do_normalize=UpperCamelCase , image_mean=UpperCamelCase , image_std=UpperCamelCase , ) _a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) _a = processor(images=UpperCamelCase , return_tensors='''pt''' ) _a = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _a = image_transforms(UpperCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase , atol=1e-4 ) _a = model(**UpperCamelCase ) _a = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _a = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": _a = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": _a = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": _a = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": _a = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": _a = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: print(f'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(f'{model_name}' ) processor.push_to_hub(f'{model_name}' ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) _snake_case : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A : lowercase_ = 42 lowercase_ = 42 class A : def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" _a = [[] for _ in range(lowerCAmelCase_ )] _a = size def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" return self._size def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
22
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A : def __init__( self : Optional[int] , lowerCAmelCase_ : Tuple , ) -> Tuple: """simple docstring""" _a = parent _a = 13 _a = 7 _a = True _a = True _a = True _a = 99 _a = 32 _a = 2 _a = 4 _a = 37 _a = '''gelu''' _a = 0.1 _a = 0.1 _a = 5_12 _a = 16 _a = 2 _a = 0.0_2 _a = 3 _a = 4 _a = None def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.prepare_config_and_inputs() _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" _a = TFEsmModel(config=lowerCAmelCase_ ) _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _a = model(lowerCAmelCase_ ) _a = [input_ids, input_mask] _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , ) -> Optional[int]: """simple docstring""" _a = True _a = TFEsmModel(config=lowerCAmelCase_ ) _a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } _a = model(lowerCAmelCase_ ) _a = [input_ids, input_mask] _a = model(lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ) # Also check the case where encoder outputs are not passed _a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> List[Any]: """simple docstring""" _a = TFEsmForMaskedLM(config=lowerCAmelCase_ ) _a = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> int: """simple docstring""" _a = self.num_labels _a = TFEsmForTokenClassification(config=lowerCAmelCase_ ) _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowercase_ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a = TFEsmModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFEsmModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _a = model.get_bias() assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in name.items(): assert isinstance(lowerCAmelCase_ , tf.Variable ) else: _a = model.get_output_embeddings() assert x is None _a = model.get_bias() assert name is None @require_tf class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _a = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _a = tf.constant([[0, 1, 2, 3, 4, 5]] ) _a = model(lowerCAmelCase_ )[0] _a = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCAmelCase_ ) # compare the actual values for a slice. _a = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _a = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _a = model(lowerCAmelCase_ )[0] # compare the actual values for a slice. _a = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
22
'''simple docstring''' from math import pi, sqrt def snake_case_ (UpperCamelCase : float ): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(UpperCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(UpperCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case_ (): '''simple docstring''' assert gamma(0.5 ) == sqrt(UpperCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _snake_case : Optional[Any] = 1.0 while num: _snake_case : Dict = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
22
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : List[Any] = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase_ , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
22
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( _a ): @staticmethod @abstractmethod def __lowerCAmelCase ( lowerCAmelCase_ : ArgumentParser ) -> Optional[int]: """simple docstring""" raise NotImplementedError() @abstractmethod def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" raise NotImplementedError()
22
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' _snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' def remove_articles(UpperCamelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase ) def white_space_fix(UpperCamelCase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(UpperCamelCase : str ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) ) def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ): '''simple docstring''' _a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )] return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100 def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(UpperCamelCase ) _a = Counter(UpperCamelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(UpperCamelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(UpperCamelCase ) > 0: _a = keeptmpscorea / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(UpperCamelCase ) > 0: _a = deltmpscorea / len(UpperCamelCase ) # ADDITION _a = set(UpperCamelCase ) - set(UpperCamelCase ) _a = set(UpperCamelCase ) & set(UpperCamelCase ) _a = set(UpperCamelCase ) - set(UpperCamelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(UpperCamelCase ) > 0: _a = addtmpscore / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: _a = addtmpscore / len(UpperCamelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = len(UpperCamelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ): '''simple docstring''' if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] ) _a = sari_score / len(UpperCamelCase ) return 100 * sari_score def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ): '''simple docstring''' _a = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(UpperCamelCase )] _a = sacrebleu.corpus_bleu( UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict: """simple docstring""" _a = {} result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} ) result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} ) return result
22
1
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): _snake_case : Tuple = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: _snake_case : Any = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = numpy_to_pil(UpperCamelCase ) return images def snake_case_ (UpperCamelCase : str ): '''simple docstring''' if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: _a = [Image.fromarray(UpperCamelCase ) for image in images] return pil_images
22
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): _snake_case : Tuple = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: _snake_case : Any = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = numpy_to_pil(UpperCamelCase ) return images def snake_case_ (UpperCamelCase : str ): '''simple docstring''' if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: _a = [Image.fromarray(UpperCamelCase ) for image in images] return pil_images
22
1
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = model.config _a = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _a = MBartConfig( is_decoder=UpperCamelCase , is_encoder_decoder=UpperCamelCase , add_cross_attention=UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase , add_final_layer_norm=UpperCamelCase , ) return encoder_config, decoder_config def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' if "encoder.model" in name: _a = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _a = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _a = '''encoder.''' + name if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _a = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _a = '''encoder.layernorm.bias''' return name def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[3] ) _a = int(key_split[5] ) _a = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _a = val return orig_state_dict def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Tuple=None , UpperCamelCase : List[str]=False ): '''simple docstring''' _a = DonutModel.from_pretrained(UpperCamelCase ).eval() # load HuggingFace model _a , _a = get_configs(UpperCamelCase ) _a = DonutSwinModel(UpperCamelCase ) _a = MBartForCausalLM(UpperCamelCase ) _a = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() _a = original_model.state_dict() _a = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) # verify results on scanned document _a = load_dataset('''hf-internal-testing/example-documents''' ) _a = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _a = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase , from_slow=UpperCamelCase ) _a = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _a = DonutProcessor(UpperCamelCase , UpperCamelCase ) _a = processor(UpperCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _a = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _a = '''When is the coffee break?''' _a = task_prompt.replace('''{user_input}''' , UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _a = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _a = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _a = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _a = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _a = '''hello world''' else: raise ValueError('''Model name not supported''' ) _a = original_model.decoder.tokenizer(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] _a = original_model.encoder.model.patch_embed(UpperCamelCase ) _a , _a = model.encoder.embeddings(UpperCamelCase ) assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) # verify encoder hidden states _a = original_model.encoder(UpperCamelCase ) _a = model.encoder(UpperCamelCase ).last_hidden_state assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 ) # verify decoder hidden states _a = original_model(UpperCamelCase , UpperCamelCase , UpperCamelCase ).logits _a = model(UpperCamelCase , decoder_input_ids=UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": _snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) _snake_case : Union[str, Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
'''simple docstring''' import requests def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = {'''Content-Type''': '''application/json'''} _a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase ) if response.status_code != 200: _a = ( '''Request to slack returned an error ''' f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
22
1
'''simple docstring''' def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' _a = [] _a = [] _a = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator _a = len(UpperCamelCase ) if (len(UpperCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(UpperCamelCase ) , '''Postfix'''.center(UpperCamelCase ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase ) == 0: stack.append(UpperCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCamelCase ) # push x to stack print( x.center(8 ) , (''''''.join(UpperCamelCase )).ljust(UpperCamelCase ) , (''''''.join(UpperCamelCase )).ljust(UpperCamelCase ) , sep=''' | ''' , ) # Output in tabular format while len(UpperCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(UpperCamelCase )).ljust(UpperCamelCase ) , (''''''.join(UpperCamelCase )).ljust(UpperCamelCase ) , sep=''' | ''' , ) # Output in tabular format return "".join(UpperCamelCase ) # return Postfix as str def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCamelCase ) ): if infix[i] == "(": _a = ''')''' # change "(" to ")" elif infix[i] == ")": _a = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(UpperCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _snake_case : int = input('\nEnter an Infix Equation = ') # Input an Infix equation _snake_case : List[str] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
22
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _snake_case : Tuple = logging.get_logger(__name__) class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = size if size is not None else {'''shortest_edge''': 2_56} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any: """simple docstring""" _a = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase_ ): _a = target_sizes.numpy() _a = [] for idx in range(len(lowerCAmelCase_ ) ): _a = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ ) _a = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: _a = logits.argmax(dim=1 ) _a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1