code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCamelCase :Optional[Any] = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Tuple = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCamelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'yolos' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) A_ : List[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = image_size A_ : str = patch_size A_ : int = num_channels A_ : Optional[int] = qkv_bias A_ : List[Any] = num_detection_tokens A_ : Tuple = use_mid_position_embeddings A_ : int = auxiliary_loss # Hungarian matcher A_ : int = class_cost A_ : List[Any] = bbox_cost A_ : Optional[int] = giou_cost # Loss coefficients A_ : Any = bbox_loss_coefficient A_ : List[Any] = giou_loss_coefficient A_ : str = eos_coefficient class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4 @property def _a (self ): return 12
686
0
'''simple docstring''' def a ( lowerCamelCase__ = 50 ): '''simple docstring''' A_ : List[Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
700
'''simple docstring''' from jiwer import compute_measures import datasets lowerCamelCase :int = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCamelCase :int = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCamelCase :Optional[Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _a (self , lowercase=None , lowercase=None , lowercase=False ): if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: A_ : List[Any] = 0 A_ : Optional[int] = 0 for prediction, reference in zip(lowercase , lowercase ): A_ : Any = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
686
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _lowerCAmelCase : def __init__(self , lowercase ): if isinstance(lowercase , lowercase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A_ : Union[str, Any] = deepcopy(lowercase ) elif os.path.exists(lowercase ): with io.open(lowercase , """r""" , encoding="""utf-8""" ) as f: A_ : Tuple = json.load(lowercase ) else: try: A_ : Union[str, Any] = baseaa.urlsafe_baadecode(lowercase ).decode("""utf-8""" ) A_ : Any = json.loads(lowercase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) A_ : int = config self.set_stage_and_offload() def _a (self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. A_ : List[Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload A_ : List[str] = False if self.is_zeroa() or self.is_zeroa(): A_ : Tuple = set(["""cpu""", """nvme"""] ) A_ : List[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A_ : Tuple = True def _a (self , lowercase ): A_ : Dict = self.config # find the config node of interest if it exists A_ : Tuple = ds_key_long.split(""".""" ) A_ : Optional[Any] = nodes.pop() for node in nodes: A_ : Any = config.get(lowercase ) if config is None: return None, ds_key return config, ds_key def _a (self , lowercase , lowercase=None ): A_ : Dict = self.find_config_node(lowercase ) if config is None: return default return config.get(lowercase , lowercase ) def _a (self , lowercase , lowercase=False ): A_ : int = self.config # find the config node of interest if it exists A_ : int = ds_key_long.split(""".""" ) for node in nodes: A_ : Optional[Any] = config A_ : Tuple = config.get(lowercase ) if config is None: if must_exist: raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase ) def _a (self , lowercase ): A_ : str = self.get_value(lowercase ) return False if value is None else bool(lowercase ) def _a (self , lowercase ): A_ : List[str] = self.get_value(lowercase ) return False if value is None else not bool(lowercase ) def _a (self ): return self._stage == 2 def _a (self ): return self._stage == 3 def _a (self ): return self._offload class _lowerCAmelCase : def __init__(self , lowercase ): A_ : Dict = engine def _a (self , lowercase , **lowercase ): # runs backpropagation and handles mixed precision self.engine.backward(lowercase , **lowercase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase ): super().__init__(lowercase , device_placement=lowercase , scaler=lowercase ) A_ : Any = hasattr(self.optimizer , """overflow""" ) def _a (self , lowercase=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _a (self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _a (self ): if self.__has_overflow__: return self.optimizer.overflow return False class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase ): super().__init__(lowercase , lowercase ) def _a (self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _lowerCAmelCase : def __init__(self , lowercase , lowercase=0.0_01 , lowercase=0 , **lowercase ): A_ : List[str] = params A_ : Optional[int] = lr A_ : Union[str, Any] = weight_decay A_ : int = kwargs class _lowerCAmelCase : def __init__(self , lowercase , lowercase=None , lowercase=0 , **lowercase ): A_ : int = optimizer A_ : Tuple = total_num_steps A_ : Tuple = warmup_num_steps A_ : str = kwargs
701
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = CycleDiffusionPipeline __SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } __SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a (self ): torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) A_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : int = CLIPTextModel(lowercase ) A_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a (self , lowercase , lowercase=0 ): A_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) A_ : int = image / 2 + 0.5 if str(lowercase ).startswith("""mps""" ): A_ : int = torch.manual_seed(lowercase ) else: A_ : Union[str, Any] = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : Union[str, Any] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a (self ): A_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : Any = CycleDiffusionPipeline(**lowercase ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = self.get_dummy_inputs(lowercase ) A_ : str = pipe(**lowercase ) A_ : str = output.images A_ : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Tuple = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a (self ): A_ : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase , """half""" ): A_ : List[str] = module.half() A_ : List[Any] = CycleDiffusionPipeline(**lowercase ) A_ : Optional[Any] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Any = self.get_dummy_inputs(lowercase ) A_ : Tuple = pipe(**lowercase ) A_ : List[str] = output.images A_ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Optional[int] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a (self ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _a (self ): return super().test_inference_batch_single_identical() @skip_mps def _a (self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a (self ): return super().test_save_load_optional_components() @skip_mps def _a (self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) A_ : List[str] = init_image.resize((512, 512) ) A_ : Dict = """CompVis/stable-diffusion-v1-4""" A_ : List[Any] = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) A_ : Any = CycleDiffusionPipeline.from_pretrained( lowercase , scheduler=lowercase , safety_checker=lowercase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A_ : str = """A black colored car""" A_ : Dict = """A blue colored car""" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Optional[int] = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) A_ : str = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _a (self ): A_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) A_ : Optional[int] = init_image.resize((512, 512) ) A_ : Optional[int] = """CompVis/stable-diffusion-v1-4""" A_ : Union[str, Any] = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) A_ : List[str] = CycleDiffusionPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A_ : Optional[Any] = """A black colored car""" A_ : int = """A blue colored car""" A_ : str = torch.manual_seed(0 ) A_ : Any = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) A_ : int = output.images assert np.abs(image - expected_image ).max() < 2E-2
686
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCamelCase :Optional[int] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , *lowercase , **lowercase ): warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , lowercase , ) super().__init__(*lowercase , **lowercase )
702
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'down' def _a (self ): A_ : Dict = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ResnetDownsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'down' def _a (self ): A_ : Optional[int] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = AttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : int = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = CrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_, A_ : str = super().prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = SkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : Any = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnSkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Union[str, Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : int = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : int = { """in_channels""": 32, """out_channels""": 32, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnDownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'mid' def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = UNetMidBlockaDCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'mid' def _a (self ): A_, A_ : Dict = super().prepare_init_args_and_inputs_for_common() A_ : List[str] = 32 return init_dict, inputs_dict def _a (self ): A_ : str = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'mid' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Tuple = super().prepare_init_args_and_inputs_for_common() A_ : Optional[int] = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Union[str, Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ResnetUpsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = SimpleCrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : int = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = AttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : str = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = SkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnSkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = UpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Tuple = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : str = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnUpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : List[Any] = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase )
686
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCamelCase :Dict = logging.getLogger(__name__) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , ) -> str: '''simple docstring''' A_ : Optional[int] = bnb_quantization_config.load_in_abit A_ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) A_ : str = [] # custom device map if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(device_map.keys() ) > 1: A_ : int = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A_ : List[str] = get_keys_to_not_convert(lowerCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCamelCase__ ) A_ : Optional[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A_ : str = [] A_ : Tuple = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCamelCase__ ) # compatibility with peft A_ : int = load_in_abit A_ : Any = load_in_abit A_ : Any = get_parameter_device(lowerCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) A_ : List[str] = replace_with_bnb_layers(lowerCamelCase__ , lowerCamelCase__ , modules_to_not_convert=lowerCamelCase__ ) # convert param to the right dtype A_ : List[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A_ : List[Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) A_ : int = getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCamelCase__ ): param.to(lowerCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): A_ : Dict = replace_with_bnb_layers( lowerCamelCase__ , lowerCamelCase__ , modules_to_not_convert=lowerCamelCase__ ) A_ : Optional[Any] = get_quantized_model_device_map( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , max_memory=lowerCamelCase__ , no_split_module_classes=lowerCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A_ : Optional[int] = True A_ : Optional[int] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCamelCase__ , offload_state_dict=lowerCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCamelCase__ , device_map=lowerCamelCase__ , offload_dir=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Tuple: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): A_ : Dict = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) A_ : int = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A_ : Tuple = {} A_ : int = special_dtypes A_ : Tuple = no_split_module_classes A_ : Dict = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A_ : Optional[Any] = get_balanced_memory( lowerCamelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCamelCase__ , **lowerCamelCase__ , ) A_ : Dict = max_memory A_ : Tuple = infer_auto_device_map(lowerCamelCase__ , **lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # check if don't have any quantized module on the cpu A_ : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A_ : Union[str, Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ) -> Tuple: '''simple docstring''' if modules_to_not_convert is None: A_ : List[Any] = [] A_ : int = _replace_with_bnb_layers( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Optional[int]: '''simple docstring''' A_ : int = False for name, module in model.named_children(): if current_key_name is None: A_ : List[Any] = [] current_key_name.append(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A_ : Dict = """.""".join(lowerCamelCase__ ) A_ : Optional[int] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A_ : List[str] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A_ : Any = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) A_ : Any = module.weight.data if module.bias is not None: A_ : List[str] = module.bias.data bnb_module.requires_grad_(lowerCamelCase__ ) setattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : Dict = True if len(list(module.children() ) ) > 0: A_ : Any = _replace_with_bnb_layers( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): A_ : str = deepcopy(lowerCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A_ : Any = find_tied_parameters(lowerCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A_ : Optional[int] = sum(lowerCamelCase__ , [] ) A_ : Union[str, Any] = len(lowerCamelCase__ ) > 0 # Check if it is a base model A_ : int = False if hasattr(lowerCamelCase__ , """base_model_prefix""" ): A_ : int = not hasattr(lowerCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A_ : List[Any] = list(model.named_children() ) A_ : int = [list_modules[-1][0]] # add last module together with tied weights A_ : Tuple = set(lowerCamelCase__ ) - set(lowerCamelCase__ ) A_ : Union[str, Any] = list(set(lowerCamelCase__ ) ) + list(lowerCamelCase__ ) # remove ".weight" from the keys A_ : Union[str, Any] = [""".weight""", """.bias"""] A_ : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A_ : Any = name.replace(lowerCamelCase__ , """""" ) filtered_module_names.append(lowerCamelCase__ ) return filtered_module_names def a ( lowerCamelCase__ ) -> Dict: '''simple docstring''' for m in model.modules(): if isinstance(lowerCamelCase__ , bnb.nn.Linearabit ): return True return False def a ( lowerCamelCase__ ) -> Tuple: '''simple docstring''' return next(parameter.parameters() ).device def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowerCamelCase__ , lowerCamelCase__ , 0 , dtype=lowerCamelCase__ , value=lowerCamelCase__ ) A_ : Any = param_name A_ : Dict = model if "." in tensor_name: A_ : str = tensor_name.split(""".""" ) for split in splits[:-1]: A_ : Union[str, Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) A_ : str = new_module A_ : Dict = splits[-1] # offload weights A_ : str = False offload_weight(module._parameters[tensor_name] , lowerCamelCase__ , lowerCamelCase__ , index=lowerCamelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCamelCase__ , index=lowerCamelCase__ , ) else: offload_weight(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index=lowerCamelCase__ ) offload_weight(lowerCamelCase__ , param_name.replace("""weight""" , """SCB""" ) , lowerCamelCase__ , index=lowerCamelCase__ ) set_module_tensor_to_device(lowerCamelCase__ , lowerCamelCase__ , """meta""" , dtype=lowerCamelCase__ , value=torch.empty(*param.size() ) )
703
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' A_ : List[Any] = word_bank or [] # create a table A_ : int = len(lowerCamelCase__ ) + 1 A_ : list[list[list[str]]] = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value A_ : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: A_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
686
0
'''simple docstring''' from math import factorial def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A_ : Union[str, Any] = float(factorial(lowerCamelCase__ ) ) coefficient /= factorial(lowerCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
704
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = [] A_ : int = set({"""(""", """[""", """{"""} ) A_ : Union[str, Any] = set({""")""", """]""", """}"""} ) A_ : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowerCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase__ ) == 0 or (len(lowerCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase__ ) == 0 def a ( ): '''simple docstring''' A_ : int = input("""Enter sequence of brackets: """ ) if is_balanced(lowerCamelCase__ ): print(lowerCamelCase__ , """is balanced""" ) else: print(lowerCamelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
686
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase :Optional[Any] = 1_6 lowerCamelCase :Dict = 3_2 def a ( lowerCamelCase__ , lowerCamelCase__ = 16 ): '''simple docstring''' A_ : Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A_ : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A_ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ : Optional[Any] = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ : Tuple = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": A_ : List[Any] = 8 else: A_ : Optional[Any] = None return tokenizer.pad( lowerCamelCase__ , padding="""longest""" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. A_ : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase :Dict = mocked_dataloaders # noqa: F811 def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase__ ) == "1": A_ : Dict = 2 # New Code # A_ : Tuple = int(args.gradient_accumulation_steps ) A_ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator A_ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Dict = config["""lr"""] A_ : Dict = int(config["""num_epochs"""] ) A_ : Union[str, Any] = int(config["""seed"""] ) A_ : List[str] = int(config["""batch_size"""] ) A_ : List[str] = evaluate.load("""glue""" , """mrpc""" ) set_seed(lowerCamelCase__ ) A_ : Optional[int] = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer A_ : List[Any] = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler A_ : str = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ : Any = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() with LocalSGD( accelerator=lowerCamelCase__ , model=lowerCamelCase__ , local_sgd_steps=lowerCamelCase__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase__ ): A_ : int = model(**lowerCamelCase__ ) A_ : Any = output.loss accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ : Any = model(**lowerCamelCase__ ) A_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) A_ : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) A_ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCamelCase__ ) def a ( ): '''simple docstring''' A_ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCamelCase__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=lowerCamelCase__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) A_ : str = parser.parse_args() A_ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
705
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) A_ : Optional[int] = field A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} A_ : Optional[Any] = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def _a (self ): # Build iterable dataset if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : int = None A_ : Union[str, Any] = None A_ : int = None A_ : List[str] = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) A_ : str = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A_ : Any = dataset A_ : List[str] = path_or_buf A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : Optional[Any] = num_proc A_ : List[Any] = """utf-8""" A_ : int = to_json_kwargs def _a (self ): A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase ) A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer: A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) A_ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def _a (self , lowercase ): A_, A_, A_, A_, A_ : List[str] = args A_ : List[str] = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : Any = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): A_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: A_, A_ : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase ) return written
686
0
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
706
'''simple docstring''' import os import sys import unittest lowerCamelCase :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} A_ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : Optional[Any] = get_model_to_test_mapping(lowercase ) A_ : List[str] = get_model_to_test_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A_ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = get_model_to_tester_mapping(lowercase ) A_ : Optional[int] = get_model_to_tester_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A_ : Dict = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
0
'''simple docstring''' import random def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = a[left_index] A_ : int = left_index + 1 for j in range(left_index + 1 , lowerCamelCase__ ): if a[j] < pivot: A_ : Tuple = a[i], a[j] i += 1 A_ : Any = a[i - 1], a[left_index] return i - 1 def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if left < right: A_ : str = random.randint(lowerCamelCase__ , right - 1 ) A_ : Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound A_ : Tuple = partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) quick_sort_random( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCamelCase__ , pivot_index + 1 , lowerCamelCase__ ) # recursive quicksort to the right of the pivot point def a ( ): '''simple docstring''' A_ : List[Any] = input("""Enter numbers separated by a comma:\n""" ).strip() A_ : List[Any] = [int(lowerCamelCase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) ) print(lowerCamelCase__ ) if __name__ == "__main__": main()
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase :Any = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase :Dict = logging.get_logger(__name__) lowerCamelCase :Any = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'resnet' __SCREAMING_SNAKE_CASE : List[str] = ['basic', 'bottleneck'] def __init__(self , lowercase=3 , lowercase=64 , lowercase=[256, 512, 1024, 2048] , lowercase=[3, 4, 6, 3] , lowercase="bottleneck" , lowercase="relu" , lowercase=False , lowercase=None , lowercase=None , **lowercase , ): super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A_ : Union[str, Any] = num_channels A_ : Any = embedding_size A_ : Dict = hidden_sizes A_ : Tuple = depths A_ : Any = layer_type A_ : List[str] = hidden_act A_ : Union[str, Any] = downsample_in_first_stage A_ : int = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(lowercase ) + 1 )] A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-3
708
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase :Any = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def a ( lowerCamelCase__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCamelCase :List[Any] = parser.parse_args() if args.check_lib: lowerCamelCase :Union[str, Any] = importlib.import_module('''transformers''') lowerCamelCase :Union[str, Any] = Path(transformers_module.__file__).parent else: lowerCamelCase :List[str] = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
686
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = 3_84 A_ : Union[str, Any] = 7 if "tiny" in model_name: A_ : Optional[int] = 96 A_ : Optional[Any] = (2, 2, 6, 2) A_ : List[Any] = (3, 6, 12, 24) elif "small" in model_name: A_ : int = 96 A_ : Optional[int] = (2, 2, 18, 2) A_ : Optional[int] = (3, 6, 12, 24) elif "base" in model_name: A_ : List[Any] = 1_28 A_ : List[Any] = (2, 2, 18, 2) A_ : Optional[Any] = (4, 8, 16, 32) A_ : List[Any] = 12 A_ : int = 5_12 elif "large" in model_name: A_ : List[Any] = 1_92 A_ : Union[str, Any] = (2, 2, 18, 2) A_ : List[Any] = (6, 12, 24, 48) A_ : int = 12 A_ : Any = 7_68 # set label information A_ : str = 1_50 A_ : Union[str, Any] = """huggingface/label-files""" A_ : Optional[int] = """ade20k-id2label.json""" A_ : str = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : Dict = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : str = {v: k for k, v in idalabel.items()} A_ : Optional[int] = SwinConfig( embed_dim=lowerCamelCase__ , depths=lowerCamelCase__ , num_heads=lowerCamelCase__ , window_size=lowerCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) A_ : Any = UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dct.pop(lowerCamelCase__ ) A_ : Union[str, Any] = val def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A_ : Optional[Any] = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:dim, :] A_ : Optional[int] = in_proj_bias[: dim] A_ : Dict = in_proj_weight[ dim : dim * 2, : ] A_ : Optional[Any] = in_proj_bias[ dim : dim * 2 ] A_ : Tuple = in_proj_weight[ -dim :, : ] A_ : str = in_proj_bias[-dim :] # fmt: on def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = x.shape A_ : Dict = x.reshape(lowerCamelCase__ , 4 , in_channel // 4 ) A_ : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase__ , lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = x.shape A_ : Any = x.reshape(lowerCamelCase__ , in_channel // 4 , 4 ) A_ : Optional[int] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase__ , lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = x.shape[0] A_ : str = x.reshape(4 , in_channel // 4 ) A_ : List[Any] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = x.shape[0] A_ : List[Any] = x.reshape(in_channel // 4 , 4 ) A_ : Optional[int] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase__ ) return x def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } A_ : int = model_name_to_url[model_name] A_ : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="""cpu""" , file_name=lowerCamelCase__ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase__ , param.shape ) A_ : Union[str, Any] = get_upernet_config(lowerCamelCase__ ) A_ : List[str] = UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) if "bn" in key: A_ : int = key.replace("""bn""" , """batch_norm""" ) A_ : Union[str, Any] = val # rename keys A_ : List[str] = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A_ : List[str] = reverse_correct_unfold_reduction_order(lowerCamelCase__ ) if "norm" in key: A_ : Tuple = reverse_correct_unfold_norm_order(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image A_ : str = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A_ : List[str] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("""RGB""" ) A_ : List[str] = SegformerImageProcessor() A_ : Optional[int] = processor(lowerCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A_ : Union[str, Any] = model(lowerCamelCase__ ) A_ : str = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A_ : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": A_ : List[str] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": A_ : Union[str, Any] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": A_ : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"upernet-swin-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
709
'''simple docstring''' lowerCamelCase :dict[tuple[int, int, int], int] = {} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : int = _calculate(days - 1 , lowerCamelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Union[str, Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : Optional[int] = _calculate(days - 1 , lowerCamelCase__ , 0 ) A_ : Optional[Any] = state_late + state_absent + state_ontime A_ : Dict = prizestrings return prizestrings def a ( lowerCamelCase__ = 30 ): '''simple docstring''' return _calculate(lowerCamelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
686
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=10 , lowercase=3 , lowercase=2 , lowercase=2 , lowercase=2 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=0.9 , lowercase=None , ): A_ : str = parent A_ : Tuple = batch_size A_ : List[str] = image_size A_ : int = num_channels A_ : Optional[int] = patch_size A_ : List[Any] = tubelet_size A_ : Optional[Any] = num_frames A_ : Any = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : List[str] = num_hidden_layers A_ : str = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : Optional[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Dict = type_sequence_label_size A_ : Optional[int] = initializer_range A_ : Dict = mask_ratio A_ : Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A_ : Union[str, Any] = (image_size // patch_size) ** 2 A_ : Any = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A_ : Optional[int] = int(mask_ratio * self.seq_length ) def _a (self ): A_ : List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[int] = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def _a (self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = VideoMAEModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : Tuple = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[Any] = VideoMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.num_masks,) ) A_ : Optional[int] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A_ : Optional[int] = mask.expand(self.batch_size , -1 ).bool() A_ : List[str] = model(lowercase , lowercase ) # model only returns predictions for masked patches A_ : Optional[int] = mask.sum().item() A_ : int = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a (self ): A_ : Any = self.prepare_config_and_inputs() A_ : Optional[Any] = config_and_inputs A_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Optional[int] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Tuple = False def _a (self ): A_ : Union[str, Any] = VideoMAEModelTester(self ) A_ : Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def _a (self , lowercase , lowercase , lowercase=False ): A_ : Optional[int] = copy.deepcopy(lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : Union[str, Any] = torch.ones((self.model_tester.num_masks,) ) A_ : List[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A_ : Tuple = mask.expand(self.model_tester.batch_size , -1 ).bool() A_ : Tuple = bool_masked_pos.to(lowercase ) if return_labels: if model_class in [ *get_values(lowercase ), ]: A_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(lowercase ) A_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) @slow def _a (self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = VideoMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _a (self ): if not self.has_attentions: pass else: A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = True for model_class in self.all_model_classes: A_ : Tuple = self.model_tester.seq_length - self.model_tester.num_masks A_ : str = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A_ : Union[str, Any] = True A_ : int = False A_ : Dict = True A_ : Optional[Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Dict = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ : Tuple = True A_ : Any = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Any = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A_ : List[Any] = len(lowercase ) # Check attention is always last and order is fine A_ : Optional[int] = True A_ : List[Any] = True A_ : Tuple = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : str = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) A_ : List[str] = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a (self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): A_ : Optional[Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : int = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Dict = outputs.hidden_states A_ : Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) A_ : Tuple = self.model_tester.seq_length - self.model_tester.num_masks A_ : Tuple = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : int = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a (self ): pass def a ( ): '''simple docstring''' A_ : Dict = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A_ : Dict = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a (self ): A_ : List[Any] = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( lowercase ) A_ : Tuple = self.default_image_processor A_ : Union[str, Any] = prepare_video() A_ : Optional[int] = image_processor(lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(**lowercase ) # verify the logits A_ : Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(lowercase ) A_ : Dict = self.default_image_processor A_ : Any = prepare_video() A_ : Optional[Any] = image_processor(lowercase , return_tensors="""pt""" ).to(lowercase ) # add boolean mask, indicating which patches to mask A_ : int = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Union[str, Any] = torch.load(lowercase ) # forward pass with torch.no_grad(): A_ : List[str] = model(**lowercase ) # verify the logits A_ : List[str] = torch.Size([1, 1408, 1536] ) A_ : Dict = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase ) self.assertEqual(outputs.logits.shape , lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A_ : List[str] = torch.tensor([0.51_42] , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A_ : Any = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=lowercase ).to( lowercase ) with torch.no_grad(): A_ : Optional[int] = model(**lowercase ) A_ : Optional[int] = torch.tensor(torch.tensor([0.64_69] ) , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1E-4 ) )
710
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'linear' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine_with_restarts' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'polynomial' __SCREAMING_SNAKE_CASE : Optional[int] = 'constant' __SCREAMING_SNAKE_CASE : str = 'constant_with_warmup' __SCREAMING_SNAKE_CASE : Dict = 'piecewise_constant' def a ( lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' return LambdaLR(lowerCamelCase__ , lambda lowerCamelCase__ : 1 , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1.0 , lowerCamelCase__ ) ) return 1.0 return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' A_ : Optional[Any] = {} A_ : Optional[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A_, A_ : Union[str, Any] = rule_str.split(""":""" ) A_ : Union[str, Any] = int(lowerCamelCase__ ) A_ : List[Any] = float(lowerCamelCase__ ) A_ : Union[str, Any] = value A_ : Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ , lowerCamelCase__ ): def rule_func(lowerCamelCase__ ) -> float: A_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A_ : str = create_rules_function(lowerCamelCase__ , lowerCamelCase__ ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=-1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.5 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1E-7 , lowerCamelCase__=1.0 , lowerCamelCase__=-1 ): '''simple docstring''' A_ : Optional[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A_ : str = lr_init - lr_end A_ : Tuple = num_training_steps - num_warmup_steps A_ : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps A_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase :List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = -1 , ): '''simple docstring''' A_ : Optional[Any] = SchedulerType(lowerCamelCase__ ) A_ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase__ , last_epoch=lowerCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase__ , step_rules=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , num_cycles=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , power=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ )
686
0
'''simple docstring''' import argparse import copy def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = {} with open(lowerCamelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: A_ : Dict = [] _list.append([line.split()[1], line.split()[2]] ) A_ : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: A_ : Optional[Any] = [] _list.append([line.split()[0], line.split()[2]] ) A_ : List[str] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ ) as f: A_ : Any = f.read(1 ) A_ : Dict = start_node A_ : List[str] = [] A_ : Any = start_node A_ : Optional[int] = 0 while visiting not in first_solution: A_ : List[Any] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase__ ) and k[0] not in first_solution: A_ : List[Any] = k[1] A_ : str = k[0] first_solution.append(lowerCamelCase__ ) A_ : Tuple = distance_of_first_solution + int(lowerCamelCase__ ) A_ : str = best_node first_solution.append(lowerCamelCase__ ) A_ : Union[str, Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 A_ : List[str] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = [] for n in solution[1:-1]: A_ : Any = solution.index(lowerCamelCase__ ) for kn in solution[1:-1]: A_ : Union[str, Any] = solution.index(lowerCamelCase__ ) if n == kn: continue A_ : Optional[Any] = copy.deepcopy(lowerCamelCase__ ) A_ : Optional[int] = kn A_ : List[Any] = n A_ : Dict = 0 for k in _tmp[:-1]: A_ : str = _tmp[_tmp.index(lowerCamelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: A_ : Any = distance + int(i[1] ) _tmp.append(lowerCamelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) A_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = 1 A_ : Dict = first_solution A_ : Dict = [] A_ : Any = distance_of_first_solution A_ : List[Any] = solution while count <= iters: A_ : Optional[Any] = find_neighborhood(lowerCamelCase__ , lowerCamelCase__ ) A_ : int = 0 A_ : Union[str, Any] = neighborhood[index_of_best_solution] A_ : Dict = len(lowerCamelCase__ ) - 1 A_ : List[str] = False while not found: A_ : Optional[Any] = 0 while i < len(lowerCamelCase__ ): if best_solution[i] != solution[i]: A_ : Any = best_solution[i] A_ : Optional[int] = solution[i] break A_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) A_ : int = True A_ : List[Any] = best_solution[:-1] A_ : Dict = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: A_ : Dict = cost A_ : List[Any] = solution else: A_ : int = index_of_best_solution + 1 A_ : Optional[Any] = neighborhood[index_of_best_solution] if len(lowerCamelCase__ ) >= size: tabu_list.pop(0 ) A_ : Union[str, Any] = count + 1 return best_solution_ever, best_cost def a ( lowerCamelCase__=None ): '''simple docstring''' A_ : str = generate_neighbours(args.File ) A_ : Optional[int] = generate_first_solution( args.File , lowerCamelCase__ ) A_ : Any = tabu_search( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
711
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCamelCase :int = logging.get_logger('''transformers.models.encodec''') lowerCamelCase :int = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCamelCase :List[str] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCamelCase :Union[str, Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCamelCase :Dict = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCamelCase :int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCamelCase :str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCamelCase :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCamelCase :Tuple = [] lowerCamelCase :Dict = [] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: A_ : Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: A_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Dict = value elif weight_type == "bias": A_ : Dict = value elif weight_type == "running_mean": A_ : Optional[Any] = value elif weight_type == "running_var": A_ : int = value elif weight_type == "num_batches_tracked": A_ : Optional[Any] = value elif weight_type == "weight_ih_l0": A_ : Optional[int] = value elif weight_type == "weight_hh_l0": A_ : Union[str, Any] = value elif weight_type == "bias_ih_l0": A_ : Optional[int] = value elif weight_type == "bias_hh_l0": A_ : Tuple = value elif weight_type == "weight_ih_l1": A_ : Optional[int] = value elif weight_type == "weight_hh_l1": A_ : Dict = value elif weight_type == "bias_ih_l1": A_ : Optional[int] = value elif weight_type == "bias_hh_l1": A_ : Tuple = value else: A_ : Any = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_, A_ : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": A_ : List[str] = MAPPING_24K elif model_name == "encodec_48khz": A_ : str = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__ , lowerCamelCase__ ): logger.info(f'{name} was ignored' ) continue A_ : str = False for key, mapped_key in MAPPING.items(): if "*" in key: A_, A_ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: A_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue A_ : Union[str, Any] = True if "*" in mapped_key: A_ : int = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] A_ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : Tuple = """weight_v""" elif "weight_ih_l0" in name: A_ : Union[str, Any] = """weight_ih_l0""" elif "weight_hh_l0" in name: A_ : Tuple = """weight_hh_l0""" elif "bias_ih_l0" in name: A_ : str = """bias_ih_l0""" elif "bias_hh_l0" in name: A_ : List[Any] = """bias_hh_l0""" elif "weight_ih_l1" in name: A_ : Dict = """weight_ih_l1""" elif "weight_hh_l1" in name: A_ : Any = """weight_hh_l1""" elif "bias_ih_l1" in name: A_ : Optional[int] = """bias_ih_l1""" elif "bias_hh_l1" in name: A_ : List[Any] = """bias_hh_l1""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : Optional[int] = """weight""" elif "running_mean" in name: A_ : Union[str, Any] = """running_mean""" elif "running_var" in name: A_ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: A_ : List[Any] = """num_batches_tracked""" else: A_ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ): '''simple docstring''' if config_path is not None: A_ : Any = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: A_ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A_ : Dict = [8, 5, 4, 4] A_ : Optional[Any] = [2.2] A_ : Tuple = 64 A_ : Tuple = 3_20_00 A_ : List[Any] = 20_48 A_ : Optional[Any] = False A_ : str = False A_ : Optional[int] = False elif model_name == "encodec_48khz": A_ : Dict = [8, 5, 4, 2] A_ : Tuple = [3.0, 6.0, 12.0, 24.0] A_ : List[Any] = 4_80_00 A_ : Dict = 2 A_ : Dict = False A_ : Dict = """time_group_norm""" A_ : Optional[Any] = True A_ : str = 1.0 A_ : Any = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) A_ : Dict = EncodecModel(lowerCamelCase__ ) A_ : Any = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase__ ) A_ : int = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A_ : Tuple = original_checkpoint["""best_state"""] recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
686
0
'''simple docstring''' import re from ..utils import cached_file # docstyle-ignore lowerCamelCase :int = ''' Human: <<task>> Assistant: ''' lowerCamelCase :Union[str, Any] = '''huggingface-tools/default-prompts''' lowerCamelCase :List[Any] = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="run" ): '''simple docstring''' if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCamelCase__ ) is not None: return prompt_or_repo_id A_ : str = cached_file( lowerCamelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
712
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = 'beit' def __init__(self , lowercase=8192 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = vocab_size A_ : List[str] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[int] = hidden_act A_ : str = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : str = layer_norm_eps A_ : Any = image_size A_ : int = patch_size A_ : List[str] = num_channels A_ : Any = use_mask_token A_ : Dict = use_absolute_position_embeddings A_ : List[Any] = use_relative_position_bias A_ : Tuple = use_shared_relative_position_bias A_ : Optional[int] = layer_scale_init_value A_ : Tuple = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : Optional[int] = use_auxiliary_head A_ : Union[str, Any] = auxiliary_loss_weight A_ : Tuple = auxiliary_channels A_ : List[Any] = auxiliary_num_convs A_ : Dict = auxiliary_concat_input A_ : Optional[Any] = semantic_loss_ignore_index class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4
686
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase :Optional[int] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def a ( lowerCamelCase__=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Dict = None def _a (self , lowercase , lowercase ): with TemporaryDirectory() as tmp_dir: A_ : Optional[Any] = dataset_module_factory(lowercase , cache_dir=lowercase ) A_ : Optional[Any] = import_main_class(dataset_module.module_path , dataset=lowercase ) A_ : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name=lowercase , hash=dataset_module.hash , ) A_ : int = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) A_ : Optional[int] = cached_path(lowercase , cache_dir=lowercase ) self.assertTrue(os.path.exists(lowercase ) ) @pytest.mark.integration def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" A_ : Union[str, Any] = dataset_module_factory("""wikipedia""" , cache_dir=lowerCamelCase__ ) A_ : List[str] = import_main_class(dataset_module.module_path ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A_ : List[str] = None builder_instance.download_and_prepare() A_ : Dict = builder_instance.as_dataset() assert ds @pytest.mark.integration def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = dataset_module_factory("""wikipedia""" , cache_dir=lowerCamelCase__ ) A_ : List[Any] = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) A_ : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert "train" in ds assert isinstance(ds["""train"""] , lowerCamelCase__ ) assert next(iter(ds["""train"""] ) )
713
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase :Optional[int] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 1_3_1_0_7_2, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, } def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return torch.atana(lowerCamelCase__ , lowerCamelCase__ ) / math.pi * 2 def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = torch.sin(t * math.pi / 2 ) ** 2 A_ : List[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase ): super().__init__() A_ : int = DiffusionAttnUnetaD(lowercase , n_attn_layers=4 ) A_ : str = deepcopy(self.diffusion ) A_ : Optional[int] = torch.quasirandom.SobolEngine(1 , scramble=lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = MODELS_MAP[model_name]["""url"""] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCamelCase :str = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCamelCase :int = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCamelCase :List[Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCamelCase :Optional[Any] = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def a ( lowerCamelCase__ ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a ( lowerCamelCase__ ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return name.replace(lowerCamelCase__ , lowerCamelCase__ ) elif name.startswith(lowerCamelCase__ ): return [name.replace(lowerCamelCase__ , lowerCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def a ( lowerCamelCase__ , lowerCamelCase__=13 ): '''simple docstring''' A_ : Union[str, Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) A_ : Dict = 0 if string.startswith("""net.3.""" ): depth += 1 A_ : int = string[6:] elif string.startswith("""net.""" ): A_ : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 A_ : Dict = string[7:] if string.startswith("""main.""" ): A_ : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): A_ : Optional[Any] = string[:2] A_ : Optional[Any] = string[2:] else: A_ : List[Any] = string[0] A_ : Dict = string[1:] if depth == max_depth: A_ : Optional[int] = MID_NUM_TO_LAYER[layer_num] A_ : Optional[Any] = """mid_block""" elif depth > 0 and int(lowerCamelCase__ ) < 7: A_ : Any = DOWN_NUM_TO_LAYER[layer_num] A_ : Union[str, Any] = f'down_blocks.{depth}' elif depth > 0 and int(lowerCamelCase__ ) > 7: A_ : List[str] = UP_NUM_TO_LAYER[layer_num] A_ : List[str] = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: A_ : str = DEPTH_0_TO_LAYER[layer_num] A_ : Dict = f'up_blocks.{max_depth - 1}' if int(lowerCamelCase__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) A_ : Optional[int] = string_left[1:] if "resnets" in new_layer: A_ : Tuple = convert_resconv_naming(lowerCamelCase__ ) elif "attentions" in new_layer: A_ : Optional[int] = convert_attn_naming(lowerCamelCase__ ) A_ : Dict = new_string_left if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = prefix + """.""" + new_layer + """.""" + string_left else: A_ : Optional[int] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue A_ : List[Any] = rename(lowerCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Tuple = transform_conv_attns(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: A_ : int = v return new_state_dict def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A_ : Optional[Any] = v[:, :, 0] else: # bias A_ : Union[str, Any] = v else: # qkv matrices A_ : Optional[int] = v.shape[0] A_ : str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ : int = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A_ : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' A_ : int = download(lowerCamelCase__ ) A_ : Any = MODELS_MAP[model_name]["""sample_rate"""] A_ : List[Any] = MODELS_MAP[model_name]["""sample_size"""] A_ : Tuple = Object() A_ : Union[str, Any] = sample_size A_ : Tuple = sample_rate A_ : int = 0 A_ : List[Any] = UNetaDModel(sample_size=lowerCamelCase__ , sample_rate=lowerCamelCase__ ) A_ : Optional[Any] = diffusers_model.state_dict() A_ : Dict = DiffusionUncond(lowerCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase__ )["""state_dict"""] ) A_ : Any = orig_model.diffusion_ema.eval() A_ : Any = orig_model.state_dict() A_ : List[str] = rename_orig_weights(lowerCamelCase__ ) A_ : Any = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": A_ : str = value.squeeze() A_ : Union[str, Any] = value diffusers_model.load_state_dict(lowerCamelCase__ ) A_ : Optional[Any] = 1_00 A_ : Union[str, Any] = 33 A_ : Any = IPNDMScheduler(num_train_timesteps=lowerCamelCase__ ) A_ : List[str] = torch.manual_seed(lowerCamelCase__ ) A_ : Any = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) A_ : str = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase__ )[:-1] A_ : List[Any] = get_crash_schedule(lowerCamelCase__ ) A_ : str = DanceDiffusionPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) A_ : str = torch.manual_seed(33 ) A_ : int = pipe(num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ ).audios A_ : Optional[int] = sampling.iplms_sample(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {} ) A_ : str = generated.clamp(-1 , 1 ) A_ : List[Any] = (generated - audio).abs().sum() A_ : int = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase__ ) print("""Diff max""" , lowerCamelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase :List[str] = parser.parse_args() main(args)
686
0
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase :Optional[int] = logging.get_logger(__name__) class _lowerCAmelCase : def __init__(self , lowercase = None , lowercase = None , lowercase=None , lowercase=None ): if not conversation_id: A_ : Tuple = uuid.uuida() if past_user_inputs is None: A_ : Optional[Any] = [] if generated_responses is None: A_ : Optional[Any] = [] A_ : uuid.UUID = conversation_id A_ : List[str] = past_user_inputs A_ : List[str] = generated_responses A_ : Optional[str] = text def __eq__(self , lowercase ): if not isinstance(lowercase , lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _a (self , lowercase , lowercase = False ): if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) A_ : Optional[Any] = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: A_ : Dict = text def _a (self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A_ : str = None def _a (self , lowercase ): self.generated_responses.append(lowercase ) def _a (self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ): A_ : Union[str, Any] = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): A_ : Union[str, Any] = """user""" if is_user else """bot""" output += F'{name} >> {text} \n' return output @add_end_docstrings( __UpperCAmelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , *lowercase , **lowercase ): super().__init__(*lowercase , **lowercase ) if self.tokenizer.pad_token_id is None: A_ : str = self.tokenizer.eos_token def _a (self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): A_ : Tuple = {} A_ : Optional[int] = {} A_ : Tuple = {} if min_length_for_response is not None: A_ : Optional[int] = min_length_for_response if minimum_tokens is not None: A_ : Dict = minimum_tokens if "max_length" in generate_kwargs: A_ : Optional[Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A_ : Dict = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase ) return preprocess_params, forward_params, postprocess_params def __call__(self , lowercase , lowercase=0 , **lowercase ): A_ : Optional[int] = super().__call__(lowercase , num_workers=lowercase , **lowercase ) if isinstance(lowercase , lowercase ) and len(lowercase ) == 1: return outputs[0] return outputs def _a (self , lowercase , lowercase=32 ): if not isinstance(lowercase , lowercase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): A_ : int = self.tokenizer._build_conversation_input_ids(lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version A_ : List[Any] = self._legacy_parse_and_tokenize(lowercase ) if self.framework == "pt": A_ : str = torch.LongTensor([input_ids] ) elif self.framework == "tf": A_ : Optional[int] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _a (self , lowercase , lowercase=10 , **lowercase ): A_ : Dict = generate_kwargs.get("""max_length""" , self.model.config.max_length ) A_ : Any = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) A_ : Any = max_length - minimum_tokens A_ : Optional[int] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: A_ : int = model_inputs["""attention_mask"""][:, -trim:] A_ : Union[str, Any] = model_inputs.pop("""conversation""" ) A_ : Optional[int] = max_length A_ : List[Any] = self.model.generate(**lowercase , **lowercase ) if self.model.config.is_encoder_decoder: A_ : Dict = 1 else: A_ : Tuple = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _a (self , lowercase , lowercase=True ): A_ : Tuple = model_outputs["""output_ids"""] A_ : Optional[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase , ) A_ : Dict = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(lowercase ) return conversation def _a (self , lowercase ): A_ : str = self.tokenizer.eos_token_id A_ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase , add_special_tokens=lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowercase , add_special_tokens=lowercase ) ) if len(lowercase ) > self.tokenizer.model_max_length: A_ : Optional[Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
714
'''simple docstring''' from math import factorial def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A_ : Union[str, Any] = float(factorial(lowerCamelCase__ ) ) coefficient /= factorial(lowerCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
686
0
import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCamelCase :Optional[int] = logging.get_logger(__name__) @dataclass class _lowerCAmelCase : def __init__(self , lowercase=False , lowercase=False , lowercase=6.0 , lowercase=None , lowercase=False , lowercase=False , lowercase=None , lowercase="fp4" , lowercase=False , **lowercase , ): A_ : Optional[int] = load_in_abit A_ : int = load_in_abit A_ : List[str] = llm_inta_threshold A_ : Any = llm_inta_skip_modules A_ : str = llm_inta_enable_fpaa_cpu_offload A_ : str = llm_inta_has_fpaa_weight A_ : Optional[int] = bnb_abit_quant_type A_ : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: A_ : Optional[int] = torch.floataa elif isinstance(lowercase , lowercase ): A_ : Union[str, Any] = getattr(lowercase , lowercase ) elif isinstance(lowercase , torch.dtype ): A_ : int = bnb_abit_compute_dtype else: raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" ) self.post_init() def _a (self ): if not isinstance(self.llm_inta_threshold , lowercase ): raise ValueError("""llm_int8_threshold must be a float""" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowercase ): raise ValueError("""llm_int8_skip_modules must be a list of strings""" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowercase ): raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" ) if not isinstance(self.llm_inta_has_fpaa_weight , lowercase ): raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" ) if not isinstance(self.bnb_abit_quant_type , lowercase ): raise ValueError("""bnb_4bit_quant_type must be a string""" ) if not isinstance(self.bnb_abit_use_double_quant , lowercase ): raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" ) if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse( """0.39.0""" ): raise ValueError( """4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" ) def _a (self ): return self.load_in_abit or self.load_in_abit def _a (self ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _a (cls , lowercase , lowercase , **lowercase ): A_ : Dict = cls(**lowercase ) A_ : Tuple = [] for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) to_remove.append(lowercase ) for key in to_remove: kwargs.pop(lowercase , lowercase ) if return_unused_kwargs: return config, kwargs else: return config def _a (self , lowercase ): with open(lowercase , """w""" , encoding="""utf-8""" ) as writer: A_ : int = self.to_dict() A_ : int = json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + """\n""" writer.write(lowercase ) def _a (self ): A_ : Optional[Any] = copy.deepcopy(self.__dict__ ) A_ : List[Any] = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1] return output def __repr__(self ): return F'{self.__class__.__name__} {self.to_json_string()}' def _a (self , lowercase = True ): if use_diff is True: A_ : List[str] = self.to_diff_dict() else: A_ : Optional[int] = self.to_dict() return json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + "\n" def _a (self ): A_ : List[Any] = self.to_dict() # get the default config dict A_ : int = BitsAndBytesConfig().to_dict() A_ : str = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: A_ : Optional[int] = value return serializable_config_dict
715
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' if len(re.findall("""[ATCG]""" , lowerCamelCase__ ) ) != len(lowerCamelCase__ ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
686
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCamelCase :int = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' lowerCamelCase :Optional[int] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' lowerCamelCase :int = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def _a (self , lowercase , lowercase , lowercase=None , lowercase=True , lowercase=False ): if rouge_types is None: A_ : List[Any] = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] A_ : List[Any] = rouge_scorer.RougeScorer(rouge_types=lowercase , use_stemmer=lowercase ) if use_aggregator: A_ : Tuple = scoring.BootstrapAggregator() else: A_ : Dict = [] for ref, pred in zip(lowercase , lowercase ): A_ : Any = scorer.score(lowercase , lowercase ) if use_aggregator: aggregator.add_scores(lowercase ) else: scores.append(lowercase ) if use_aggregator: A_ : List[str] = aggregator.aggregate() else: A_ : List[str] = {} for key in scores[0]: A_ : Dict = [score[key] for score in scores] return result
716
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase__ ): http_head("""https://huggingface.co""" )
686
0
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCamelCase :Optional[Any] = logging.get_logger(__name__) lowerCamelCase :str = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 10_24, """hidden_size""": 7_68, """max_length""": 5_12, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 10_24, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1E-5, """token_type_vocab_size""": 2, } A_ : Tuple = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A_ : Optional[Any] = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A_ : List[str] = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab A_ : List[str] = os.path.join(get_home_dir() , """models""" ) A_ : Optional[Any] = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) A_ : List[Any] = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) A_ : Optional[int] = original_bort._collect_params_with_prefix() # Build our config 🤗 A_ : List[Any] = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } A_ : int = BertConfig.from_dict(lowerCamelCase__ ) A_ : Optional[Any] = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[Any] = hf_param.shape A_ : List[Any] = to_torch(params[gluon_param] ) A_ : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param A_ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) A_ : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) A_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) A_ : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A_ : List[str] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention A_ : BertSelfAttention = layer.attention.self A_ : List[Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) A_ : Dict = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) A_ : Any = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) A_ : Tuple = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) A_ : List[str] = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) A_ : int = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output A_ : BertSelfOutput = layer.attention.output A_ : Dict = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) A_ : Optional[int] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) A_ : str = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) A_ : Tuple = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate A_ : BertIntermediate = layer.intermediate A_ : List[str] = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) A_ : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output A_ : BertOutput = layer.output A_ : List[Any] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) A_ : Union[str, Any] = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) A_ : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) A_ : Tuple = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A_ : List[str] = RobertaTokenizer.from_pretrained("""roberta-base""" ) A_ : List[str] = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output A_ : Any = mx.nd.array([input_ids] ) A_ : str = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) A_ : Optional[Any] = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() A_ : Dict = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) A_ : Tuple = hf_bort_model(**lowerCamelCase__ )[0] A_ : Tuple = output_gluon[0].asnumpy() A_ : Tuple = output_hf[0].detach().numpy() A_ : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() A_ : Tuple = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase :Dict = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
717
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase :Any = re.compile(R'''\s+''') def a ( lowerCamelCase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowerCamelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = [len(lowerCamelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowerCamelCase__ ), "line_max": max(lowerCamelCase__ )} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a ( lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : Tuple = ["""auto-generated""", """autogenerated""", """automatically generated"""] A_ : Optional[int] = example["""content"""].splitlines() for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a ( lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=0.05 ): '''simple docstring''' A_ : Any = ["""unit tests""", """test file""", """configuration file"""] A_ : List[str] = example["""content"""].splitlines() A_ : str = 0 A_ : Union[str, Any] = 0 # first test for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : List[Any] = example["""content"""].count("""\n""" ) A_ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = ["""def """, """class """, """for """, """while """] A_ : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a ( lowerCamelCase__ , lowerCamelCase__=4 ): '''simple docstring''' A_ : Tuple = example["""content"""].splitlines() A_ : int = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = tokenizer(example["""content"""] , truncation=lowerCamelCase__ )["""input_ids"""] A_ : Optional[Any] = len(example["""content"""] ) / len(lowerCamelCase__ ) return {"ratio": ratio} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = {} results.update(get_hash(lowerCamelCase__ ) ) results.update(line_stats(lowerCamelCase__ ) ) results.update(alpha_stats(lowerCamelCase__ ) ) results.update(char_token_ratio(lowerCamelCase__ ) ) results.update(is_autogenerated(lowerCamelCase__ ) ) results.update(is_config_or_test(lowerCamelCase__ ) ) results.update(has_no_keywords(lowerCamelCase__ ) ) results.update(has_few_assignments(lowerCamelCase__ ) ) return results def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not check_uniques(lowerCamelCase__ , lowerCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """rb""" ) as f_in: with gzip.open(str(lowerCamelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase__ , lowerCamelCase__ ) os.unlink(lowerCamelCase__ ) # Settings lowerCamelCase :Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase :Tuple = parser.parse_args() if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() lowerCamelCase :List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase :List[Any] = time.time() lowerCamelCase :Optional[int] = load_dataset(args.dataset_name, split='''train''') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase :int = time.time() lowerCamelCase :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase :int = set(ds.unique('''hash''')) lowerCamelCase :List[str] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase :Dict = time.time() lowerCamelCase :int = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase :List[str] = time.time() lowerCamelCase , lowerCamelCase :int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase :int = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCamelCase :Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCamelCase :Tuple = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase :List[str] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase :Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
686
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): def _a (self , lowercase , lowercase ): return F'gaussian_noise_s={seed}_shape={"_".join([str(lowercase ) for s in shape] )}.npy' def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() def _a (self , lowercase=0 , lowercase=(4, 4, 64, 64) , lowercase=False ): A_ : Dict = jnp.bfloataa if fpaa else jnp.floataa A_ : str = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def _a (self , lowercase=False , lowercase="CompVis/stable-diffusion-v1-4" ): A_ : Any = jnp.bfloataa if fpaa else jnp.floataa A_ : str = """bf16""" if fpaa else None A_ : List[Any] = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder="""unet""" , dtype=lowercase , revision=lowercase ) return model, params def _a (self , lowercase=0 , lowercase=(4, 77, 768) , lowercase=False ): A_ : str = jnp.bfloataa if fpaa else jnp.floataa A_ : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1000, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowercase ) A_ : Optional[Any] = self.get_latents(lowercase , fpaa=lowercase ) A_ : Optional[int] = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) A_ : int = model.apply( {"""params""": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape A_ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A_ : Optional[Any] = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1000, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _a (self , lowercase , lowercase , lowercase ): A_ : Optional[int] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowercase ) A_ : Dict = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) A_ : List[str] = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1024) , fpaa=lowercase ) A_ : Optional[int] = model.apply( {"""params""": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape A_ : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A_ : List[str] = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1E-2 )
718
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
686
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__="pt" ): '''simple docstring''' A_ : List[str] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(""" """ ) else {} A_ : Union[str, Any] = padding_side return tokenizer( [line] , max_length=lowerCamelCase__ , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ): '''simple docstring''' A_ : Tuple = input_ids.ne(lowerCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase="train" , lowercase=None , lowercase=None , lowercase=None , lowercase="" , ): super().__init__() A_ : List[str] = Path(lowercase ).joinpath(type_path + """.source""" ) A_ : Any = Path(lowercase ).joinpath(type_path + """.target""" ) A_ : int = self.get_char_lens(self.src_file ) A_ : Dict = max_source_length A_ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' A_ : Any = tokenizer A_ : List[Any] = prefix if n_obs is not None: A_ : int = self.src_lens[:n_obs] A_ : List[Any] = src_lang A_ : Tuple = tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , lowercase ): A_ : Optional[int] = index + 1 # linecache starts at 1 A_ : Dict = self.prefix + linecache.getline(str(self.src_file ) , lowercase ).rstrip("""\n""" ) A_ : int = linecache.getline(str(self.tgt_file ) , lowercase ).rstrip("""\n""" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase ) else self.tokenizer ) A_ : int = self.tokenizer.generator if isinstance(self.tokenizer , lowercase ) else self.tokenizer A_ : int = encode_line(lowercase , lowercase , self.max_source_length , """right""" ) A_ : int = encode_line(lowercase , lowercase , self.max_target_length , """right""" ) A_ : List[str] = source_inputs["""input_ids"""].squeeze() A_ : Any = target_inputs["""input_ids"""].squeeze() A_ : Dict = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a (lowercase ): return [len(lowercase ) for x in Path(lowercase ).open().readlines()] def _a (self , lowercase ): A_ : Any = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Tuple = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) A_ : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase ) else self.tokenizer.pad_token_id ) A_ : str = trim_batch(lowercase , lowercase ) A_ : Tuple = trim_batch(lowercase , lowercase , attention_mask=lowercase ) A_ : Any = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowerCamelCase :int = getLogger(__name__) def a ( lowerCamelCase__ ): '''simple docstring''' return list(itertools.chain.from_iterable(lowerCamelCase__ ) ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , """git_log.json""" ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , **lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ ) as f: return json.load(lowerCamelCase__ ) def a ( ): '''simple docstring''' A_ : int = git.Repo(search_parent_directories=lowerCamelCase__ ) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return list(map(lowerCamelCase__ , lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """wb""" ) as f: return pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' def remove_articles(lowerCamelCase__ ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): A_ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = normalize_answer(lowerCamelCase__ ).split() A_ : Dict = normalize_answer(lowerCamelCase__ ).split() A_ : Optional[Any] = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ ) A_ : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase__ ) A_ : int = 1.0 * num_same / len(lowerCamelCase__ ) A_ : int = (2 * precision * recall) / (precision + recall) return fa def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) A_ : Tuple = 0 for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ): em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: em /= len(lowerCamelCase__ ) return {"em": em} def a ( lowerCamelCase__ ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : List[str] = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) continue A_ : Tuple = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p] setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) return hparams, config
719
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase :int = datasets.load_iris() lowerCamelCase :str = np.array(data['''data''']) lowerCamelCase :Dict = np.array(data['''target''']) lowerCamelCase :Union[str, Any] = data['''target_names'''] lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = train_test_split(X, y) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : List[str] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : List[str] = [] for data_point in data: A_ : Any = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : Optional[Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Tuple = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
686
0
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' if len(re.findall("""[ATCG]""" , lowerCamelCase__ ) ) != len(lowerCamelCase__ ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Tuple = [sequences] A_ : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : int = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Any = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : str = self.tokenizer.eos_token try: A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : Any = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Optional[Any] = {} if "candidate_labels" in kwargs: A_ : str = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : List[Any] = {} if "multi_label" in kwargs: A_ : Optional[Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Union[str, Any] = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_, A_ : int = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Optional[Any] = inputs["""candidate_label"""] A_ : List[Any] = inputs["""sequence"""] A_ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : List[str] = self.model(**lowercase ) A_ : str = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Any = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : str = [outputs["""sequence"""] for outputs in model_outputs] A_ : Dict = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : Dict = logits.shape[0] A_ : Any = len(lowercase ) A_ : List[str] = N // n A_ : Tuple = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Union[str, Any] = self.entailment_id A_ : Any = -1 if entailment_id == 0 else 0 A_ : List[str] = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Union[str, Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : int = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Any = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
686
0
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = [] A_ : int = set({"""(""", """[""", """{"""} ) A_ : Union[str, Any] = set({""")""", """]""", """}"""} ) A_ : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowerCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase__ ) == 0 or (len(lowerCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase__ ) == 0 def a ( ): '''simple docstring''' A_ : int = input("""Enter sequence of brackets: """ ) if is_balanced(lowerCamelCase__ ): print(lowerCamelCase__ , """is balanced""" ) else: print(lowerCamelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
721
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'yolos' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) A_ : List[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = image_size A_ : str = patch_size A_ : int = num_channels A_ : Optional[int] = qkv_bias A_ : List[Any] = num_detection_tokens A_ : Tuple = use_mid_position_embeddings A_ : int = auxiliary_loss # Hungarian matcher A_ : int = class_cost A_ : List[Any] = bbox_cost A_ : Optional[int] = giou_cost # Loss coefficients A_ : Any = bbox_loss_coefficient A_ : List[Any] = giou_loss_coefficient A_ : str = eos_coefficient class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4 @property def _a (self ): return 12
686
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'yolos' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) A_ : List[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = image_size A_ : str = patch_size A_ : int = num_channels A_ : Optional[int] = qkv_bias A_ : List[Any] = num_detection_tokens A_ : Tuple = use_mid_position_embeddings A_ : int = auxiliary_loss # Hungarian matcher A_ : int = class_cost A_ : List[Any] = bbox_cost A_ : Optional[int] = giou_cost # Loss coefficients A_ : Any = bbox_loss_coefficient A_ : List[Any] = giou_loss_coefficient A_ : str = eos_coefficient class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4 @property def _a (self ): return 12
700
'''simple docstring''' from jiwer import compute_measures import datasets lowerCamelCase :int = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCamelCase :int = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCamelCase :Optional[Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _a (self , lowercase=None , lowercase=None , lowercase=False ): if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: A_ : List[Any] = 0 A_ : Optional[int] = 0 for prediction, reference in zip(lowercase , lowercase ): A_ : Any = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
686
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :List[str] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'lxmert' __SCREAMING_SNAKE_CASE : int = {} def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=9500 , lowercase=1600 , lowercase=400 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=9 , lowercase=5 , lowercase=5 , lowercase=2048 , lowercase=4 , lowercase=6.67 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , **lowercase , ): A_ : Any = vocab_size A_ : Any = hidden_size A_ : Optional[int] = num_attention_heads A_ : List[str] = hidden_act A_ : Union[str, Any] = intermediate_size A_ : Union[str, Any] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : str = max_position_embeddings A_ : int = type_vocab_size A_ : Optional[int] = initializer_range A_ : Any = layer_norm_eps A_ : Any = num_qa_labels A_ : Optional[Any] = num_object_labels A_ : Union[str, Any] = num_attr_labels A_ : Optional[int] = l_layers A_ : str = x_layers A_ : Any = r_layers A_ : int = visual_feat_dim A_ : int = visual_pos_dim A_ : Dict = visual_loss_normalizer A_ : Dict = task_matched A_ : Tuple = task_mask_lm A_ : Any = task_obj_predict A_ : str = task_qa A_ : Union[str, Any] = visual_obj_loss A_ : Optional[int] = visual_attr_loss A_ : Any = visual_feat_loss A_ : Optional[int] = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**lowercase )
701
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = CycleDiffusionPipeline __SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } __SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a (self ): torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) A_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : int = CLIPTextModel(lowercase ) A_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a (self , lowercase , lowercase=0 ): A_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) A_ : int = image / 2 + 0.5 if str(lowercase ).startswith("""mps""" ): A_ : int = torch.manual_seed(lowercase ) else: A_ : Union[str, Any] = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : Union[str, Any] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a (self ): A_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : Any = CycleDiffusionPipeline(**lowercase ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = self.get_dummy_inputs(lowercase ) A_ : str = pipe(**lowercase ) A_ : str = output.images A_ : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Tuple = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a (self ): A_ : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase , """half""" ): A_ : List[str] = module.half() A_ : List[Any] = CycleDiffusionPipeline(**lowercase ) A_ : Optional[Any] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Any = self.get_dummy_inputs(lowercase ) A_ : Tuple = pipe(**lowercase ) A_ : List[str] = output.images A_ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Optional[int] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a (self ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _a (self ): return super().test_inference_batch_single_identical() @skip_mps def _a (self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a (self ): return super().test_save_load_optional_components() @skip_mps def _a (self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) A_ : List[str] = init_image.resize((512, 512) ) A_ : Dict = """CompVis/stable-diffusion-v1-4""" A_ : List[Any] = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) A_ : Any = CycleDiffusionPipeline.from_pretrained( lowercase , scheduler=lowercase , safety_checker=lowercase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A_ : str = """A black colored car""" A_ : Dict = """A blue colored car""" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Optional[int] = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) A_ : str = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _a (self ): A_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) A_ : Optional[int] = init_image.resize((512, 512) ) A_ : Optional[int] = """CompVis/stable-diffusion-v1-4""" A_ : Union[str, Any] = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) A_ : List[str] = CycleDiffusionPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A_ : Optional[Any] = """A black colored car""" A_ : int = """A blue colored car""" A_ : str = torch.manual_seed(0 ) A_ : Any = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) A_ : int = output.images assert np.abs(image - expected_image ).max() < 2E-2
686
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase :int = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Dict = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Union[str, Any] = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :List[str] = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Tuple = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Union[str, Any] = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCamelCase :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'down' def _a (self ): A_ : Dict = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ResnetDownsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'down' def _a (self ): A_ : Optional[int] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = AttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : int = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = CrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_, A_ : str = super().prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = SkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : Any = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnSkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Union[str, Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : int = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : int = { """in_channels""": 32, """out_channels""": 32, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnDownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'mid' def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = UNetMidBlockaDCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'mid' def _a (self ): A_, A_ : Dict = super().prepare_init_args_and_inputs_for_common() A_ : List[str] = 32 return init_dict, inputs_dict def _a (self ): A_ : str = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'mid' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Tuple = super().prepare_init_args_and_inputs_for_common() A_ : Optional[int] = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Union[str, Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ResnetUpsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = SimpleCrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : int = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = AttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : str = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = SkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnSkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = UpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Tuple = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : str = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnUpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : List[Any] = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase )
686
0
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase :Optional[int] = logging.get_logger(__name__) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' A_ : List[Any] = os.path.abspath(lowerCamelCase__ ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model A_ : int = tf.train.list_variables(lowerCamelCase__ ) A_ : Dict = [] A_ : Tuple = [] A_ : Union[str, Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") A_ : Tuple = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' A_ : List[str] = name[1:] # figure out how many levels deep the name is A_ : int = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(lowerCamelCase__ ) # read data A_ : List[str] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) names.append("""/""".join(lowerCamelCase__ ) ) arrays.append(lowerCamelCase__ ) logger.info(f'Read a total of {len(lowerCamelCase__ ):,} layers' ) # Sanity check if len(set(lowerCamelCase__ ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(lowerCamelCase__ ) )})' ) A_ : Optional[int] = list(set(lowerCamelCase__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(lowerCamelCase__ , lowerCamelCase__ ): A_ : List[Any] = full_name.split("""/""" ) A_ : Tuple = model A_ : str = [] for i, m_name in enumerate(lowerCamelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): A_ : Optional[Any] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) A_ : Tuple = getattr(lowerCamelCase__ , """embeddings""" ) A_ : Tuple = getattr(lowerCamelCase__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) A_ : Optional[int] = getattr(lowerCamelCase__ , """encoder""" ) A_ : str = getattr(lowerCamelCase__ , """layer""" ) A_ : Optional[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) A_ : Any = getattr(lowerCamelCase__ , """pooler""" ) A_ : str = getattr(lowerCamelCase__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) A_ : Dict = getattr(lowerCamelCase__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) A_ : Optional[int] = getattr(lowerCamelCase__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) A_ : Union[str, Any] = getattr(lowerCamelCase__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) A_ : List[Any] = getattr(lowerCamelCase__ , """token_type_embeddings""" ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append("""weight""" ) A_ : str = getattr(lowerCamelCase__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) A_ : List[Any] = getattr(lowerCamelCase__ , """attention""" ) A_ : List[Any] = getattr(lowerCamelCase__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) A_ : List[str] = getattr(lowerCamelCase__ , """attention""" ) A_ : List[Any] = getattr(lowerCamelCase__ , """output""" ) A_ : Dict = getattr(lowerCamelCase__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) A_ : Dict = getattr(lowerCamelCase__ , """attention""" ) A_ : str = getattr(lowerCamelCase__ , """output""" ) A_ : Tuple = getattr(lowerCamelCase__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) A_ : Any = getattr(lowerCamelCase__ , """output""" ) A_ : Optional[Any] = getattr(lowerCamelCase__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) A_ : Dict = getattr(lowerCamelCase__ , """output""" ) A_ : Optional[Any] = getattr(lowerCamelCase__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) A_ : Optional[int] = getattr(lowerCamelCase__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) A_ : Optional[int] = getattr(lowerCamelCase__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) A_ : int = getattr(lowerCamelCase__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) A_ : Any = getattr(lowerCamelCase__ , """intermediate""" ) A_ : Union[str, Any] = getattr(lowerCamelCase__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) A_ : List[Any] = getattr(lowerCamelCase__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) A_ : Dict = getattr(lowerCamelCase__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) A_ : Dict = getattr(lowerCamelCase__ , """weight""" ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary A_ : List[Any] = """.""".join(lowerCamelCase__ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , lowerCamelCase__ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , lowerCamelCase__ ): A_ : List[str] = array.reshape(pointer.data.shape ) if "kernel" in full_name: A_ : Optional[Any] = array.transpose() if pointer.shape == array.shape: A_ : Any = torch.from_numpy(lowerCamelCase__ ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' logger.info(f'Loading model based on config from {config_path}...' ) A_ : Dict = BertConfig.from_json_file(lowerCamelCase__ ) A_ : Union[str, Any] = BertModel(lowerCamelCase__ ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) lowerCamelCase :Dict = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
703
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' A_ : List[Any] = word_bank or [] # create a table A_ : int = len(lowerCamelCase__ ) + 1 A_ : list[list[list[str]]] = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value A_ : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: A_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
686
0
'''simple docstring''' lowerCamelCase :List[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
704
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = [] A_ : int = set({"""(""", """[""", """{"""} ) A_ : Union[str, Any] = set({""")""", """]""", """}"""} ) A_ : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowerCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase__ ) == 0 or (len(lowerCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase__ ) == 0 def a ( ): '''simple docstring''' A_ : int = input("""Enter sequence of brackets: """ ) if is_balanced(lowerCamelCase__ ): print(lowerCamelCase__ , """is balanced""" ) else: print(lowerCamelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
686
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = LxmertTokenizer __SCREAMING_SNAKE_CASE : int = LxmertTokenizerFast __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : str = True def _a (self ): super().setUp() A_ : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _a (self , lowercase ): A_ : Union[str, Any] = """UNwant\u00E9d,running""" A_ : Union[str, Any] = """unwanted, running""" return input_text, output_text def _a (self ): A_ : str = self.tokenizer_class(self.vocab_file ) A_ : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [7, 4, 5, 10, 8, 9] ) def _a (self ): if not self.test_rust_tokenizer: return A_ : Dict = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Tuple = """I was born in 92000, and this is falsé.""" A_ : Tuple = tokenizer.tokenize(lowercase ) A_ : str = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : Optional[Any] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A_ : str = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = tokenizer.encode(lowercase ) A_ : List[str] = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase )
705
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) A_ : Optional[int] = field A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} A_ : Optional[Any] = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def _a (self ): # Build iterable dataset if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : int = None A_ : Union[str, Any] = None A_ : int = None A_ : List[str] = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) A_ : str = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A_ : Any = dataset A_ : List[str] = path_or_buf A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : Optional[Any] = num_proc A_ : List[Any] = """utf-8""" A_ : int = to_json_kwargs def _a (self ): A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase ) A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer: A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) A_ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def _a (self , lowercase ): A_, A_, A_, A_, A_ : List[str] = args A_ : List[str] = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : Any = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): A_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: A_, A_ : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase ) return written
686
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :Optional[int] = {'''vocab_file''': '''vocab.txt'''} lowerCamelCase :Dict = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } lowerCamelCase :Tuple = { '''YituTech/conv-bert-base''': 5_1_2, '''YituTech/conv-bert-medium-small''': 5_1_2, '''YituTech/conv-bert-small''': 5_1_2, } lowerCamelCase :List[str] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = ConvBertTokenizer def __init__(self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): A_ : int = getattr(lowercase , normalizer_state.pop("""type""" ) ) A_ : Any = do_lower_case A_ : Any = strip_accents A_ : str = tokenize_chinese_chars A_ : Dict = normalizer_class(**lowercase ) A_ : Dict = do_lower_case def _a (self , lowercase , lowercase=None ): A_ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a (self , lowercase , lowercase = None ): A_ : List[str] = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a (self , lowercase , lowercase = None ): A_ : Any = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
706
'''simple docstring''' import os import sys import unittest lowerCamelCase :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} A_ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : Optional[Any] = get_model_to_test_mapping(lowercase ) A_ : List[str] = get_model_to_test_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A_ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = get_model_to_tester_mapping(lowercase ) A_ : Optional[int] = get_model_to_tester_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A_ : Dict = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
0
'''simple docstring''' import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase :Any = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
'''simple docstring''' import math import os import sys def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = """""" try: with open(lowerCamelCase__ , """rb""" ) as binary_file: A_ : Dict = binary_file.read() for dat in data: A_ : int = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' lexicon.pop(lowerCamelCase__ ) A_ : Dict = last_match_id if math.loga(lowerCamelCase__ ).is_integer(): for curr_key in lexicon: A_ : int = """0""" + lexicon[curr_key] A_ : Union[str, Any] = bin(lowerCamelCase__ )[2:] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = {"""0""": """0""", """1""": """1"""} A_ : Any = """""", """""" A_ : Optional[int] = len(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A_ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) index += 1 A_ : List[str] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": A_ : int = lexicon[curr_string] result += last_match_id return result def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = os.path.getsize(lowerCamelCase__ ) A_ : Dict = bin(lowerCamelCase__ )[2:] A_ : Dict = len(lowerCamelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = 8 try: with open(lowerCamelCase__ , """wb""" ) as opened_file: A_ : str = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCamelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = read_file_binary(lowerCamelCase__ ) A_ : Union[str, Any] = compress_data(lowerCamelCase__ ) A_ : int = add_file_length(lowerCamelCase__ , lowerCamelCase__ ) write_file_binary(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
708
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase :Any = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def a ( lowerCamelCase__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCamelCase :List[Any] = parser.parse_args() if args.check_lib: lowerCamelCase :Union[str, Any] = importlib.import_module('''transformers''') lowerCamelCase :Union[str, Any] = Path(transformers_module.__file__).parent else: lowerCamelCase :List[str] = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
686
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Optional[int] = tempfile.mkdtemp() # fmt: off A_ : Union[str, Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A_ : int = dict(zip(lowercase , range(len(lowercase ) ) ) ) A_ : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A_ : str = {"""unk_token""": """<unk>"""} A_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) A_ : Union[str, Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[str] = os.path.join(self.tmpdirname , lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase , lowercase ) def _a (self , **lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowercase ) def _a (self , **lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowercase ) def _a (self , **lowercase ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase ) def _a (self ): shutil.rmtree(self.tmpdirname ) def _a (self ): A_ : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : int = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a (self ): A_ : Dict = self.get_tokenizer() A_ : Union[str, Any] = self.get_rust_tokenizer() A_ : Tuple = self.get_image_processor() A_ : List[Any] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase ) A_ : Union[str, Any] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : int = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase ) self.assertIsInstance(processor_fast.tokenizer , lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase ) self.assertIsInstance(processor_fast.image_processor , lowercase ) def _a (self ): A_ : str = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ : List[Any] = self.get_image_processor(do_normalize=lowercase ) A_ : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) def _a (self ): A_ : List[str] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Optional[Any] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : str = self.prepare_image_inputs() A_ : Optional[int] = image_processor(lowercase , return_tensors="""np""" ) A_ : int = processor(images=lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a (self ): A_ : List[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[str] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : Tuple = """lower newer""" A_ : Optional[Any] = processor(text=lowercase , return_tensors="""np""" ) A_ : List[Any] = tokenizer(lowercase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _a (self ): A_ : int = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : List[Any] = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : List[Any] = """lower newer""" A_ : Optional[Any] = self.prepare_image_inputs() A_ : Dict = processor(text=lowercase , images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _a (self ): A_ : str = """google/owlvit-base-patch32""" A_ : Union[str, Any] = OwlViTProcessor.from_pretrained(lowercase ) A_ : str = ["""cat""", """nasa badge"""] A_ : Tuple = processor(text=lowercase ) A_ : Tuple = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _a (self ): A_ : Optional[Any] = """google/owlvit-base-patch32""" A_ : Optional[Any] = OwlViTProcessor.from_pretrained(lowercase ) A_ : Optional[Any] = [["""cat""", """nasa badge"""], ["""person"""]] A_ : List[str] = processor(text=lowercase ) A_ : Union[str, Any] = 16 A_ : Dict = len(lowercase ) A_ : Optional[Any] = max([len(lowercase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _a (self ): A_ : int = """google/owlvit-base-patch32""" A_ : List[Any] = OwlViTProcessor.from_pretrained(lowercase ) A_ : List[str] = ["""cat""", """nasa badge"""] A_ : Optional[int] = processor(text=lowercase ) A_ : str = 16 A_ : Dict = inputs["""input_ids"""] A_ : Any = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _a (self ): A_ : Union[str, Any] = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : Tuple = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : Optional[int] = self.prepare_image_inputs() A_ : Optional[int] = self.prepare_image_inputs() A_ : int = processor(images=lowercase , query_images=lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _a (self ): A_ : List[Any] = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = OwlViTProcessor(tokenizer=lowercase , image_processor=lowercase ) A_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(lowercase ) A_ : Optional[int] = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase )
709
'''simple docstring''' lowerCamelCase :dict[tuple[int, int, int], int] = {} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : int = _calculate(days - 1 , lowerCamelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Union[str, Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : Optional[int] = _calculate(days - 1 , lowerCamelCase__ , 0 ) A_ : Optional[Any] = state_late + state_absent + state_ontime A_ : Dict = prizestrings return prizestrings def a ( lowerCamelCase__ = 30 ): '''simple docstring''' return _calculate(lowerCamelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
686
0
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ ): '''simple docstring''' return len(set(lowerCamelCase__ ) ) == len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'linear' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine_with_restarts' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'polynomial' __SCREAMING_SNAKE_CASE : Optional[int] = 'constant' __SCREAMING_SNAKE_CASE : str = 'constant_with_warmup' __SCREAMING_SNAKE_CASE : Dict = 'piecewise_constant' def a ( lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' return LambdaLR(lowerCamelCase__ , lambda lowerCamelCase__ : 1 , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1.0 , lowerCamelCase__ ) ) return 1.0 return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' A_ : Optional[Any] = {} A_ : Optional[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A_, A_ : Union[str, Any] = rule_str.split(""":""" ) A_ : Union[str, Any] = int(lowerCamelCase__ ) A_ : List[Any] = float(lowerCamelCase__ ) A_ : Union[str, Any] = value A_ : Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ , lowerCamelCase__ ): def rule_func(lowerCamelCase__ ) -> float: A_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A_ : str = create_rules_function(lowerCamelCase__ , lowerCamelCase__ ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=-1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.5 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1E-7 , lowerCamelCase__=1.0 , lowerCamelCase__=-1 ): '''simple docstring''' A_ : Optional[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A_ : str = lr_init - lr_end A_ : Tuple = num_training_steps - num_warmup_steps A_ : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps A_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase :List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = -1 , ): '''simple docstring''' A_ : Optional[Any] = SchedulerType(lowerCamelCase__ ) A_ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase__ , last_epoch=lowerCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase__ , step_rules=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , num_cycles=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , power=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ )
686
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase :str = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = GPTSwaTokenizer __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : List[Any] = False def _a (self ): super().setUp() # We have a SentencePiece fixture for testing A_ : Union[str, Any] = GPTSwaTokenizer(lowercase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self , lowercase ): A_ : List[str] = """This is a test""" A_ : List[str] = """This is a test""" return input_text, output_text def _a (self ): A_ : str = """<s>""" A_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def _a (self ): A_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowercase ) , 2000 ) def _a (self ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def _a (self ): A_ : int = GPTSwaTokenizer(lowercase ) A_ : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [465, 287, 265, 631, 842] ) A_ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowercase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on A_ : List[Any] = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) A_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase ) # fmt: off self.assertListEqual( lowercase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def _a (self ): A_ : List[Any] = GPTSwaTokenizer(lowercase ) A_ : Optional[int] = ["""This is a test""", """I was born in 92000, and this is falsé."""] A_ : Union[str, Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowercase , lowercase ): self.assertListEqual(tokenizer.encode_fast(lowercase ) , lowercase ) # Test that decode_fast returns the input text for text, token_ids in zip(lowercase , lowercase ): self.assertEqual(tokenizer.decode_fast(lowercase ) , lowercase ) @slow def _a (self ): A_ : Union[str, Any] = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off A_ : Dict = {"""input_ids""": [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowercase , )
711
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCamelCase :int = logging.get_logger('''transformers.models.encodec''') lowerCamelCase :int = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCamelCase :List[str] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCamelCase :Union[str, Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCamelCase :Dict = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCamelCase :int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCamelCase :str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCamelCase :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCamelCase :Tuple = [] lowerCamelCase :Dict = [] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: A_ : Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: A_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Dict = value elif weight_type == "bias": A_ : Dict = value elif weight_type == "running_mean": A_ : Optional[Any] = value elif weight_type == "running_var": A_ : int = value elif weight_type == "num_batches_tracked": A_ : Optional[Any] = value elif weight_type == "weight_ih_l0": A_ : Optional[int] = value elif weight_type == "weight_hh_l0": A_ : Union[str, Any] = value elif weight_type == "bias_ih_l0": A_ : Optional[int] = value elif weight_type == "bias_hh_l0": A_ : Tuple = value elif weight_type == "weight_ih_l1": A_ : Optional[int] = value elif weight_type == "weight_hh_l1": A_ : Dict = value elif weight_type == "bias_ih_l1": A_ : Optional[int] = value elif weight_type == "bias_hh_l1": A_ : Tuple = value else: A_ : Any = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_, A_ : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": A_ : List[str] = MAPPING_24K elif model_name == "encodec_48khz": A_ : str = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__ , lowerCamelCase__ ): logger.info(f'{name} was ignored' ) continue A_ : str = False for key, mapped_key in MAPPING.items(): if "*" in key: A_, A_ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: A_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue A_ : Union[str, Any] = True if "*" in mapped_key: A_ : int = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] A_ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : Tuple = """weight_v""" elif "weight_ih_l0" in name: A_ : Union[str, Any] = """weight_ih_l0""" elif "weight_hh_l0" in name: A_ : Tuple = """weight_hh_l0""" elif "bias_ih_l0" in name: A_ : str = """bias_ih_l0""" elif "bias_hh_l0" in name: A_ : List[Any] = """bias_hh_l0""" elif "weight_ih_l1" in name: A_ : Dict = """weight_ih_l1""" elif "weight_hh_l1" in name: A_ : Any = """weight_hh_l1""" elif "bias_ih_l1" in name: A_ : Optional[int] = """bias_ih_l1""" elif "bias_hh_l1" in name: A_ : List[Any] = """bias_hh_l1""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : Optional[int] = """weight""" elif "running_mean" in name: A_ : Union[str, Any] = """running_mean""" elif "running_var" in name: A_ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: A_ : List[Any] = """num_batches_tracked""" else: A_ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ): '''simple docstring''' if config_path is not None: A_ : Any = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: A_ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A_ : Dict = [8, 5, 4, 4] A_ : Optional[Any] = [2.2] A_ : Tuple = 64 A_ : Tuple = 3_20_00 A_ : List[Any] = 20_48 A_ : Optional[Any] = False A_ : str = False A_ : Optional[int] = False elif model_name == "encodec_48khz": A_ : Dict = [8, 5, 4, 2] A_ : Tuple = [3.0, 6.0, 12.0, 24.0] A_ : List[Any] = 4_80_00 A_ : Dict = 2 A_ : Dict = False A_ : Dict = """time_group_norm""" A_ : Optional[Any] = True A_ : str = 1.0 A_ : Any = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) A_ : Dict = EncodecModel(lowerCamelCase__ ) A_ : Any = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase__ ) A_ : int = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A_ : Tuple = original_checkpoint["""best_state"""] recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
686
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , ): A_ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} A_ : str = parent A_ : Optional[int] = batch_size A_ : Any = num_channels A_ : Tuple = image_size A_ : Any = min_resolution A_ : Tuple = max_resolution A_ : List[str] = do_resize A_ : int = size A_ : str = do_normalize A_ : str = image_mean A_ : List[Any] = image_std def _a (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = DPTImageProcessor if is_vision_available() else None def _a (self ): A_ : Optional[Any] = DPTImageProcessingTester(self ) @property def _a (self ): return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , """image_mean""" ) ) self.assertTrue(hasattr(lowercase , """image_std""" ) ) self.assertTrue(hasattr(lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase , """do_resize""" ) ) self.assertTrue(hasattr(lowercase , """size""" ) ) def _a (self ): A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _a (self ): # Initialize image_processing A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Any = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a (self ): # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Any = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a (self ): # Initialize image_processing A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ : Optional[Any] = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
712
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = 'beit' def __init__(self , lowercase=8192 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = vocab_size A_ : List[str] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[int] = hidden_act A_ : str = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : str = layer_norm_eps A_ : Any = image_size A_ : int = patch_size A_ : List[str] = num_channels A_ : Any = use_mask_token A_ : Dict = use_absolute_position_embeddings A_ : List[Any] = use_relative_position_bias A_ : Tuple = use_shared_relative_position_bias A_ : Optional[int] = layer_scale_init_value A_ : Tuple = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : Optional[int] = use_auxiliary_head A_ : Union[str, Any] = auxiliary_loss_weight A_ : Tuple = auxiliary_channels A_ : List[Any] = auxiliary_num_convs A_ : Dict = auxiliary_concat_input A_ : Optional[Any] = semantic_loss_ignore_index class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4
686
0
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = ['image_processor', 'tokenizer'] __SCREAMING_SNAKE_CASE : List[Any] = 'AutoImageProcessor' __SCREAMING_SNAKE_CASE : int = 'AutoTokenizer' def __init__(self , lowercase=None , lowercase=None , **lowercase ): A_ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) A_ : int = kwargs.pop("""feature_extractor""" ) A_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) A_ : str = self.image_processor A_ : Tuple = False def __call__(self , *lowercase , **lowercase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) A_ : Dict = kwargs.pop("""images""" , lowercase ) A_ : Any = kwargs.pop("""text""" , lowercase ) if len(lowercase ) > 0: A_ : Union[str, Any] = args[0] A_ : Tuple = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: A_ : Tuple = self.image_processor(lowercase , *lowercase , **lowercase ) if text is not None: A_ : int = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif images is None: return encodings else: A_ : int = encodings["""input_ids"""] return inputs def _a (self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _a (self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def _a (self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) A_ : Optional[int] = True A_ : List[str] = self.tokenizer yield A_ : Any = self.image_processor A_ : Optional[Any] = False def _a (self , lowercase , lowercase=False , lowercase=None ): if added_vocab is None: A_ : int = self.tokenizer.get_added_vocab() A_ : List[Any] = {} while tokens: A_ : Optional[Any] = re.search(R"""<s_(.*?)>""" , lowercase , re.IGNORECASE ) if start_token is None: break A_ : Dict = start_token.group(1 ) A_ : str = re.search(RF'</s_{key}>' , lowercase , re.IGNORECASE ) A_ : Optional[Any] = start_token.group() if end_token is None: A_ : str = tokens.replace(lowercase , """""" ) else: A_ : Dict = end_token.group() A_ : str = re.escape(lowercase ) A_ : str = re.escape(lowercase ) A_ : Dict = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , lowercase , re.IGNORECASE ) if content is not None: A_ : Optional[Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node A_ : str = self.tokenajson(lowercase , is_inner_value=lowercase , added_vocab=lowercase ) if value: if len(lowercase ) == 1: A_ : List[str] = value[0] A_ : Tuple = value else: # leaf nodes A_ : Any = [] for leaf in content.split(R"""<sep/>""" ): A_ : Optional[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": A_ : Optional[int] = leaf[1:-2] # for categorical special tokens output[key].append(lowercase ) if len(output[key] ) == 1: A_ : List[Any] = output[key][0] A_ : Optional[int] = tokens[tokens.find(lowercase ) + len(lowercase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase , added_vocab=lowercase ) if len(lowercase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _a (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _a (self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
713
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase :Optional[int] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 1_3_1_0_7_2, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, } def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return torch.atana(lowerCamelCase__ , lowerCamelCase__ ) / math.pi * 2 def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = torch.sin(t * math.pi / 2 ) ** 2 A_ : List[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase ): super().__init__() A_ : int = DiffusionAttnUnetaD(lowercase , n_attn_layers=4 ) A_ : str = deepcopy(self.diffusion ) A_ : Optional[int] = torch.quasirandom.SobolEngine(1 , scramble=lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = MODELS_MAP[model_name]["""url"""] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCamelCase :str = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCamelCase :int = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCamelCase :List[Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCamelCase :Optional[Any] = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def a ( lowerCamelCase__ ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a ( lowerCamelCase__ ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return name.replace(lowerCamelCase__ , lowerCamelCase__ ) elif name.startswith(lowerCamelCase__ ): return [name.replace(lowerCamelCase__ , lowerCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def a ( lowerCamelCase__ , lowerCamelCase__=13 ): '''simple docstring''' A_ : Union[str, Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) A_ : Dict = 0 if string.startswith("""net.3.""" ): depth += 1 A_ : int = string[6:] elif string.startswith("""net.""" ): A_ : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 A_ : Dict = string[7:] if string.startswith("""main.""" ): A_ : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): A_ : Optional[Any] = string[:2] A_ : Optional[Any] = string[2:] else: A_ : List[Any] = string[0] A_ : Dict = string[1:] if depth == max_depth: A_ : Optional[int] = MID_NUM_TO_LAYER[layer_num] A_ : Optional[Any] = """mid_block""" elif depth > 0 and int(lowerCamelCase__ ) < 7: A_ : Any = DOWN_NUM_TO_LAYER[layer_num] A_ : Union[str, Any] = f'down_blocks.{depth}' elif depth > 0 and int(lowerCamelCase__ ) > 7: A_ : List[str] = UP_NUM_TO_LAYER[layer_num] A_ : List[str] = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: A_ : str = DEPTH_0_TO_LAYER[layer_num] A_ : Dict = f'up_blocks.{max_depth - 1}' if int(lowerCamelCase__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) A_ : Optional[int] = string_left[1:] if "resnets" in new_layer: A_ : Tuple = convert_resconv_naming(lowerCamelCase__ ) elif "attentions" in new_layer: A_ : Optional[int] = convert_attn_naming(lowerCamelCase__ ) A_ : Dict = new_string_left if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = prefix + """.""" + new_layer + """.""" + string_left else: A_ : Optional[int] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue A_ : List[Any] = rename(lowerCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Tuple = transform_conv_attns(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: A_ : int = v return new_state_dict def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A_ : Optional[Any] = v[:, :, 0] else: # bias A_ : Union[str, Any] = v else: # qkv matrices A_ : Optional[int] = v.shape[0] A_ : str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ : int = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A_ : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' A_ : int = download(lowerCamelCase__ ) A_ : Any = MODELS_MAP[model_name]["""sample_rate"""] A_ : List[Any] = MODELS_MAP[model_name]["""sample_size"""] A_ : Tuple = Object() A_ : Union[str, Any] = sample_size A_ : Tuple = sample_rate A_ : int = 0 A_ : List[Any] = UNetaDModel(sample_size=lowerCamelCase__ , sample_rate=lowerCamelCase__ ) A_ : Optional[Any] = diffusers_model.state_dict() A_ : Dict = DiffusionUncond(lowerCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase__ )["""state_dict"""] ) A_ : Any = orig_model.diffusion_ema.eval() A_ : Any = orig_model.state_dict() A_ : List[str] = rename_orig_weights(lowerCamelCase__ ) A_ : Any = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": A_ : str = value.squeeze() A_ : Union[str, Any] = value diffusers_model.load_state_dict(lowerCamelCase__ ) A_ : Optional[Any] = 1_00 A_ : Union[str, Any] = 33 A_ : Any = IPNDMScheduler(num_train_timesteps=lowerCamelCase__ ) A_ : List[str] = torch.manual_seed(lowerCamelCase__ ) A_ : Any = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) A_ : str = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase__ )[:-1] A_ : List[Any] = get_crash_schedule(lowerCamelCase__ ) A_ : str = DanceDiffusionPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) A_ : str = torch.manual_seed(33 ) A_ : int = pipe(num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ ).audios A_ : Optional[int] = sampling.iplms_sample(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {} ) A_ : str = generated.clamp(-1 , 1 ) A_ : List[Any] = (generated - audio).abs().sum() A_ : int = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase__ ) print("""Diff max""" , lowerCamelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase :List[str] = parser.parse_args() main(args)
686
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase :Any = re.compile(R'''\s+''') def a ( lowerCamelCase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowerCamelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = [len(lowerCamelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowerCamelCase__ ), "line_max": max(lowerCamelCase__ )} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a ( lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : Tuple = ["""auto-generated""", """autogenerated""", """automatically generated"""] A_ : Optional[int] = example["""content"""].splitlines() for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a ( lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=0.05 ): '''simple docstring''' A_ : Any = ["""unit tests""", """test file""", """configuration file"""] A_ : List[str] = example["""content"""].splitlines() A_ : str = 0 A_ : Union[str, Any] = 0 # first test for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : List[Any] = example["""content"""].count("""\n""" ) A_ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = ["""def """, """class """, """for """, """while """] A_ : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a ( lowerCamelCase__ , lowerCamelCase__=4 ): '''simple docstring''' A_ : Tuple = example["""content"""].splitlines() A_ : int = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = tokenizer(example["""content"""] , truncation=lowerCamelCase__ )["""input_ids"""] A_ : Optional[Any] = len(example["""content"""] ) / len(lowerCamelCase__ ) return {"ratio": ratio} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = {} results.update(get_hash(lowerCamelCase__ ) ) results.update(line_stats(lowerCamelCase__ ) ) results.update(alpha_stats(lowerCamelCase__ ) ) results.update(char_token_ratio(lowerCamelCase__ ) ) results.update(is_autogenerated(lowerCamelCase__ ) ) results.update(is_config_or_test(lowerCamelCase__ ) ) results.update(has_no_keywords(lowerCamelCase__ ) ) results.update(has_few_assignments(lowerCamelCase__ ) ) return results def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not check_uniques(lowerCamelCase__ , lowerCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """rb""" ) as f_in: with gzip.open(str(lowerCamelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase__ , lowerCamelCase__ ) os.unlink(lowerCamelCase__ ) # Settings lowerCamelCase :Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase :Tuple = parser.parse_args() if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() lowerCamelCase :List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase :List[Any] = time.time() lowerCamelCase :Optional[int] = load_dataset(args.dataset_name, split='''train''') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase :int = time.time() lowerCamelCase :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase :int = set(ds.unique('''hash''')) lowerCamelCase :List[str] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase :Dict = time.time() lowerCamelCase :int = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase :List[str] = time.time() lowerCamelCase :int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase :int = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCamelCase :Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCamelCase :Tuple = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase :List[str] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase :Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
714
'''simple docstring''' from math import factorial def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A_ : Union[str, Any] = float(factorial(lowerCamelCase__ ) ) coefficient /= factorial(lowerCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
686
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase :Any = 1_6 lowerCamelCase :Tuple = 3_2 def a ( lowerCamelCase__ , lowerCamelCase__ = 16 ): '''simple docstring''' A_ : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A_ : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A_ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ : Any = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ : str = 16 elif accelerator.mixed_precision != "no": A_ : Any = 8 else: A_ : List[Any] = None return tokenizer.pad( lowerCamelCase__ , padding="""longest""" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. A_ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) A_ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase :Union[str, Any] = mocked_dataloaders # noqa: F811 def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase__ ) == "1": A_ : Tuple = 2 # New Code # A_ : Optional[Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator A_ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Tuple = config["""lr"""] A_ : Any = int(config["""num_epochs"""] ) A_ : List[str] = int(config["""seed"""] ) A_ : Any = int(config["""batch_size"""] ) A_ : Tuple = evaluate.load("""glue""" , """mrpc""" ) set_seed(lowerCamelCase__ ) A_ : Union[str, Any] = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A_ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler A_ : Dict = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ : Optional[int] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase__ ): A_ : List[str] = model(**lowerCamelCase__ ) A_ : List[str] = output.loss accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ : Any = model(**lowerCamelCase__ ) A_ : List[str] = outputs.logits.argmax(dim=-1 ) A_ : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) A_ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCamelCase__ ) def a ( ): '''simple docstring''' A_ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCamelCase__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) A_ : Dict = parser.parse_args() A_ : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
715
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' if len(re.findall("""[ATCG]""" , lowerCamelCase__ ) ) != len(lowerCamelCase__ ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
686
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=3 , lowercase=None , ): A_ : Union[str, Any] = parent A_ : Tuple = batch_size A_ : List[str] = image_size A_ : Dict = patch_size A_ : List[Any] = num_channels A_ : Optional[Any] = is_training A_ : List[Any] = use_labels A_ : List[Any] = hidden_size A_ : Any = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : Dict = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : str = type_sequence_label_size A_ : List[str] = initializer_range A_ : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[Any] = (image_size // patch_size) ** 2 A_ : int = num_patches + 1 def _a (self ): A_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : List[Any] = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = self.get_config() return config, pixel_values, labels def _a (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = TFViTModel(config=lowercase ) A_ : Any = model(lowercase , training=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. A_ : List[str] = self.image_size // 2 A_ : str = pixel_values[:, :, :image_size, :image_size] A_ : str = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase ) A_ : List[str] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = self.type_sequence_label_size A_ : Optional[int] = TFViTForImageClassification(lowercase ) A_ : Optional[Any] = model(lowercase , labels=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. A_ : Union[str, Any] = self.image_size // 2 A_ : List[Any] = pixel_values[:, :, :image_size, :image_size] A_ : List[str] = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : List[str] = 1 A_ : Tuple = TFViTForImageClassification(lowercase ) A_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ : List[Any] = config_and_inputs A_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[str] = False def _a (self ): A_ : List[Any] = TFViTModelTester(self ) A_ : Tuple = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a (self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Layer ) ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Optional[int] = [*signature.parameters.keys()] A_ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): A_ : Union[str, Any] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowercase ) def a ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _a (self ): A_ : Optional[Any] = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) A_ : Any = self.default_image_processor A_ : Tuple = prepare_img() A_ : Optional[Any] = image_processor(images=lowercase , return_tensors="""tf""" ) # forward pass A_ : Dict = model(**lowercase ) # verify the logits A_ : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : List[Any] = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase , atol=1E-4 )
716
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase__ ): http_head("""https://huggingface.co""" )
686
0
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'down' def _a (self ): A_ : Dict = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ResnetDownsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'down' def _a (self ): A_ : Optional[int] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = AttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : int = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = CrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : str = super().prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = SkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : Any = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnSkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Union[str, Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : int = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : int = { """in_channels""": 32, """out_channels""": 32, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnDownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'mid' def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = UNetMidBlockaDCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'mid' def _a (self ): A_ : Dict = super().prepare_init_args_and_inputs_for_common() A_ : List[str] = 32 return init_dict, inputs_dict def _a (self ): A_ : str = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'mid' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_ : Tuple = super().prepare_init_args_and_inputs_for_common() A_ : Optional[int] = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Union[str, Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ResnetUpsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = SimpleCrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def _a (self ): A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : int = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = AttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : str = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = SkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnSkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = UpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Tuple = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : str = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnUpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : List[Any] = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase )
717
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase :Any = re.compile(R'''\s+''') def a ( lowerCamelCase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowerCamelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = [len(lowerCamelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowerCamelCase__ ), "line_max": max(lowerCamelCase__ )} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a ( lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : Tuple = ["""auto-generated""", """autogenerated""", """automatically generated"""] A_ : Optional[int] = example["""content"""].splitlines() for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a ( lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=0.05 ): '''simple docstring''' A_ : Any = ["""unit tests""", """test file""", """configuration file"""] A_ : List[str] = example["""content"""].splitlines() A_ : str = 0 A_ : Union[str, Any] = 0 # first test for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : List[Any] = example["""content"""].count("""\n""" ) A_ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = ["""def """, """class """, """for """, """while """] A_ : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a ( lowerCamelCase__ , lowerCamelCase__=4 ): '''simple docstring''' A_ : Tuple = example["""content"""].splitlines() A_ : int = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = tokenizer(example["""content"""] , truncation=lowerCamelCase__ )["""input_ids"""] A_ : Optional[Any] = len(example["""content"""] ) / len(lowerCamelCase__ ) return {"ratio": ratio} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = {} results.update(get_hash(lowerCamelCase__ ) ) results.update(line_stats(lowerCamelCase__ ) ) results.update(alpha_stats(lowerCamelCase__ ) ) results.update(char_token_ratio(lowerCamelCase__ ) ) results.update(is_autogenerated(lowerCamelCase__ ) ) results.update(is_config_or_test(lowerCamelCase__ ) ) results.update(has_no_keywords(lowerCamelCase__ ) ) results.update(has_few_assignments(lowerCamelCase__ ) ) return results def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not check_uniques(lowerCamelCase__ , lowerCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """rb""" ) as f_in: with gzip.open(str(lowerCamelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase__ , lowerCamelCase__ ) os.unlink(lowerCamelCase__ ) # Settings lowerCamelCase :Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase :Tuple = parser.parse_args() if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() lowerCamelCase :List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase :List[Any] = time.time() lowerCamelCase :Optional[int] = load_dataset(args.dataset_name, split='''train''') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase :int = time.time() lowerCamelCase :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase :int = set(ds.unique('''hash''')) lowerCamelCase :List[str] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase :Dict = time.time() lowerCamelCase :int = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase :List[str] = time.time() lowerCamelCase , lowerCamelCase :int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase :int = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCamelCase :Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCamelCase :Tuple = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase :List[str] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase :Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
686
0
'''simple docstring''' from __future__ import annotations import math def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(lowerCamelCase__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , ) def a ( ): '''simple docstring''' A_ : Dict = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] A_ : Optional[Any] = math.log(len(lowerCamelCase__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
718
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
686
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = ['input_features', 'is_longer'] def __init__(self , lowercase=64 , lowercase=48000 , lowercase=480 , lowercase=10 , lowercase=1024 , lowercase=0.0 , lowercase=False , lowercase = 0 , lowercase = 14000 , lowercase = None , lowercase = "fusion" , lowercase = "repeatpad" , **lowercase , ): super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) A_ : Dict = top_db A_ : Optional[int] = truncation A_ : Optional[Any] = padding A_ : List[Any] = fft_window_size A_ : List[str] = (fft_window_size >> 1) + 1 A_ : Any = hop_length A_ : str = max_length_s A_ : Dict = max_length_s * sampling_rate A_ : Dict = sampling_rate A_ : List[str] = frequency_min A_ : int = frequency_max A_ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm=lowercase , mel_scale="""htk""" , ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm="""slaney""" , mel_scale="""slaney""" , ) def _a (self ): A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a (self , lowercase , lowercase = None ): A_ : List[Any] = spectrogram( lowercase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowercase , log_mel="""dB""" , ) return log_mel_spectrogram.T def _a (self , lowercase , lowercase , lowercase ): A_ : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A_ : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A_ : Dict = [0] # randomly choose index for each part A_ : Dict = np.random.choice(ranges[0] ) A_ : List[str] = np.random.choice(ranges[1] ) A_ : Union[str, Any] = np.random.choice(ranges[2] ) A_ : str = mel[idx_front : idx_front + chunk_frames, :] A_ : str = mel[idx_middle : idx_middle + chunk_frames, :] A_ : List[str] = mel[idx_back : idx_back + chunk_frames, :] A_ : Union[str, Any] = torch.tensor(mel[None, None, :] ) A_ : List[Any] = torch.nn.functional.interpolate( lowercase , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=lowercase ) A_ : Union[str, Any] = mel_shrink[0][0].numpy() A_ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _a (self , lowercase , lowercase , lowercase , lowercase ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": A_ : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A_ : Tuple = len(lowercase ) - max_length A_ : Optional[Any] = np.random.randint(0 , overflow + 1 ) A_ : Tuple = waveform[idx : idx + max_length] A_ : List[str] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": A_ : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters ) A_ : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A_ : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A_ : int = np.stack([mel, mel, mel, mel] , axis=0 ) A_ : Optional[int] = False else: A_ : str = self._random_mel_fusion(lowercase , lowercase , lowercase ) A_ : Optional[int] = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: A_ : List[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A_ : Any = int(max_length / len(lowercase ) ) A_ : Optional[Any] = np.stack(np.tile(lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A_ : List[Any] = int(max_length / len(lowercase ) ) A_ : Union[str, Any] = np.stack(np.tile(lowercase , lowercase ) ) A_ : Any = np.pad(lowercase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": A_ : Optional[Any] = self._np_extract_fbank_features(lowercase , self.mel_filters ) A_ : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: A_ : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ): A_ : List[Any] = truncation if truncation is not None else self.truncation A_ : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A_ : List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A_ : Any = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): A_ : Tuple = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Optional[Any] = [np.asarray(lowercase )] # convert to mel spectrogram, truncate and pad if needed. A_ : Optional[Any] = [ self._get_input_mel(lowercase , max_length if max_length else self.nb_max_samples , lowercase , lowercase ) for waveform in raw_speech ] A_ : Optional[int] = [] A_ : Union[str, Any] = [] for mel, longer in padded_inputs: input_mel.append(lowercase ) is_longer.append(lowercase ) if truncation == "fusion" and sum(lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A_ : Optional[Any] = np.random.randint(0 , len(lowercase ) ) A_ : Union[str, Any] = True if isinstance(input_mel[0] , lowercase ): A_ : List[str] = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A_ : List[Any] = [[longer] for longer in is_longer] A_ : List[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A_ : int = BatchFeature(lowercase ) if return_tensors is not None: A_ : List[Any] = input_features.convert_to_tensors(lowercase ) return input_features
719
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase :int = datasets.load_iris() lowerCamelCase :str = np.array(data['''data''']) lowerCamelCase :Dict = np.array(data['''target''']) lowerCamelCase :Union[str, Any] = data['''target_names'''] lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = train_test_split(X, y) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : List[str] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : List[str] = [] for data_point in data: A_ : Any = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : Optional[Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Tuple = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
686
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase :List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1_60_00 ): '''simple docstring''' A_ : List[str] = int(round(sample_rate * max_length ) ) if len(lowerCamelCase__ ) <= sample_length: return wav A_ : Optional[int] = randint(0 , len(lowerCamelCase__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : Optional[str] = field(default=__UpperCAmelCase , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'A file containing the training audio paths and labels.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} ) __SCREAMING_SNAKE_CASE : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __SCREAMING_SNAKE_CASE : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) __SCREAMING_SNAKE_CASE : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) __SCREAMING_SNAKE_CASE : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__UpperCAmelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=__UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _a (self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , lowercase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def a ( ): '''simple docstring''' A_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ : Any = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A_ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. A_ : Union[str, Any] = DatasetDict() A_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ f'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ f'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A_ : List[str] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A_ : List[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A_ : int = feature_extractor.model_input_names[0] def train_transforms(lowerCamelCase__ ): A_ : Optional[int] = [] for audio in batch[data_args.audio_column_name]: A_ : Union[str, Any] = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCamelCase__ ) A_ : Optional[int] = feature_extractor(lowerCamelCase__ , sampling_rate=feature_extractor.sampling_rate ) A_ : str = {model_input_name: inputs.get(lowerCamelCase__ )} A_ : int = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCamelCase__ ): A_ : List[Any] = [audio["""array"""] for audio in batch[data_args.audio_column_name]] A_ : Optional[int] = feature_extractor(lowerCamelCase__ , sampling_rate=feature_extractor.sampling_rate ) A_ : Union[str, Any] = {model_input_name: inputs.get(lowerCamelCase__ )} A_ : Tuple = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ : List[str] = raw_datasets["""train"""].features[data_args.label_column_name].names A_ : List[str] = {}, {} for i, label in enumerate(lowerCamelCase__ ): A_ : Optional[Any] = str(lowerCamelCase__ ) A_ : List[str] = label # Load the accuracy metric from the datasets package A_ : Any = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): A_ : List[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=eval_pred.label_ids ) A_ : Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase__ ) , labelaid=lowerCamelCase__ , idalabel=lowerCamelCase__ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A_ : Tuple = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A_ : Tuple = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCamelCase__ , output_all_columns=lowerCamelCase__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: A_ : Dict = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCamelCase__ , output_all_columns=lowerCamelCase__ ) # Initialize our trainer A_ : Tuple = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , ) # Training if training_args.do_train: A_ : List[Any] = None if training_args.resume_from_checkpoint is not None: A_ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ : Dict = last_checkpoint A_ : List[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ : str = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCamelCase__ ) trainer.save_metrics("""eval""" , lowerCamelCase__ ) # Write model card and (optionally) push to hub A_ : Optional[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) if __name__ == "__main__": main()
720
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Tuple = [sequences] A_ : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : int = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Any = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : str = self.tokenizer.eos_token try: A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : Any = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Optional[Any] = {} if "candidate_labels" in kwargs: A_ : str = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : List[Any] = {} if "multi_label" in kwargs: A_ : Optional[Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Union[str, Any] = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_, A_ : int = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Optional[Any] = inputs["""candidate_label"""] A_ : List[Any] = inputs["""sequence"""] A_ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : List[str] = self.model(**lowercase ) A_ : str = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Any = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : str = [outputs["""sequence"""] for outputs in model_outputs] A_ : Dict = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : Dict = logits.shape[0] A_ : Any = len(lowercase ) A_ : List[str] = N // n A_ : Tuple = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Union[str, Any] = self.entailment_id A_ : Any = -1 if entailment_id == 0 else 0 A_ : List[str] = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Union[str, Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : int = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Any = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
686
0
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : Tuple = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : Tuple = -1 return False def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
721
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'yolos' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) A_ : List[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = image_size A_ : str = patch_size A_ : int = num_channels A_ : Optional[int] = qkv_bias A_ : List[Any] = num_detection_tokens A_ : Tuple = use_mid_position_embeddings A_ : int = auxiliary_loss # Hungarian matcher A_ : int = class_cost A_ : List[Any] = bbox_cost A_ : Optional[int] = giou_cost # Loss coefficients A_ : Any = bbox_loss_coefficient A_ : List[Any] = giou_loss_coefficient A_ : str = eos_coefficient class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4 @property def _a (self ): return 12
686
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): '''simple docstring''' if attention_mask is None: A_ : Tuple = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : Dict = OPTConfig __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : Optional[Any] = 'gelu' def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=16 , lowercase=16 , ): A_ : Union[str, Any] = parent A_ : List[Any] = batch_size A_ : Optional[int] = seq_length A_ : List[str] = is_training A_ : List[str] = use_labels A_ : Optional[int] = vocab_size A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : Dict = num_attention_heads A_ : List[Any] = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Dict = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : Optional[int] = max_position_embeddings A_ : Any = eos_token_id A_ : Tuple = pad_token_id A_ : List[str] = bos_token_id A_ : str = embed_dim A_ : Optional[int] = word_embed_proj_dim A_ : Any = False def _a (self ): A_ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A_ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A_ : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) A_ : Dict = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase , **self.config_updates , ) A_ : Tuple = prepare_opt_inputs_dict(lowercase , lowercase ) return config, inputs_dict def _a (self , lowercase , lowercase ): A_ : int = TFOPTModel(config=lowercase ) A_ : str = inputs_dict["""input_ids"""] A_ : Union[str, Any] = input_ids[:1, :] A_ : Union[str, Any] = inputs_dict["""attention_mask"""][:1, :] A_ : List[Any] = 1 # first forward pass A_ : Tuple = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) A_ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A_ : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) A_ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A_ : Dict = model(lowercase , attention_mask=lowercase )[0] A_ : str = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A_ : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] A_ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __SCREAMING_SNAKE_CASE : List[str] = (TFOPTForCausalLM,) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : int = 10 def _a (self ): A_ : Optional[Any] = TFOPTModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=lowercase ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase , lowercase ): if hasattr(lowercase , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings A_ : int = model_class(config=lowercase ) A_ : List[str] = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) A_ : Optional[int] = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase ) A_ : List[Any] = _get_word_embedding_weight(lowercase , model.get_input_embeddings() ) A_ : int = _get_word_embedding_weight(lowercase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. A_ : Optional[int] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase ) # check that weights remain the same after resizing A_ : List[str] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: A_ : List[Any] = False self.assertTrue(lowercase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase ) A_ : Any = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: A_ : Union[str, Any] = False self.assertTrue(lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' return tf.constant(lowerCamelCase__ , dtype=tf.intaa ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = 99 def _a (self ): A_ : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 A_ : Any = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) A_ : str = input_ids.shape[0] A_ : List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : List[str] = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) A_ : Tuple = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) A_ : Union[str, Any] = tf.not_equal(lowercase , model.config.pad_token_id ) with tf.GradientTape(): A_ : Union[str, Any] = model(input_ids=lowercase , attention_mask=lowercase ).last_hidden_state A_ : int = (1, 11, 512) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-3 ) ) A_ : Dict = tf.function(lowercase , jit_compile=lowercase ) A_ : List[str] = xla_generate(lowercase , lowercase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=4E-2 ) ) @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): super().setUp() A_ : Dict = """facebook/opt-350m""" def _a (self ): A_ : Tuple = TFOPTForCausalLM.from_pretrained(self.path_model ) A_ : Tuple = GPTaTokenizer.from_pretrained(self.path_model ) A_ : Optional[int] = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False A_ : Optional[Any] = tokenizer(lowercase , return_tensors="""tf""" , padding=lowercase , add_special_tokens=lowercase ) A_ : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) A_ : Optional[Any] = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) A_ : Any = tf.function(lowercase , jit_compile=lowercase ) A_ : str = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-4 ) ) @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): @property def _a (self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _a (self ): A_ : Tuple = """facebook/opt-125m""" A_ : Dict = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] A_ : str = [] A_ : int = GPTaTokenizer.from_pretrained(lowercase ) A_ : Dict = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: A_ : int = tokenizer(lowercase , return_tensors="""tf""" ).input_ids A_ : List[str] = model.generate(lowercase , max_length=10 ) A_ : Tuple = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase ) def _a (self ): A_ : str = """facebook/opt-350m""" A_ : Tuple = GPTaTokenizer.from_pretrained(lowercase ) A_ : List[Any] = TFOPTForCausalLM.from_pretrained(lowercase ) A_ : Union[str, Any] = """left""" # use different length sentences to test batching A_ : int = [ """Hello, my dog is a little""", """Today, I""", ] A_ : Tuple = tokenizer(lowercase , return_tensors="""tf""" , padding=lowercase ) A_ : Optional[Any] = inputs["""input_ids"""] A_ : int = model.generate(input_ids=lowercase , attention_mask=inputs["""attention_mask"""] ) A_ : Tuple = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids A_ : Dict = model.generate(input_ids=lowercase ) A_ : int = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) A_ : List[Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids A_ : Optional[int] = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings ) A_ : List[str] = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) A_ : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase ) A_ : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase ) A_ : Tuple = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] ) def _a (self ): A_ : str = """facebook/opt-350m""" A_ : int = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] A_ : Union[str, Any] = [] A_ : List[str] = GPTaTokenizer.from_pretrained(lowercase ) A_ : Union[str, Any] = TFOPTForCausalLM.from_pretrained(lowercase ) for prompt in self.prompts: A_ : str = tokenizer(lowercase , return_tensors="""tf""" ).input_ids A_ : List[str] = model.generate(lowercase , max_length=10 ) A_ : int = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) predicted_outputs += generated_string self.assertListEqual(lowercase , lowercase )
700
'''simple docstring''' from jiwer import compute_measures import datasets lowerCamelCase :int = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCamelCase :int = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCamelCase :Optional[Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _a (self , lowercase=None , lowercase=None , lowercase=False ): if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: A_ : List[Any] = 0 A_ : Optional[int] = 0 for prediction, reference in zip(lowercase , lowercase ): A_ : Any = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
686
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase :Optional[int] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 1_3_1_0_7_2, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, } def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return torch.atana(lowerCamelCase__ , lowerCamelCase__ ) / math.pi * 2 def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = torch.sin(t * math.pi / 2 ) ** 2 A_ : List[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase ): super().__init__() A_ : int = DiffusionAttnUnetaD(lowercase , n_attn_layers=4 ) A_ : str = deepcopy(self.diffusion ) A_ : Optional[int] = torch.quasirandom.SobolEngine(1 , scramble=lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = MODELS_MAP[model_name]["""url"""] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCamelCase :str = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCamelCase :int = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCamelCase :List[Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCamelCase :Optional[Any] = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def a ( lowerCamelCase__ ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a ( lowerCamelCase__ ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return name.replace(lowerCamelCase__ , lowerCamelCase__ ) elif name.startswith(lowerCamelCase__ ): return [name.replace(lowerCamelCase__ , lowerCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def a ( lowerCamelCase__ , lowerCamelCase__=13 ): '''simple docstring''' A_ : Union[str, Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) A_ : Dict = 0 if string.startswith("""net.3.""" ): depth += 1 A_ : int = string[6:] elif string.startswith("""net.""" ): A_ : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 A_ : Dict = string[7:] if string.startswith("""main.""" ): A_ : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): A_ : Optional[Any] = string[:2] A_ : Optional[Any] = string[2:] else: A_ : List[Any] = string[0] A_ : Dict = string[1:] if depth == max_depth: A_ : Optional[int] = MID_NUM_TO_LAYER[layer_num] A_ : Optional[Any] = """mid_block""" elif depth > 0 and int(lowerCamelCase__ ) < 7: A_ : Any = DOWN_NUM_TO_LAYER[layer_num] A_ : Union[str, Any] = f'down_blocks.{depth}' elif depth > 0 and int(lowerCamelCase__ ) > 7: A_ : List[str] = UP_NUM_TO_LAYER[layer_num] A_ : List[str] = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: A_ : str = DEPTH_0_TO_LAYER[layer_num] A_ : Dict = f'up_blocks.{max_depth - 1}' if int(lowerCamelCase__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) A_ : Optional[int] = string_left[1:] if "resnets" in new_layer: A_ : Tuple = convert_resconv_naming(lowerCamelCase__ ) elif "attentions" in new_layer: A_ : Optional[int] = convert_attn_naming(lowerCamelCase__ ) A_ : Dict = new_string_left if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = prefix + """.""" + new_layer + """.""" + string_left else: A_ : Optional[int] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue A_ : List[Any] = rename(lowerCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Tuple = transform_conv_attns(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: A_ : int = v return new_state_dict def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A_ : Optional[Any] = v[:, :, 0] else: # bias A_ : Union[str, Any] = v else: # qkv matrices A_ : Optional[int] = v.shape[0] A_ : str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ : int = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A_ : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' A_ : int = download(lowerCamelCase__ ) A_ : Any = MODELS_MAP[model_name]["""sample_rate"""] A_ : List[Any] = MODELS_MAP[model_name]["""sample_size"""] A_ : Tuple = Object() A_ : Union[str, Any] = sample_size A_ : Tuple = sample_rate A_ : int = 0 A_ : List[Any] = UNetaDModel(sample_size=lowerCamelCase__ , sample_rate=lowerCamelCase__ ) A_ : Optional[Any] = diffusers_model.state_dict() A_ : Dict = DiffusionUncond(lowerCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase__ )["""state_dict"""] ) A_ : Any = orig_model.diffusion_ema.eval() A_ : Any = orig_model.state_dict() A_ : List[str] = rename_orig_weights(lowerCamelCase__ ) A_ : Any = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": A_ : str = value.squeeze() A_ : Union[str, Any] = value diffusers_model.load_state_dict(lowerCamelCase__ ) A_ : Optional[Any] = 1_00 A_ : Union[str, Any] = 33 A_ : Any = IPNDMScheduler(num_train_timesteps=lowerCamelCase__ ) A_ : List[str] = torch.manual_seed(lowerCamelCase__ ) A_ : Any = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) A_ : str = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase__ )[:-1] A_ : List[Any] = get_crash_schedule(lowerCamelCase__ ) A_ : str = DanceDiffusionPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) A_ : str = torch.manual_seed(33 ) A_ : int = pipe(num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ ).audios A_ : Optional[int] = sampling.iplms_sample(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {} ) A_ : str = generated.clamp(-1 , 1 ) A_ : List[Any] = (generated - audio).abs().sum() A_ : int = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase__ ) print("""Diff max""" , lowerCamelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase :List[str] = parser.parse_args() main(args)
701
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = CycleDiffusionPipeline __SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } __SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a (self ): torch.manual_seed(0 ) A_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) A_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : int = CLIPTextModel(lowercase ) A_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a (self , lowercase , lowercase=0 ): A_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) A_ : int = image / 2 + 0.5 if str(lowercase ).startswith("""mps""" ): A_ : int = torch.manual_seed(lowercase ) else: A_ : Union[str, Any] = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : Union[str, Any] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a (self ): A_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Optional[Any] = self.get_dummy_components() A_ : Any = CycleDiffusionPipeline(**lowercase ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = self.get_dummy_inputs(lowercase ) A_ : str = pipe(**lowercase ) A_ : str = output.images A_ : Dict = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Tuple = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a (self ): A_ : Dict = self.get_dummy_components() for name, module in components.items(): if hasattr(lowercase , """half""" ): A_ : List[str] = module.half() A_ : List[Any] = CycleDiffusionPipeline(**lowercase ) A_ : Optional[Any] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Any = self.get_dummy_inputs(lowercase ) A_ : Tuple = pipe(**lowercase ) A_ : List[str] = output.images A_ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A_ : Optional[int] = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a (self ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _a (self ): return super().test_inference_batch_single_identical() @skip_mps def _a (self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a (self ): return super().test_save_load_optional_components() @skip_mps def _a (self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) A_ : List[str] = init_image.resize((512, 512) ) A_ : Dict = """CompVis/stable-diffusion-v1-4""" A_ : List[Any] = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) A_ : Any = CycleDiffusionPipeline.from_pretrained( lowercase , scheduler=lowercase , safety_checker=lowercase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A_ : str = """A black colored car""" A_ : Dict = """A blue colored car""" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Optional[int] = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) A_ : str = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _a (self ): A_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) A_ : Optional[int] = init_image.resize((512, 512) ) A_ : Optional[int] = """CompVis/stable-diffusion-v1-4""" A_ : Union[str, Any] = DDIMScheduler.from_pretrained(lowercase , subfolder="""scheduler""" ) A_ : List[str] = CycleDiffusionPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() A_ : Optional[Any] = """A black colored car""" A_ : int = """A blue colored car""" A_ : str = torch.manual_seed(0 ) A_ : Any = pipe( prompt=lowercase , source_prompt=lowercase , image=lowercase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowercase , output_type="""np""" , ) A_ : int = output.images assert np.abs(image - expected_image ).max() < 2E-2
686
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Tuple = [sequences] A_ : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : int = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Any = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : str = self.tokenizer.eos_token try: A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : Any = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Optional[Any] = {} if "candidate_labels" in kwargs: A_ : str = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : List[Any] = {} if "multi_label" in kwargs: A_ : Optional[Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Union[str, Any] = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_ : int = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Optional[Any] = inputs["""candidate_label"""] A_ : List[Any] = inputs["""sequence"""] A_ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : List[str] = self.model(**lowercase ) A_ : str = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Any = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : str = [outputs["""sequence"""] for outputs in model_outputs] A_ : Dict = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : Dict = logits.shape[0] A_ : Any = len(lowercase ) A_ : List[str] = N // n A_ : Tuple = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Union[str, Any] = self.entailment_id A_ : Any = -1 if entailment_id == 0 else 0 A_ : List[str] = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Union[str, Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : int = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Any = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
702
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'down' def _a (self ): A_ : Dict = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ResnetDownsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'down' def _a (self ): A_ : Optional[int] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = AttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : int = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = CrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_, A_ : str = super().prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = SkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : Any = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnSkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Union[str, Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : int = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : int = { """in_channels""": 32, """out_channels""": 32, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnDownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'mid' def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = UNetMidBlockaDCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'mid' def _a (self ): A_, A_ : Dict = super().prepare_init_args_and_inputs_for_common() A_ : List[str] = 32 return init_dict, inputs_dict def _a (self ): A_ : str = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'mid' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Tuple = super().prepare_init_args_and_inputs_for_common() A_ : Optional[int] = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Union[str, Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ResnetUpsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = SimpleCrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : int = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = AttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : str = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = SkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnSkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = UpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Tuple = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : str = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnUpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : List[Any] = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase )
686
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase :Union[str, Any] = get_logger(__name__) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 ) -> List[str]: '''simple docstring''' os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A_ : List[Any] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A_ : int = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' A_ : List[Any] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A_ : Dict = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A_ : int = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A_ : int = os.path.join(lowerCamelCase__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) logger.info(f'Saving model to {ckpt_dir}' ) A_ : Dict = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=lowerCamelCase__ , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 ) -> List[str]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCamelCase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return A_ : Optional[Any] = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' A_ : Union[str, Any] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Loading model from {input_model_file}' ) A_ : Union[str, Any] = torch.load(lowerCamelCase__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A_ : Any = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A_ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Loading model from {input_model_file}' ) A_ : Optional[int] = torch.load(lowerCamelCase__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A_ : str = ( os.path.join(lowerCamelCase__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) A_ : Dict = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCamelCase__ , storage_reader=dist_cp.FileSystemReader(lowerCamelCase__ ) , planner=DefaultLoadPlanner() , ) A_ : Optional[Any] = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 ) -> Union[str, Any]: '''simple docstring''' os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A_ : Dict = FSDP.optim_state_dict(lowerCamelCase__ , lowerCamelCase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A_ : Union[str, Any] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A_ : Dict = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: A_ : Union[str, Any] = os.path.join(lowerCamelCase__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 ) -> int: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A_ : str = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A_ : Dict = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A_ : int = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) A_ : str = torch.load(lowerCamelCase__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: A_ : str = ( os.path.join(lowerCamelCase__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) A_ : Dict = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(lowerCamelCase__ ) , ) A_ : Dict = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) A_ : Dict = FSDP.optim_state_dict_to_load(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) optimizer.load_state_dict(lowerCamelCase__ )
703
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' A_ : List[Any] = word_bank or [] # create a table A_ : int = len(lowerCamelCase__ ) + 1 A_ : list[list[list[str]]] = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value A_ : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: A_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
686
0
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if height >= 1: move_tower(height - 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) move_disk(lowerCamelCase__ , lowerCamelCase__ ) move_tower(height - 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' print("""moving disk from""" , lowerCamelCase__ , """to""" , lowerCamelCase__ ) def a ( ): '''simple docstring''' A_ : Dict = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowerCamelCase__ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
704
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = [] A_ : int = set({"""(""", """[""", """{"""} ) A_ : Union[str, Any] = set({""")""", """]""", """}"""} ) A_ : Tuple = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(lowerCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase__ ) == 0 or (len(lowerCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase__ ) == 0 def a ( ): '''simple docstring''' A_ : int = input("""Enter sequence of brackets: """ ) if is_balanced(lowerCamelCase__ ): print(lowerCamelCase__ , """is balanced""" ) else: print(lowerCamelCase__ , """is not balanced""" ) if __name__ == "__main__": main()
686
0
'''simple docstring''' from math import sqrt def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" A_ : int = True # 0 and 1 are none primes. if number <= 1: A_ : Any = False for divisor in range(2 , int(round(sqrt(lowerCamelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: A_ : str = False break # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'status' must been from type bool" return status def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N A_ : List[str] = list(range(2 , n + 1 ) ) A_ : List[str] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase__ ) ): for j in range(i + 1 , len(lowerCamelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): A_ : Tuple = 0 # filters actual prime numbers. A_ : Optional[Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'ans' must been from type list" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (n > 2), "'N' must been an int and > 2" A_ : int = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase__ ): ans.append(lowerCamelCase__ ) # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'ans' must been from type list" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and number >= 0, "'number' must been an int and >= 0" A_ : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. A_ : List[Any] = 2 A_ : int = number if number == 0 or number == 1: ans.append(lowerCamelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase__ ): while quotient != 1: if is_prime(lowerCamelCase__ ) and (quotient % factor == 0): ans.append(lowerCamelCase__ ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase__ ) # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'ans' must been from type list" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" A_ : int = 0 # prime factorization of 'number' A_ : Dict = prime_factorization(lowerCamelCase__ ) A_ : List[Any] = max(lowerCamelCase__ ) # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'ans' must been from type int" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" A_ : Any = 0 # prime factorization of 'number' A_ : Optional[Any] = prime_factorization(lowerCamelCase__ ) A_ : Optional[int] = min(lowerCamelCase__ ) # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'ans' must been from type int" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase__ ), "compare bust been from type bool" return number % 2 == 0 def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase__ ), "compare bust been from type bool" return number % 2 != 0 def a ( lowerCamelCase__ ): '''simple docstring''' assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (number > 2) and is_even(lowerCamelCase__ ) ), "'number' must been an int, even and > 2" A_ : Tuple = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' A_ : Any = get_prime_numbers(lowerCamelCase__ ) A_ : Union[str, Any] = len(lowerCamelCase__ ) # run variable for while-loops. A_ : str = 0 A_ : Optional[int] = None # exit variable. for break up the loops A_ : List[str] = True while i < len_pn and loop: A_ : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: A_ : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (len(lowerCamelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." A_ : Any = 0 while numbera != 0: A_ : Optional[int] = numbera % numbera A_ : Tuple = numbera A_ : Optional[Any] = rest # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." A_ : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' A_ : Tuple = prime_factorization(lowerCamelCase__ ) A_ : str = prime_factorization(lowerCamelCase__ ) elif numbera == 1 or numbera == 1: A_ : Dict = [] A_ : Tuple = [] A_ : Optional[Any] = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Any = 0 A_ : Optional[Any] = 0 A_ : int = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: A_ : Dict = prime_fac_a.count(lowerCamelCase__ ) A_ : int = prime_fac_a.count(lowerCamelCase__ ) for _ in range(max(lowerCamelCase__ , lowerCamelCase__ ) ): ans *= n else: A_ : List[Any] = prime_fac_a.count(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): ans *= n done.append(lowerCamelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: A_ : int = prime_fac_a.count(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): ans *= n done.append(lowerCamelCase__ ) # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (n >= 0), "'number' must been a positive int" A_ : Any = 0 A_ : Optional[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase__ ): ans += 1 # precondition assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and is_prime( lowerCamelCase__ ), "'ans' must been a prime number and from type int" return ans def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert ( is_prime(lowerCamelCase__ ) and is_prime(lowerCamelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" A_ : Tuple = p_number_a + 1 # jump to the next number A_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase__ ): number += 1 while number < p_number_a: ans.append(lowerCamelCase__ ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase__ ): number += 1 # precondition assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ans[0] != p_number_a and ans[len(lowerCamelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (n >= 1), "'n' must been int and >= 1" A_ : Tuple = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase__ ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" A_ : Optional[int] = get_divisors(lowerCamelCase__ ) # precondition assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. A_ : Union[str, Any] = gcd(abs(lowerCamelCase__ ) , abs(lowerCamelCase__ ) ) # precondition assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (n >= 0), "'n' must been a int and >= 0" A_ : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( lowerCamelCase__ ): '''simple docstring''' assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (n >= 0), "'n' must been an int and >= 0" A_ : List[Any] = 0 A_ : Tuple = 1 A_ : int = 1 # this will be return for _ in range(n - 1 ): A_ : Tuple = ans ans += fiba A_ : List[str] = tmp return ans
705
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) A_ : Optional[int] = field A_ : Dict = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} A_ : Optional[Any] = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def _a (self ): # Build iterable dataset if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : int = None A_ : Union[str, Any] = None A_ : int = None A_ : List[str] = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) A_ : str = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A_ : Any = dataset A_ : List[str] = path_or_buf A_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : Optional[Any] = num_proc A_ : List[Any] = """utf-8""" A_ : int = to_json_kwargs def _a (self ): A_ : Tuple = self.to_json_kwargs.pop("""path_or_buf""" , lowercase ) A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer: A_ : Tuple = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) A_ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def _a (self , lowercase ): A_, A_, A_, A_, A_ : List[str] = args A_ : List[str] = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : Any = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): A_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: A_, A_ : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase ) return written
686
0
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def a ( ): '''simple docstring''' A_ : Dict = 9 A_ : List[str] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A_ : List[str] = kruskal(lowerCamelCase__ , lowerCamelCase__ ) A_ : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCamelCase__ ) == sorted(lowerCamelCase__ )
706
'''simple docstring''' import os import sys import unittest lowerCamelCase :Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCamelCase :Tuple = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Tuple = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = get_test_to_tester_mapping(lowercase ) A_ : Union[str, Any] = {"""BertModelTest""": """BertModelTester"""} A_ : Union[str, Any] = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : Optional[Any] = get_model_to_test_mapping(lowercase ) A_ : List[str] = get_model_to_test_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A_ : Any = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = get_model_to_tester_mapping(lowercase ) A_ : Optional[int] = get_model_to_tester_mapping(lowercase ) A_ : Dict = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A_ : Dict = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowercase ) , lowercase ) self.assertEqual(get_test_info.to_json(lowercase ) , lowercase )
686
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase :Union[str, Any] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: lowerCamelCase :Any = json.load(f) @require_torch class _lowerCAmelCase ( unittest.TestCase ): def _a (self , lowercase ): return FSMTTokenizer.from_pretrained(lowercase ) def _a (self , lowercase ): A_ : int = FSMTForConditionalGeneration.from_pretrained(lowercase ).to(lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _a (self , lowercase , lowercase ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality A_ : str = F'facebook/wmt19-{pair}' A_ : List[str] = self.get_tokenizer(lowercase ) A_ : List[str] = self.get_model(lowercase ) A_ : str = bleu_data[pair]["""src"""] A_ : Optional[Any] = bleu_data[pair]["""tgt"""] A_ : Dict = tokenizer(lowercase , return_tensors="""pt""" , truncation=lowercase , padding="""longest""" ).to(lowercase ) A_ : Dict = model.generate( input_ids=batch.input_ids , num_beams=8 , ) A_ : List[Any] = tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) A_ : int = calculate_bleu(lowercase , lowercase ) print(lowercase ) self.assertGreaterEqual(scores["""bleu"""] , lowercase )
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase :Any = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[Any] = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'microsoft/speecht5_tts' __SCREAMING_SNAKE_CASE : List[str] = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) __SCREAMING_SNAKE_CASE : List[str] = 'text_reader' __SCREAMING_SNAKE_CASE : Any = SpeechTaProcessor __SCREAMING_SNAKE_CASE : int = SpeechTaForTextToSpeech __SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGan __SCREAMING_SNAKE_CASE : str = ['text'] __SCREAMING_SNAKE_CASE : Tuple = ['audio'] def _a (self ): if self.post_processor is None: A_ : Dict = """microsoft/speecht5_hifigan""" super().setup() def _a (self , lowercase , lowercase=None ): A_ : List[Any] = self.pre_processor(text=lowercase , return_tensors="""pt""" , truncation=lowercase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) A_ : Dict = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) A_ : Dict = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _a (self , lowercase ): with torch.no_grad(): return self.model.generate_speech(**lowercase ) def _a (self , lowercase ): with torch.no_grad(): return self.post_processor(lowercase ).cpu().detach()
708
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase :Any = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def a ( lowerCamelCase__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCamelCase :List[Any] = parser.parse_args() if args.check_lib: lowerCamelCase :Union[str, Any] = importlib.import_module('''transformers''') lowerCamelCase :Union[str, Any] = Path(transformers_module.__file__).parent else: lowerCamelCase :List[str] = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
686
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : Tuple = BlenderbotConfig __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : Tuple = 'gelu' def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ): A_ : Dict = parent A_ : Tuple = batch_size A_ : Any = seq_length A_ : List[str] = is_training A_ : int = use_labels A_ : Tuple = vocab_size A_ : Dict = hidden_size A_ : List[Any] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : Optional[int] = intermediate_size A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : List[str] = eos_token_id A_ : Optional[Any] = pad_token_id A_ : int = bos_token_id def _a (self ): A_ : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A_ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A_ : Dict = prepare_blenderbot_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def _a (self , lowercase , lowercase ): A_ : Tuple = TFBlenderbotModel(config=lowercase ).get_decoder() A_ : int = inputs_dict["""input_ids"""] A_ : List[str] = input_ids[:1, :] A_ : List[Any] = inputs_dict["""attention_mask"""][:1, :] A_ : Optional[int] = inputs_dict["""head_mask"""] A_ : int = 1 # first forward pass A_ : Optional[Any] = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) A_ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) A_ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A_ : Dict = model(lowercase , attention_mask=lowercase )[0] A_ : int = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A_ : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] A_ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ): '''simple docstring''' if attention_mask is None: A_ : List[str] = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A_ : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A_ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A_ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Tuple = False def _a (self ): A_ : Dict = TFBlenderbotModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=lowercase ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class _lowerCAmelCase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = ['My friends are cool but they eat too many carbs.'] __SCREAMING_SNAKE_CASE : str = 'facebook/blenderbot-400M-distill' @cached_property def _a (self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _a (self ): A_ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _a (self ): A_ : Tuple = self.tokenizer(self.src_text , return_tensors="""tf""" ) A_ : str = self.model.generate( model_inputs.input_ids , ) A_ : Tuple = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
709
'''simple docstring''' lowerCamelCase :dict[tuple[int, int, int], int] = {} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : int = _calculate(days - 1 , lowerCamelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Union[str, Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : Optional[int] = _calculate(days - 1 , lowerCamelCase__ , 0 ) A_ : Optional[Any] = state_late + state_absent + state_ontime A_ : Dict = prizestrings return prizestrings def a ( lowerCamelCase__ = 30 ): '''simple docstring''' return _calculate(lowerCamelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
686
0
'''simple docstring''' def a ( lowerCamelCase__ = 10_00 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
710
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'linear' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine_with_restarts' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'polynomial' __SCREAMING_SNAKE_CASE : Optional[int] = 'constant' __SCREAMING_SNAKE_CASE : str = 'constant_with_warmup' __SCREAMING_SNAKE_CASE : Dict = 'piecewise_constant' def a ( lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' return LambdaLR(lowerCamelCase__ , lambda lowerCamelCase__ : 1 , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1.0 , lowerCamelCase__ ) ) return 1.0 return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' A_ : Optional[Any] = {} A_ : Optional[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A_, A_ : Union[str, Any] = rule_str.split(""":""" ) A_ : Union[str, Any] = int(lowerCamelCase__ ) A_ : List[Any] = float(lowerCamelCase__ ) A_ : Union[str, Any] = value A_ : Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ , lowerCamelCase__ ): def rule_func(lowerCamelCase__ ) -> float: A_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A_ : str = create_rules_function(lowerCamelCase__ , lowerCamelCase__ ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=-1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.5 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1E-7 , lowerCamelCase__=1.0 , lowerCamelCase__=-1 ): '''simple docstring''' A_ : Optional[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A_ : str = lr_init - lr_end A_ : Tuple = num_training_steps - num_warmup_steps A_ : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps A_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase :List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = -1 , ): '''simple docstring''' A_ : Optional[Any] = SchedulerType(lowerCamelCase__ ) A_ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase__ , last_epoch=lowerCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase__ , step_rules=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , num_cycles=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , power=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ )
686
0
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = fname.split(os.path.sep )[-1] return re.search(r"""^(.*)_\d+\.jpg$""" , lowerCamelCase__ ).groups()[0] class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase=None , lowercase=None ): A_ : List[Any] = file_names A_ : Tuple = image_transform A_ : Optional[int] = label_to_id def __len__(self ): return len(self.file_names ) def __getitem__(self , lowercase ): A_ : Optional[Any] = self.file_names[idx] A_ : Union[str, Any] = PIL.Image.open(lowercase ) A_ : str = raw_image.convert("""RGB""" ) if self.image_transform is not None: A_ : str = self.image_transform(lowercase ) A_ : Union[str, Any] = extract_label(lowercase ) if self.label_to_id is not None: A_ : List[str] = self.label_to_id[label] return {"image": image, "label": label} def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if args.with_tracking: A_ : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: A_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : Dict = config["""lr"""] A_ : int = int(config["""num_epochs"""] ) A_ : Any = int(config["""seed"""] ) A_ : Union[str, Any] = int(config["""batch_size"""] ) A_ : Optional[int] = config["""image_size"""] if not isinstance(lowerCamelCase__ , (list, tuple) ): A_ : str = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": A_ : Tuple = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A_ : str = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: A_ : List[str] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A_ : List[str] = os.path.split(lowerCamelCase__ )[-1].split(""".""" )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Grab all the image filenames A_ : List[Any] = [os.path.join(args.data_dir , lowerCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences A_ : Optional[Any] = [extract_label(lowerCamelCase__ ) for fname in file_names] A_ : Any = list(set(lowerCamelCase__ ) ) id_to_label.sort() A_ : List[str] = {lbl: i for i, lbl in enumerate(lowerCamelCase__ )} # Set the seed before splitting the data. np.random.seed(lowerCamelCase__ ) torch.manual_seed(lowerCamelCase__ ) torch.cuda.manual_seed_all(lowerCamelCase__ ) # Split our filenames between train and validation A_ : Tuple = np.random.permutation(len(lowerCamelCase__ ) ) A_ : int = int(0.8 * len(lowerCamelCase__ ) ) A_ : List[str] = random_perm[:cut] A_ : str = random_perm[cut:] # For training we use a simple RandomResizedCrop A_ : Union[str, Any] = Compose([RandomResizedCrop(lowerCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A_ : List[str] = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCamelCase__ , label_to_id=lowerCamelCase__ ) # For evaluation, we use a deterministic Resize A_ : Dict = Compose([Resize(lowerCamelCase__ ), ToTensor()] ) A_ : Union[str, Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCamelCase__ , label_to_id=lowerCamelCase__ ) # Instantiate dataloaders. A_ : Any = DataLoader(lowerCamelCase__ , shuffle=lowerCamelCase__ , batch_size=lowerCamelCase__ , num_workers=4 ) A_ : Union[str, Any] = DataLoader(lowerCamelCase__ , shuffle=lowerCamelCase__ , batch_size=lowerCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : List[Any] = create_model("""resnet50d""" , pretrained=lowerCamelCase__ , num_classes=len(lowerCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ : Optional[Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A_ : Dict = False for param in model.get_classifier().parameters(): A_ : List[Any] = True # We normalize the batches of images to be a bit faster. A_ : Optional[Any] = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) A_ : List[Any] = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A_ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A_ : List[Any] = OneCycleLR(optimizer=lowerCamelCase__ , max_lr=lowerCamelCase__ , epochs=lowerCamelCase__ , steps_per_epoch=len(lowerCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ : Optional[Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # We need to keep track of how many total steps we have iterated over A_ : Dict = 0 # We also need to keep track of the starting epoch so files are named properly A_ : Union[str, Any] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) A_ : Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A_ : Tuple = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A_ : List[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A_ : Optional[Any] = os.path.splitext(lowerCamelCase__ )[0] if "epoch" in training_difference: A_ : str = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 A_ : int = None else: A_ : Optional[int] = int(training_difference.replace("""step_""" , """""" ) ) A_ : Union[str, Any] = resume_step // len(lowerCamelCase__ ) resume_step -= starting_epoch * len(lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ , lowerCamelCase__ ): model.train() if args.with_tracking: A_ : str = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A_ : List[Any] = accelerator.skip_first_batches(lowerCamelCase__ , lowerCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A_ : int = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A_ : Union[str, Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} A_ : Dict = (batch["""image"""] - mean) / std A_ : Dict = model(lowerCamelCase__ ) A_ : int = torch.nn.functional.cross_entropy(lowerCamelCase__ , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : int = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A_ : str = os.path.join(args.output_dir , lowerCamelCase__ ) accelerator.save_state(lowerCamelCase__ ) model.eval() A_ : Any = 0 A_ : int = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A_ : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} A_ : str = (batch["""image"""] - mean) / std with torch.no_grad(): A_ : str = model(lowerCamelCase__ ) A_ : str = outputs.argmax(dim=-1 ) A_ : int = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) A_ : Tuple = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A_ : Any = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_00 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { """accuracy""": 1_00 * eval_metric, """train_loss""": total_loss.item() / len(lowerCamelCase__ ), """epoch""": epoch, } , step=lowerCamelCase__ , ) if checkpointing_steps == "epoch": A_ : int = f'epoch_{epoch}' if args.output_dir is not None: A_ : Optional[int] = os.path.join(args.output_dir , lowerCamelCase__ ) accelerator.save_state(lowerCamelCase__ ) if args.with_tracking: accelerator.end_training() def a ( ): '''simple docstring''' A_ : int = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=lowerCamelCase__ , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=lowerCamelCase__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) A_ : Dict = parser.parse_args() A_ : Optional[Any] = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 2_24} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
711
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCamelCase :int = logging.get_logger('''transformers.models.encodec''') lowerCamelCase :int = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCamelCase :List[str] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCamelCase :Union[str, Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCamelCase :Dict = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCamelCase :int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCamelCase :str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCamelCase :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCamelCase :Tuple = [] lowerCamelCase :Dict = [] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: A_ : Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: A_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Dict = value elif weight_type == "bias": A_ : Dict = value elif weight_type == "running_mean": A_ : Optional[Any] = value elif weight_type == "running_var": A_ : int = value elif weight_type == "num_batches_tracked": A_ : Optional[Any] = value elif weight_type == "weight_ih_l0": A_ : Optional[int] = value elif weight_type == "weight_hh_l0": A_ : Union[str, Any] = value elif weight_type == "bias_ih_l0": A_ : Optional[int] = value elif weight_type == "bias_hh_l0": A_ : Tuple = value elif weight_type == "weight_ih_l1": A_ : Optional[int] = value elif weight_type == "weight_hh_l1": A_ : Dict = value elif weight_type == "bias_ih_l1": A_ : Optional[int] = value elif weight_type == "bias_hh_l1": A_ : Tuple = value else: A_ : Any = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_, A_ : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": A_ : List[str] = MAPPING_24K elif model_name == "encodec_48khz": A_ : str = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__ , lowerCamelCase__ ): logger.info(f'{name} was ignored' ) continue A_ : str = False for key, mapped_key in MAPPING.items(): if "*" in key: A_, A_ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: A_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue A_ : Union[str, Any] = True if "*" in mapped_key: A_ : int = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] A_ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : Tuple = """weight_v""" elif "weight_ih_l0" in name: A_ : Union[str, Any] = """weight_ih_l0""" elif "weight_hh_l0" in name: A_ : Tuple = """weight_hh_l0""" elif "bias_ih_l0" in name: A_ : str = """bias_ih_l0""" elif "bias_hh_l0" in name: A_ : List[Any] = """bias_hh_l0""" elif "weight_ih_l1" in name: A_ : Dict = """weight_ih_l1""" elif "weight_hh_l1" in name: A_ : Any = """weight_hh_l1""" elif "bias_ih_l1" in name: A_ : Optional[int] = """bias_ih_l1""" elif "bias_hh_l1" in name: A_ : List[Any] = """bias_hh_l1""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : Optional[int] = """weight""" elif "running_mean" in name: A_ : Union[str, Any] = """running_mean""" elif "running_var" in name: A_ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: A_ : List[Any] = """num_batches_tracked""" else: A_ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ): '''simple docstring''' if config_path is not None: A_ : Any = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: A_ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A_ : Dict = [8, 5, 4, 4] A_ : Optional[Any] = [2.2] A_ : Tuple = 64 A_ : Tuple = 3_20_00 A_ : List[Any] = 20_48 A_ : Optional[Any] = False A_ : str = False A_ : Optional[int] = False elif model_name == "encodec_48khz": A_ : Dict = [8, 5, 4, 2] A_ : Tuple = [3.0, 6.0, 12.0, 24.0] A_ : List[Any] = 4_80_00 A_ : Dict = 2 A_ : Dict = False A_ : Dict = """time_group_norm""" A_ : Optional[Any] = True A_ : str = 1.0 A_ : Any = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) A_ : Dict = EncodecModel(lowerCamelCase__ ) A_ : Any = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase__ ) A_ : int = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A_ : Tuple = original_checkpoint["""best_state"""] recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
686
0
'''simple docstring''' from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCamelCase :Dict = '''facebook/wmt19-en-de''' lowerCamelCase :Optional[int] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCamelCase :Union[str, Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCamelCase :Tuple = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test lowerCamelCase :Union[str, Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowerCamelCase :Any = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save lowerCamelCase :str = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
712
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = 'beit' def __init__(self , lowercase=8192 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = vocab_size A_ : List[str] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[int] = hidden_act A_ : str = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : str = layer_norm_eps A_ : Any = image_size A_ : int = patch_size A_ : List[str] = num_channels A_ : Any = use_mask_token A_ : Dict = use_absolute_position_embeddings A_ : List[Any] = use_relative_position_bias A_ : Tuple = use_shared_relative_position_bias A_ : Optional[int] = layer_scale_init_value A_ : Tuple = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : Optional[int] = use_auxiliary_head A_ : Union[str, Any] = auxiliary_loss_weight A_ : Tuple = auxiliary_channels A_ : List[Any] = auxiliary_num_convs A_ : Dict = auxiliary_concat_input A_ : Optional[Any] = semantic_loss_ignore_index class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4
686
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
713
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase :Optional[int] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 1_3_1_0_7_2, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, } def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return torch.atana(lowerCamelCase__ , lowerCamelCase__ ) / math.pi * 2 def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = torch.sin(t * math.pi / 2 ) ** 2 A_ : List[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) class _lowerCAmelCase ( __UpperCAmelCase ): pass class _lowerCAmelCase ( nn.Module ): def __init__(self , lowercase ): super().__init__() A_ : int = DiffusionAttnUnetaD(lowercase , n_attn_layers=4 ) A_ : str = deepcopy(self.diffusion ) A_ : Optional[int] = torch.quasirandom.SobolEngine(1 , scramble=lowercase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = MODELS_MAP[model_name]["""url"""] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCamelCase :str = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCamelCase :str = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCamelCase :int = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCamelCase :List[Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCamelCase :Optional[Any] = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def a ( lowerCamelCase__ ): '''simple docstring''' if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a ( lowerCamelCase__ ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return name.replace(lowerCamelCase__ , lowerCamelCase__ ) elif name.startswith(lowerCamelCase__ ): return [name.replace(lowerCamelCase__ , lowerCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def a ( lowerCamelCase__ , lowerCamelCase__=13 ): '''simple docstring''' A_ : Union[str, Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) A_ : Dict = 0 if string.startswith("""net.3.""" ): depth += 1 A_ : int = string[6:] elif string.startswith("""net.""" ): A_ : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 A_ : Dict = string[7:] if string.startswith("""main.""" ): A_ : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): A_ : Optional[Any] = string[:2] A_ : Optional[Any] = string[2:] else: A_ : List[Any] = string[0] A_ : Dict = string[1:] if depth == max_depth: A_ : Optional[int] = MID_NUM_TO_LAYER[layer_num] A_ : Optional[Any] = """mid_block""" elif depth > 0 and int(lowerCamelCase__ ) < 7: A_ : Any = DOWN_NUM_TO_LAYER[layer_num] A_ : Union[str, Any] = f'down_blocks.{depth}' elif depth > 0 and int(lowerCamelCase__ ) > 7: A_ : List[str] = UP_NUM_TO_LAYER[layer_num] A_ : List[str] = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: A_ : str = DEPTH_0_TO_LAYER[layer_num] A_ : Dict = f'up_blocks.{max_depth - 1}' if int(lowerCamelCase__ ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) A_ : Optional[int] = string_left[1:] if "resnets" in new_layer: A_ : Tuple = convert_resconv_naming(lowerCamelCase__ ) elif "attentions" in new_layer: A_ : Optional[int] = convert_attn_naming(lowerCamelCase__ ) A_ : Dict = new_string_left if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Union[str, Any] = prefix + """.""" + new_layer + """.""" + string_left else: A_ : Optional[int] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue A_ : List[Any] = rename(lowerCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Tuple = transform_conv_attns(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: A_ : int = v return new_state_dict def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 1: if len(v.shape ) == 3: # weight A_ : Optional[Any] = v[:, :, 0] else: # bias A_ : Union[str, Any] = v else: # qkv matrices A_ : Optional[int] = v.shape[0] A_ : str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ : int = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A_ : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' A_ : int = download(lowerCamelCase__ ) A_ : Any = MODELS_MAP[model_name]["""sample_rate"""] A_ : List[Any] = MODELS_MAP[model_name]["""sample_size"""] A_ : Tuple = Object() A_ : Union[str, Any] = sample_size A_ : Tuple = sample_rate A_ : int = 0 A_ : List[Any] = UNetaDModel(sample_size=lowerCamelCase__ , sample_rate=lowerCamelCase__ ) A_ : Optional[Any] = diffusers_model.state_dict() A_ : Dict = DiffusionUncond(lowerCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase__ )["""state_dict"""] ) A_ : Any = orig_model.diffusion_ema.eval() A_ : Any = orig_model.state_dict() A_ : List[str] = rename_orig_weights(lowerCamelCase__ ) A_ : Any = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith("""kernel""" ) for k in list(lowerCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": A_ : str = value.squeeze() A_ : Union[str, Any] = value diffusers_model.load_state_dict(lowerCamelCase__ ) A_ : Optional[Any] = 1_00 A_ : Union[str, Any] = 33 A_ : Any = IPNDMScheduler(num_train_timesteps=lowerCamelCase__ ) A_ : List[str] = torch.manual_seed(lowerCamelCase__ ) A_ : Any = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) A_ : str = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase__ )[:-1] A_ : List[Any] = get_crash_schedule(lowerCamelCase__ ) A_ : str = DanceDiffusionPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) A_ : str = torch.manual_seed(33 ) A_ : int = pipe(num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ ).audios A_ : Optional[int] = sampling.iplms_sample(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {} ) A_ : str = generated.clamp(-1 , 1 ) A_ : List[Any] = (generated - audio).abs().sum() A_ : int = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , lowerCamelCase__ ) print("""Diff max""" , lowerCamelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCamelCase :List[str] = parser.parse_args() main(args)
686
0
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _lowerCAmelCase : def __init__(self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ): A_ : Optional[Any] = parent A_ : Tuple = batch_size A_ : Optional[int] = decoder_seq_length # For common tests A_ : List[Any] = self.decoder_seq_length A_ : int = is_training A_ : Union[str, Any] = use_attention_mask A_ : Any = use_labels A_ : List[Any] = vocab_size A_ : str = d_model A_ : Dict = d_model A_ : Any = decoder_layers A_ : Dict = decoder_layers A_ : Optional[int] = decoder_ffn_dim A_ : Dict = decoder_attention_heads A_ : Tuple = decoder_attention_heads A_ : Tuple = eos_token_id A_ : int = bos_token_id A_ : List[str] = pad_token_id A_ : int = decoder_start_token_id A_ : List[str] = use_cache A_ : List[Any] = max_position_embeddings A_ : Optional[Any] = None A_ : str = decoder_seq_length A_ : int = 2 A_ : Optional[Any] = 1 def _a (self ): A_ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ : Union[str, Any] = None if self.use_attention_mask: A_ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) A_ : Any = None if self.use_labels: A_ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ : List[str] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _a (self , lowercase , lowercase , lowercase , lowercase , ): A_ : Optional[Any] = True A_ : Union[str, Any] = TrOCRDecoder(config=lowercase ).to(lowercase ).eval() A_ : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass A_ : str = model(lowercase , use_cache=lowercase ) A_ : Dict = model(lowercase ) A_ : List[Any] = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) A_ : Tuple = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids A_ : Tuple = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and A_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Optional[int] = model(lowercase )["""last_hidden_state"""] A_ : int = model(lowercase , past_key_values=lowercase )["""last_hidden_state"""] # select random slice A_ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : Optional[Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() A_ : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase , lowercase , atol=1E-3 ) def _a (self ): A_ : Dict = self.prepare_config_and_inputs() A_ : int = config_and_inputs A_ : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Optional[Any] = False def _a (self ): A_ : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase ) A_ : Union[str, Any] = ConfigTester(self , config_class=lowercase ) def _a (self ): pass def _a (self ): pass def _a (self ): pass def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase ) def _a (self ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _a (self ): pass
714
'''simple docstring''' from math import factorial def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A_ : Union[str, Any] = float(factorial(lowerCamelCase__ ) ) coefficient /= factorial(lowerCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
686
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = LongformerTokenizer __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Optional[Any] = LongformerTokenizerFast __SCREAMING_SNAKE_CASE : int = True def _a (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A_ : str = dict(zip(lowercase , range(len(lowercase ) ) ) ) A_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ : Union[str, Any] = {"""unk_token""": """<unk>"""} A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) def _a (self , **lowercase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def _a (self , **lowercase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def _a (self , lowercase ): A_ : Tuple = """lower newer""" A_ : str = """lower newer""" return input_text, output_text def _a (self ): A_ : Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ : Any = """lower newer""" A_ : Any = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A_ : int = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) A_ : int = tokens + [tokenizer.unk_token] A_ : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def _a (self ): A_ : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=lowercase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=lowercase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _a (self ): A_ : Tuple = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) A_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase ) A_ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase ) A_ : List[str] = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase , add_prefix_space=lowercase ) A_ : int = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase , add_prefix_space=lowercase ) A_ : int = tokenizer.build_inputs_with_special_tokens(lowercase ) A_ : str = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _a (self ): A_ : str = self.get_tokenizer() A_ : str = """Encode this sequence.""" A_ : Tuple = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments A_ : str = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) A_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) A_ : str = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) A_ : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) A_ : str = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A_ : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens A_ : Union[str, Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space A_ : List[str] = tokenizer.convert_tokens_to_ids(lowercase ) A_ : str = """Encode <mask> sequence""" A_ : Union[str, Any] = """Encode <mask>sequence""" A_ : Optional[int] = tokenizer.encode(lowercase ) A_ : Tuple = encoded.index(lowercase ) A_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) A_ : str = tokenizer.encode(lowercase ) A_ : List[Any] = encoded.index(lowercase ) A_ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def _a (self ): pass def _a (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : Dict = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : List[Any] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : Tuple = """A, <mask> AllenNLP sentence.""" A_ : List[Any] = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) A_ : Any = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A_ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A_ : Any = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _a (self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A_ : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A_ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , lowercase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , lowercase ) self.assertEqual(post_processor_state["""trim_offsets"""] , lowercase ) def _a (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : Any = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` A_ : List[str] = F'{text_of_1_token} {text_of_1_token}' A_ : List[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) A_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) A_ : Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : int = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) A_ : Any = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : List[str] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) A_ : Any = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) A_ : Any = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : List[str] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) A_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) A_ : Optional[int] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
715
'''simple docstring''' import re def a ( lowerCamelCase__ ): '''simple docstring''' if len(re.findall("""[ATCG]""" , lowerCamelCase__ ) ) != len(lowerCamelCase__ ): raise ValueError("""Invalid Strand""" ) return dna.translate(dna.maketrans("""ATCG""" , """TAGC""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
686
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = LDMTextToImagePipeline __SCREAMING_SNAKE_CASE : int = TEXT_TO_IMAGE_PARAMS - { 'negative_prompt', 'negative_prompt_embeds', 'cross_attention_kwargs', 'prompt_embeds', } __SCREAMING_SNAKE_CASE : Optional[int] = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Tuple = False def _a (self ): torch.manual_seed(0 ) A_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) A_ : List[Any] = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ : Optional[Any] = CLIPTextModel(lowercase ) A_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ : Dict = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def _a (self , lowercase , lowercase=0 ): if str(lowercase ).startswith("""mps""" ): A_ : Tuple = torch.manual_seed(lowercase ) else: A_ : str = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a (self ): A_ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Tuple = self.get_dummy_components() A_ : Tuple = LDMTextToImagePipeline(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = self.get_dummy_inputs(lowercase ) A_ : Any = pipe(**lowercase ).images A_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A_ : str = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self , lowercase , lowercase=torch.floataa , lowercase=0 ): A_ : Tuple = torch.manual_seed(lowercase ) A_ : Dict = np.random.RandomState(lowercase ).standard_normal((1, 4, 32, 32) ) A_ : Optional[Any] = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) A_ : str = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a (self ): A_ : int = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Any = self.get_inputs(lowercase ) A_ : str = pipe(**lowercase ).images A_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A_ : str = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] ) A_ : Optional[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self , lowercase , lowercase=torch.floataa , lowercase=0 ): A_ : Optional[Any] = torch.manual_seed(lowercase ) A_ : Dict = np.random.RandomState(lowercase ).standard_normal((1, 4, 32, 32) ) A_ : Any = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) A_ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a (self ): A_ : Optional[Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Optional[Any] = self.get_inputs(lowercase ) A_ : Tuple = pipe(**lowercase ).images[0] A_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) A_ : Any = np.abs(expected_image - image ).max() assert max_diff < 1E-3
716
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCamelCase__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def a ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCamelCase__ ): http_head("""https://huggingface.co""" )
686
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def a ( lowerCamelCase__ = 3 ): '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(lowerCamelCase__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) A_ : str = QuantumRegister(lowerCamelCase__ , """qr""" ) A_ : Optional[Any] = ClassicalRegister(lowerCamelCase__ , """cr""" ) A_ : Dict = QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[int] = number_of_qubits for i in range(lowerCamelCase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCamelCase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCamelCase__ , lowerCamelCase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCamelCase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCamelCase__ , lowerCamelCase__ ) # simulate with 10000 shots A_ : Tuple = Aer.get_backend("""qasm_simulator""" ) A_ : Optional[int] = execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_00_00 ) return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
717
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase :Any = re.compile(R'''\s+''') def a ( lowerCamelCase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowerCamelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = [len(lowerCamelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowerCamelCase__ ), "line_max": max(lowerCamelCase__ )} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a ( lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : Tuple = ["""auto-generated""", """autogenerated""", """automatically generated"""] A_ : Optional[int] = example["""content"""].splitlines() for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a ( lowerCamelCase__ , lowerCamelCase__=5 , lowerCamelCase__=0.05 ): '''simple docstring''' A_ : Any = ["""unit tests""", """test file""", """configuration file"""] A_ : List[str] = example["""content"""].splitlines() A_ : str = 0 A_ : Union[str, Any] = 0 # first test for _, line in zip(range(lowerCamelCase__ ) , lowerCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : List[Any] = example["""content"""].count("""\n""" ) A_ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = ["""def """, """class """, """for """, """while """] A_ : Optional[int] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a ( lowerCamelCase__ , lowerCamelCase__=4 ): '''simple docstring''' A_ : Tuple = example["""content"""].splitlines() A_ : int = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = tokenizer(example["""content"""] , truncation=lowerCamelCase__ )["""input_ids"""] A_ : Optional[Any] = len(example["""content"""] ) / len(lowerCamelCase__ ) return {"ratio": ratio} def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = {} results.update(get_hash(lowerCamelCase__ ) ) results.update(line_stats(lowerCamelCase__ ) ) results.update(alpha_stats(lowerCamelCase__ ) ) results.update(char_token_ratio(lowerCamelCase__ ) ) results.update(is_autogenerated(lowerCamelCase__ ) ) results.update(is_config_or_test(lowerCamelCase__ ) ) results.update(has_no_keywords(lowerCamelCase__ ) ) results.update(has_few_assignments(lowerCamelCase__ ) ) return results def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if not check_uniques(lowerCamelCase__ , lowerCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """rb""" ) as f_in: with gzip.open(str(lowerCamelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase__ , lowerCamelCase__ ) os.unlink(lowerCamelCase__ ) # Settings lowerCamelCase :Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase :Tuple = parser.parse_args() if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() lowerCamelCase :List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase :List[Any] = time.time() lowerCamelCase :Optional[int] = load_dataset(args.dataset_name, split='''train''') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase :int = time.time() lowerCamelCase :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase :int = set(ds.unique('''hash''')) lowerCamelCase :List[str] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase :Dict = time.time() lowerCamelCase :int = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase :List[str] = time.time() lowerCamelCase , lowerCamelCase :int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase :int = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCamelCase :Tuple = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCamelCase :Tuple = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase :List[str] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase :Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
686
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase :int = datasets.load_iris() lowerCamelCase :str = np.array(data['''data''']) lowerCamelCase :Dict = np.array(data['''target''']) lowerCamelCase :Union[str, Any] = data['''target_names'''] lowerCamelCase :str = train_test_split(X, y) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : List[str] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : List[str] = [] for data_point in data: A_ : Any = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : Optional[Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Tuple = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
718
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
686
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): def _a (self , lowercase , lowercase ): A_ : Dict = jnp.ones((batch_size, length) ) / length return scores def _a (self ): A_ : List[Any] = None A_ : Optional[int] = 20 A_ : Tuple = self._get_uniform_logits(batch_size=2 , length=lowercase ) # tweak scores to not be uniform anymore A_ : List[Any] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A_ : str = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A_ : List[str] = jax.nn.softmax(lowercase , axis=-1 ) A_ : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) A_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(lowercase , scores.copy() , cur_len=lowercase ) , axis=-1 ) A_ : Dict = jax.nn.softmax(temp_dist_warper_smoother(lowercase , scores.copy() , cur_len=lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _a (self ): A_ : Optional[Any] = None A_ : str = 10 A_ : Union[str, Any] = 2 # create ramp distribution A_ : List[Any] = np.broadcast_to(np.arange(lowercase )[None, :] , (batch_size, vocab_size) ).copy() A_ : Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size A_ : List[str] = FlaxTopKLogitsWarper(3 ) A_ : Dict = top_k_warp(lowercase , lowercase , cur_len=lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case A_ : Union[str, Any] = 5 A_ : Optional[int] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) A_ : Tuple = np.broadcast_to(np.arange(lowercase )[None, :] , (batch_size, length) ).copy() A_ : Optional[int] = top_k_warp_safety_check(lowercase , lowercase , cur_len=lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _a (self ): A_ : Any = None A_ : Any = 10 A_ : Optional[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A_ : int = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) A_ : Optional[int] = FlaxTopPLogitsWarper(0.8 ) A_ : Optional[int] = np.exp(top_p_warp(lowercase , lowercase , cur_len=lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A_ : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowercase , lowercase , atol=1E-3 ) ) # check edge cases with negative and extreme logits A_ : Any = np.broadcast_to(np.arange(lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A_ : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept A_ : int = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) A_ : str = top_p_warp(lowercase , lowercase , cur_len=lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _a (self ): A_ : str = 20 A_ : int = 4 A_ : Optional[Any] = 0 A_ : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase ) # check that min length is applied at length 5 A_ : Union[str, Any] = ids_tensor((batch_size, 20) , vocab_size=20 ) A_ : Any = 5 A_ : Union[str, Any] = self._get_uniform_logits(lowercase , lowercase ) A_ : Tuple = min_dist_processor(lowercase , lowercase , cur_len=lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 A_ : Tuple = self._get_uniform_logits(lowercase , lowercase ) A_ : Union[str, Any] = 15 A_ : Any = min_dist_processor(lowercase , lowercase , cur_len=lowercase ) self.assertFalse(jnp.isinf(lowercase ).any() ) def _a (self ): A_ : str = 20 A_ : Union[str, Any] = 4 A_ : List[Any] = 0 A_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase ) # check that all scores are -inf except the bos_token_id score A_ : Tuple = ids_tensor((batch_size, 1) , vocab_size=20 ) A_ : Union[str, Any] = 1 A_ : Any = self._get_uniform_logits(lowercase , lowercase ) A_ : Any = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A_ : Dict = 3 A_ : Any = self._get_uniform_logits(lowercase , lowercase ) A_ : int = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertFalse(jnp.isinf(lowercase ).any() ) def _a (self ): A_ : Dict = 20 A_ : Optional[Any] = 4 A_ : List[Any] = 0 A_ : Tuple = 5 A_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase , eos_token_id=lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached A_ : Optional[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) A_ : Any = 4 A_ : Optional[int] = self._get_uniform_logits(lowercase , lowercase ) A_ : List[Any] = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A_ : Optional[int] = 3 A_ : List[Any] = self._get_uniform_logits(lowercase , lowercase ) A_ : Tuple = logits_processor(lowercase , lowercase , cur_len=lowercase ) self.assertFalse(jnp.isinf(lowercase ).any() ) def _a (self ): A_ : Tuple = 4 A_ : List[Any] = 10 A_ : Union[str, Any] = 15 A_ : Optional[int] = 2 A_ : int = 1 A_ : Any = 15 # dummy input_ids and scores A_ : Optional[int] = ids_tensor((batch_size, sequence_length) , lowercase ) A_ : Optional[Any] = input_ids.copy() A_ : Tuple = self._get_uniform_logits(lowercase , lowercase ) A_ : Dict = scores.copy() # instantiate all dist processors A_ : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : List[str] = FlaxTopKLogitsWarper(3 ) A_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase ) A_ : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase ) A_ : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase , eos_token_id=lowercase ) A_ : Optional[Any] = 10 # no processor list A_ : int = temp_dist_warp(lowercase , lowercase , cur_len=lowercase ) A_ : Dict = top_k_warp(lowercase , lowercase , cur_len=lowercase ) A_ : Tuple = top_p_warp(lowercase , lowercase , cur_len=lowercase ) A_ : int = min_dist_proc(lowercase , lowercase , cur_len=lowercase ) A_ : Optional[Any] = bos_dist_proc(lowercase , lowercase , cur_len=lowercase ) A_ : Optional[int] = eos_dist_proc(lowercase , lowercase , cur_len=lowercase ) # with processor list A_ : str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : int = processor(lowercase , lowercase , cur_len=lowercase ) # scores should be equal self.assertTrue(jnp.allclose(lowercase , lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _a (self ): A_ : Optional[int] = 4 A_ : Any = 10 A_ : int = 15 A_ : Tuple = 2 A_ : List[Any] = 1 A_ : Optional[int] = 15 # dummy input_ids and scores A_ : Dict = ids_tensor((batch_size, sequence_length) , lowercase ) A_ : Dict = input_ids.copy() A_ : Any = self._get_uniform_logits(lowercase , lowercase ) A_ : Union[str, Any] = scores.copy() # instantiate all dist processors A_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Dict = FlaxTopKLogitsWarper(3 ) A_ : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase ) A_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase ) A_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase , eos_token_id=lowercase ) A_ : Any = 10 # no processor list def run_no_processor_list(lowercase , lowercase , lowercase ): A_ : List[str] = temp_dist_warp(lowercase , lowercase , cur_len=lowercase ) A_ : List[str] = top_k_warp(lowercase , lowercase , cur_len=lowercase ) A_ : Optional[int] = top_p_warp(lowercase , lowercase , cur_len=lowercase ) A_ : Any = min_dist_proc(lowercase , lowercase , cur_len=lowercase ) A_ : Any = bos_dist_proc(lowercase , lowercase , cur_len=lowercase ) A_ : List[str] = eos_dist_proc(lowercase , lowercase , cur_len=lowercase ) return scores # with processor list def run_processor_list(lowercase , lowercase , lowercase ): A_ : str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : Optional[int] = processor(lowercase , lowercase , cur_len=lowercase ) return scores A_ : Optional[Any] = jax.jit(lowercase ) A_ : Tuple = jax.jit(lowercase ) A_ : Optional[Any] = jitted_run_no_processor_list(lowercase , lowercase , lowercase ) A_ : Any = jitted_run_processor_list(lowercase , lowercase , lowercase ) # scores should be equal self.assertTrue(jnp.allclose(lowercase , lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
719
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase :int = datasets.load_iris() lowerCamelCase :str = np.array(data['''data''']) lowerCamelCase :Dict = np.array(data['''target''']) lowerCamelCase :Union[str, Any] = data['''target_names'''] lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = train_test_split(X, y) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : List[str] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : List[str] = [] for data_point in data: A_ : Any = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : Optional[Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Tuple = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
686
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DanceDiffusionPipeline __SCREAMING_SNAKE_CASE : List[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __SCREAMING_SNAKE_CASE : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False def _a (self ): torch.manual_seed(0 ) A_ : Any = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase , use_timestep_embedding=lowercase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) A_ : Any = IPNDMScheduler() A_ : int = { """unet""": unet, """scheduler""": scheduler, } return components def _a (self , lowercase , lowercase=0 ): if str(lowercase ).startswith("""mps""" ): A_ : Dict = torch.manual_seed(lowercase ) else: A_ : Tuple = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : int = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def _a (self ): A_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Any = self.get_dummy_components() A_ : List[str] = DanceDiffusionPipeline(**lowercase ) A_ : List[str] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Optional[Any] = self.get_dummy_inputs(lowercase ) A_ : Union[str, Any] = pipe(**lowercase ) A_ : Tuple = output.audios A_ : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) A_ : Dict = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _a (self ): return super().test_save_load_local() @skip_mps def _a (self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _a (self ): return super().test_save_load_optional_components() @skip_mps def _a (self ): return super().test_attention_slicing_forward_pass() def _a (self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : Any = torch_device A_ : int = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) A_ : Optional[int] = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = torch.manual_seed(0 ) A_ : Optional[int] = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.0_96 ) A_ : Tuple = output.audios A_ : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A_ : Optional[int] = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): A_ : Union[str, Any] = torch_device A_ : List[Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) A_ : str = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Optional[int] = pipe(generator=lowercase , num_inference_steps=100 , audio_length_in_s=4.0_96 ) A_ : List[str] = output.audios A_ : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A_ : str = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
720
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase :List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , lowercase , lowercase , lowercase ): if len(lowercase ) == 0 or len(lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(lowercase ) ) if isinstance(lowercase , lowercase ): A_ : Tuple = [sequences] A_ : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCAmelCase ) class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase=ZeroShotClassificationArgumentHandler() , *lowercase , **lowercase ): A_ : int = args_parser super().__init__(*lowercase , **lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _a (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _a (self , lowercase , lowercase=True , lowercase=True , lowercase=TruncationStrategy.ONLY_FIRST , **lowercase ): A_ : Any = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) A_ : str = self.tokenizer.eos_token try: A_ : str = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=lowercase , ) except Exception as e: if "too short" in str(lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A_ : Any = self.tokenizer( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a (self , **lowercase ): if kwargs.get("""multi_class""" , lowercase ) is not None: A_ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) A_ : Optional[Any] = {} if "candidate_labels" in kwargs: A_ : str = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: A_ : List[str] = kwargs["""hypothesis_template"""] A_ : List[Any] = {} if "multi_label" in kwargs: A_ : Optional[Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , lowercase , *lowercase , **lowercase , ): if len(lowercase ) == 0: pass elif len(lowercase ) == 1 and "candidate_labels" not in kwargs: A_ : Union[str, Any] = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowercase , **lowercase ) def _a (self , lowercase , lowercase=None , lowercase="This example is {}." ): A_, A_ : int = self._args_parser(lowercase , lowercase , lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowercase , lowercase ) ): A_ : List[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowercase ) - 1, **model_input, } def _a (self , lowercase ): A_ : Optional[Any] = inputs["""candidate_label"""] A_ : List[Any] = inputs["""sequence"""] A_ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} A_ : List[str] = self.model(**lowercase ) A_ : str = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _a (self , lowercase , lowercase=False ): A_ : Any = [outputs["""candidate_label"""] for outputs in model_outputs] A_ : str = [outputs["""sequence"""] for outputs in model_outputs] A_ : Dict = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) A_ : Dict = logits.shape[0] A_ : Any = len(lowercase ) A_ : List[str] = N // n A_ : Tuple = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A_ : Union[str, Any] = self.entailment_id A_ : Any = -1 if entailment_id == 0 else 0 A_ : List[str] = reshaped_outputs[..., [contradiction_id, entailment_id]] A_ : Union[str, Any] = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A_ : Optional[int] = reshaped_outputs[..., self.entailment_id] A_ : int = np.exp(lowercase ) / np.exp(lowercase ).sum(-1 , keepdims=lowercase ) A_ : Any = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
686
0
'''simple docstring''' lowerCamelCase :dict[tuple[int, int, int], int] = {} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : int = _calculate(days - 1 , lowerCamelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Union[str, Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : Optional[int] = _calculate(days - 1 , lowerCamelCase__ , 0 ) A_ : Optional[Any] = state_late + state_absent + state_ontime A_ : Dict = prizestrings return prizestrings def a ( lowerCamelCase__ = 30 ): '''simple docstring''' return _calculate(lowerCamelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
721
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :int = logging.get_logger(__name__) lowerCamelCase :Tuple = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = 'yolos' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) A_ : List[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Any = num_attention_heads A_ : Any = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : List[str] = image_size A_ : str = patch_size A_ : int = num_channels A_ : Optional[int] = qkv_bias A_ : List[Any] = num_detection_tokens A_ : Tuple = use_mid_position_embeddings A_ : int = auxiliary_loss # Hungarian matcher A_ : int = class_cost A_ : List[Any] = bbox_cost A_ : Optional[int] = giou_cost # Loss coefficients A_ : Any = bbox_loss_coefficient A_ : List[Any] = giou_loss_coefficient A_ : str = eos_coefficient class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4 @property def _a (self ): return 12
686
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __lowerCamelCase ( __snake_case : float, __snake_case : float ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = AutoencoderKL __snake_case = 'sample' __snake_case = 1E-2 @property def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Any =4 A__ : str =3 A__ : List[str] =(32, 32) A__ : str =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) return {"sample": image} @property def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' return (3, 32, 32) @property def lowercase__ ( self : str ) -> Any: '''simple docstring''' return (3, 32, 32) def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : List[str] ={ """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } A__ : str =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' pass def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' # enable deterministic behavior for gradient checkpointing A__ , A__ : Any =self.prepare_init_args_and_inputs_for_common() A__ : Tuple =self.model_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) assert not model.is_gradient_checkpointing and model.training A__ : Tuple =model(**lowerCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() A__ : Union[str, Any] =torch.randn_like(lowerCAmelCase_ ) A__ : Dict =(out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing A__ : List[str] =self.model_class(**lowerCAmelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCAmelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training A__ : Optional[Any] =model_a(**lowerCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() A__ : int =(out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) A__ : Optional[int] =dict(model.named_parameters() ) A__ : Optional[Any] =dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ , A__ : int =AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase_ ) A__ : List[Any] =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] =AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) A__ : Any =model.to(lowerCAmelCase_ ) model.eval() if torch_device == "mps": A__ : Union[str, Any] =torch.manual_seed(0 ) else: A__ : List[Any] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : List[str] =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A__ : Tuple =image.to(lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[Any] =model(lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ , generator=lowerCAmelCase_ ).sample A__ : Optional[int] =output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": A__ : Union[str, Any] =torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": A__ : str =torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: A__ : Union[str, Any] =torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-2 ) ) @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy" def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=(4, 3, 5_12, 5_12) , lowerCAmelCase_ : List[str]=False ) -> Optional[Any]: '''simple docstring''' A__ : str =torch.floataa if fpaa else torch.floataa A__ : int =torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) ).to(lowerCAmelCase_ ).to(lowerCAmelCase_ ) return image def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" , lowerCAmelCase_ : Optional[int]=False ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] ="""fp16""" if fpaa else None A__ : str =torch.floataa if fpaa else torch.floataa A__ : str =AutoencoderKL.from_pretrained( lowerCAmelCase_ , subfolder="""vae""" , torch_dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ , ) model.to(lowerCAmelCase_ ).eval() return model def lowercase__ ( self : str , lowerCAmelCase_ : Dict=0 ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCAmelCase_ ) return torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' A__ : str =self.get_sd_vae_model() A__ : Dict =self.get_sd_image(lowerCAmelCase_ ) A__ : str =self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A__ : Dict =model(lowerCAmelCase_ , generator=lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ ).sample assert sample.shape == image.shape A__ : List[Any] =sample[-1, -2:, -2:, :2].flatten().float().cpu() A__ : Dict =torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Dict =self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A__ : Optional[int] =self.get_sd_image(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) A__ : Tuple =self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A__ : Tuple =model(lowerCAmelCase_ , generator=lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ ).sample assert sample.shape == image.shape A__ : Optional[int] =sample[-1, -2:, :2, -2:].flatten().float().cpu() A__ : Union[str, Any] =torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> int: '''simple docstring''' A__ : List[str] =self.get_sd_vae_model() A__ : Dict =self.get_sd_image(lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[Any] =model(lowerCAmelCase_ ).sample assert sample.shape == image.shape A__ : Optional[Any] =sample[-1, -2:, -2:, :2].flatten().float().cpu() A__ : Union[str, Any] =torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' A__ : Tuple =self.get_sd_vae_model() A__ : List[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): A__ : str =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] A__ : Optional[int] =sample[-1, -2:, :2, -2:].flatten().cpu() A__ : Optional[int] =torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> int: '''simple docstring''' A__ : List[str] =self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase_ ) with torch.no_grad(): A__ : List[Any] =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] A__ : int =sample[-1, -2:, :2, -2:].flatten().float().cpu() A__ : str =torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' A__ : List[Any] =self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[int] =model.decode(lowerCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): A__ : Tuple =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' A__ : int =self.get_sd_vae_model() A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): A__ : List[str] =model.decode(lowerCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): A__ : Optional[int] =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> str: '''simple docstring''' A__ : int =self.get_sd_vae_model() A__ : int =self.get_sd_image(lowerCAmelCase_ ) A__ : List[str] =self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A__ : Tuple =model.encode(lowerCAmelCase_ ).latent_dist A__ : Optional[int] =dist.sample(generator=lowerCAmelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] A__ : Any =sample[0, -1, -3:, -3:].flatten().cpu() A__ : Tuple =torch.tensor(lowerCAmelCase_ ) A__ : Union[str, Any] =3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=lowerCAmelCase_ )
687
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __lowerCamelCase ( __snake_case : str ) -> Any: """simple docstring""" A__ : List[Any] =384 A__ : Union[str, Any] =7 if "tiny" in model_name: A__ : List[Any] =96 A__ : Tuple =(2, 2, 6, 2) A__ : str =(3, 6, 12, 24) elif "small" in model_name: A__ : Optional[Any] =96 A__ : Union[str, Any] =(2, 2, 18, 2) A__ : Optional[int] =(3, 6, 12, 24) elif "base" in model_name: A__ : List[Any] =128 A__ : str =(2, 2, 18, 2) A__ : Optional[int] =(4, 8, 16, 32) A__ : Optional[Any] =12 A__ : str =512 elif "large" in model_name: A__ : Optional[int] =192 A__ : int =(2, 2, 18, 2) A__ : Union[str, Any] =(6, 12, 24, 48) A__ : Optional[Any] =12 A__ : Optional[Any] =768 # set label information A__ : str =150 A__ : List[Any] ="""huggingface/label-files""" A__ : List[Any] ="""ade20k-id2label.json""" A__ : List[str] =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[Any] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : Union[str, Any] ={v: k for k, v in idalabel.items()} A__ : List[str] =SwinConfig( embed_dim=__snake_case, depths=__snake_case, num_heads=__snake_case, window_size=__snake_case, out_features=["""stage1""", """stage2""", """stage3""", """stage4"""], ) A__ : Dict =UperNetConfig( backbone_config=__snake_case, auxiliary_in_channels=__snake_case, num_labels=__snake_case, idalabel=__snake_case, labelaid=__snake_case, ) return config def __lowerCamelCase ( __snake_case : int ) -> List[Any]: """simple docstring""" A__ : Dict =[] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : str ) -> Any: """simple docstring""" A__ : List[Any] =dct.pop(__snake_case ) A__ : Dict =val def __lowerCamelCase ( __snake_case : str, __snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ : Optional[Any] =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ : List[Any] =state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) A__ : List[Any] =state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] =in_proj_weight[:dim, :] A__ : str =in_proj_bias[: dim] A__ : Any =in_proj_weight[ dim : dim * 2, : ] A__ : Any =in_proj_bias[ dim : dim * 2 ] A__ : Optional[int] =in_proj_weight[ -dim :, : ] A__ : Optional[Any] =in_proj_bias[-dim :] # fmt: on def __lowerCamelCase ( __snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" A__ , A__ : List[Any] =x.shape A__ : int =x.reshape(__snake_case, 4, in_channel // 4 ) A__ : Optional[int] =x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(__snake_case, __snake_case ) return x def __lowerCamelCase ( __snake_case : List[str] ) -> List[str]: """simple docstring""" A__ , A__ : Union[str, Any] =x.shape A__ : Optional[int] =x.reshape(__snake_case, in_channel // 4, 4 ) A__ : str =x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(__snake_case, __snake_case ) return x def __lowerCamelCase ( __snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =x.shape[0] A__ : Tuple =x.reshape(4, in_channel // 4 ) A__ : Union[str, Any] =x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(__snake_case ) return x def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" A__ : Any =x.shape[0] A__ : Optional[int] =x.reshape(in_channel // 4, 4 ) A__ : Tuple =x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(__snake_case ) return x def __lowerCamelCase ( __snake_case : List[str], __snake_case : Optional[int], __snake_case : Dict ) -> Optional[Any]: """simple docstring""" A__ : str ={ """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } A__ : Optional[int] =model_name_to_url[model_name] A__ : Any =torch.hub.load_state_dict_from_url(__snake_case, map_location="""cpu""", file_name=__snake_case )[ """state_dict""" ] for name, param in state_dict.items(): print(__snake_case, param.shape ) A__ : Tuple =get_upernet_config(__snake_case ) A__ : List[Any] =UperNetForSemanticSegmentation(__snake_case ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ : Dict =state_dict.pop(__snake_case ) if "bn" in key: A__ : List[str] =key.replace("""bn""", """batch_norm""" ) A__ : List[str] =val # rename keys A__ : List[str] =create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A__ : Optional[Any] =reverse_correct_unfold_reduction_order(__snake_case ) if "norm" in key: A__ : List[str] =reverse_correct_unfold_norm_order(__snake_case ) model.load_state_dict(__snake_case ) # verify on image A__ : Union[str, Any] ="""https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A__ : str =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ).convert("""RGB""" ) A__ : Tuple =SegformerImageProcessor() A__ : List[str] =processor(__snake_case, return_tensors="""pt""" ).pixel_values with torch.no_grad(): A__ : Tuple =model(__snake_case ) A__ : Tuple =outputs.logits print(logits.shape ) print("""First values of logits:""", logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A__ : List[str] =torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": A__ : int =torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": A__ : Tuple =torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": A__ : Tuple =torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("""Logits:""", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], __snake_case, atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__snake_case ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
687
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =data A__ : Optional[int] =[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] @staticmethod def lowercase__ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xFFFFFFFF def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : List[str] =b"""\x80""" + b"""\x00""" * (63 - (len(self.data ) + 8) % 64) A__ : int =self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' A__ : List[Any] =list(struct.unpack(""">16L""" , lowerCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): A__ : Optional[Any] =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.padding() A__ : str =self.split_blocks() for block in self.blocks: A__ : Union[str, Any] =self.expand_block(lowerCAmelCase_ ) A__ , A__ , A__ , A__ , A__ : Optional[Any] =self.h for i in range(0 , 80 ): if 0 <= i < 20: A__ : List[Any] =(b & c) | ((~b) & d) A__ : Tuple =0x5A827999 elif 20 <= i < 40: A__ : str =b ^ c ^ d A__ : int =0x6ED9EBA1 elif 40 <= i < 60: A__ : Optional[Any] =(b & c) | (b & d) | (c & d) A__ : List[str] =0x8F1BBCDC elif 60 <= i < 80: A__ : Optional[Any] =b ^ c ^ d A__ : List[str] =0xCA62C1D6 A__ , A__ , A__ , A__ , A__ : Optional[Any] =( self.rotate(lowerCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xFFFFFFFF, a, self.rotate(lowerCAmelCase_ , 30 ), c, d, ) A__ : Optional[Any] =( self.h[0] + a & 0xFFFFFFFF, self.h[1] + b & 0xFFFFFFFF, self.h[2] + c & 0xFFFFFFFF, self.h[3] + d & 0xFFFFFFFF, self.h[4] + e & 0xFFFFFFFF, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : Optional[int] =b"""Test String""" assert SHAaHash(__snake_case ).final_hash() == hashlib.shaa(__snake_case ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : Dict =argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""", dest="""input_string""", default="""Hello World!! Welcome to Cryptography""", help="""Hash the string""", ) parser.add_argument("""--file""", dest="""input_file""", help="""Hash contents of a file""" ) A__ : Union[str, Any] =parser.parse_args() A__ : List[str] =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file, """rb""" ) as f: A__ : Tuple =f.read() else: A__ : Optional[int] =bytes(__snake_case, """utf-8""" ) print(SHAaHash(__snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
687
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'ChineseCLIPImageProcessor' __snake_case = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) A__ : str =kwargs.pop("""feature_extractor""" ) A__ : Union[str, Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : int =self.image_processor def __call__( self : Optional[int] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A__ : int =self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: A__ : Optional[Any] =self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: A__ : int =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowercase__ ( self : Tuple , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Dict , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' A__ : Optional[Any] =self.tokenizer.model_input_names A__ : str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class
687
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
1
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : bool, __snake_case : list[int], __snake_case : float ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__snake_case ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __snake_case, __snake_case, __snake_case ), minimax(depth + 1, node_index * 2 + 1, __snake_case, __snake_case, __snake_case ), ) return min( minimax(depth + 1, node_index * 2, __snake_case, __snake_case, __snake_case ), minimax(depth + 1, node_index * 2 + 1, __snake_case, __snake_case, __snake_case ), ) def __lowerCamelCase ( ) -> None: """simple docstring""" A__ : Any =[90, 23, 6, 33, 21, 65, 123, 34_423] A__ : Tuple =math.log(len(__snake_case ), 2 ) print("""Optimal value : """, end="""""" ) print(minimax(0, 0, __snake_case, __snake_case, __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
687
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
1
'''simple docstring''' import qiskit def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> qiskit.result.counts.Counts: """simple docstring""" A__ : Any =qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register A__ : Optional[Any] =qiskit.QuantumCircuit(__snake_case, __snake_case ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1] ) # Execute the circuit on the qasm simulator A__ : Union[str, Any] =qiskit.execute(__snake_case, __snake_case, shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__snake_case ) if __name__ == "__main__": __snake_case : Dict = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
687
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case : Tuple = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'umt5' __snake_case = ['past_key_values'] def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int]=25_01_12 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Tuple=10_24 , lowerCAmelCase_ : Dict=8 , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=6 , lowerCAmelCase_ : int=32 , lowerCAmelCase_ : str=1_28 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : List[str]=1e-6 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : int="gated-gelu" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]="T5Tokenizer" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Tuple=0 , **lowerCAmelCase_ : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__( is_encoder_decoder=lowerCAmelCase_ , tokenizer_class=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : Any =vocab_size A__ : Any =d_model A__ : Tuple =d_kv A__ : List[str] =d_ff A__ : str =num_layers A__ : Dict =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ : str =num_heads A__ : str =relative_attention_num_buckets A__ : Optional[Any] =relative_attention_max_distance A__ : Optional[int] =dropout_rate A__ : Dict =layer_norm_epsilon A__ : str =initializer_factor A__ : Optional[Any] =feed_forward_proj A__ : Tuple =use_cache A__ : Optional[int] =self.feed_forward_proj.split("""-""" ) A__ : int =act_info[-1] A__ : Tuple =act_info[0] == """gated""" if len(lowerCAmelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_ ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A__ : Any ="""gelu_new""" @property def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return self.d_model @property def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.num_heads @property def lowercase__ ( self : int ) -> Any: '''simple docstring''' return self.num_layers class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowercase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ : Tuple ={ """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A__ : Dict ="""past_encoder_sequence + sequence""" A__ : str ={0: """batch"""} A__ : Tuple ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A__ : Optional[int] ={0: """batch""", 1: """decoder_sequence"""} A__ : Tuple ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' return 13 @property def lowercase__ ( self : Optional[int] ) -> float: '''simple docstring''' return 5e-4
687
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __lowerCamelCase ( ) -> List[str]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join A__ : str ="""__test_patch_submodule_mock__""" with patch_submodule(_test_patching, """os.path.join""", __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __lowerCamelCase ( ) -> int: """simple docstring""" assert _test_patching.open is open A__ : List[str] ="""__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, """open""", __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ : Optional[Any] ="""__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching, """pandas.read_csv""", __snake_case ): pass def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ : str ="""__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, """len""", __snake_case ) is None with patch_submodule(_test_patching, """len""", __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] ="""__test_patch_submodule_start_and_stop_mock__""" A__ : Optional[int] =patch_submodule(_test_patching, """open""", __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join A__ : Any ="""__test_patch_submodule_successive_join__""" A__ : Union[str, Any] ="""__test_patch_submodule_successive_dirname__""" A__ : Tuple ="""__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, """os.path.join""", __snake_case ): with patch_submodule(_test_patching, """os.rename""", __snake_case ): with patch_submodule(_test_patching, """os.path.dirname""", __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, """os.rename""", __snake_case ): with patch_submodule(_test_patching, """os.path.join""", __snake_case ): with patch_submodule(_test_patching, """os.path.dirname""", __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __lowerCamelCase ( ) -> str: """simple docstring""" A__ : str ="""__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching, """__module_that_doesn_exist__.__attribute_that_doesn_exist__""", __snake_case ): pass with patch_submodule(_test_patching, """os.__attribute_that_doesn_exist__""", __snake_case ): pass
687
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
1
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __snake_case : Dict = 6378137.0 __snake_case : Optional[int] = 6356752.314245 __snake_case : str = 637_8137 def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float, __snake_case : float ) -> float: """simple docstring""" A__ : Tuple =(AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude A__ : Union[str, Any] =atan((1 - flattening) * tan(radians(__snake_case ) ) ) A__ : str =atan((1 - flattening) * tan(radians(__snake_case ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius A__ : List[Any] =haversine_distance(__snake_case, __snake_case, __snake_case, __snake_case ) / EQUATORIAL_RADIUS # Intermediate P and Q values A__ : Optional[Any] =(b_lata + b_lata) / 2 A__ : Optional[int] =(b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) A__ : Tuple =(sin(__snake_case ) ** 2) * (cos(__snake_case ) ** 2) A__ : Union[str, Any] =cos(sigma / 2 ) ** 2 A__ : int =(sigma - sin(__snake_case )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) A__ : Optional[Any] =(cos(__snake_case ) ** 2) * (sin(__snake_case ) ** 2) A__ : Optional[Any] =sin(sigma / 2 ) ** 2 A__ : int =(sigma + sin(__snake_case )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
687
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase : '''simple docstring''' @staticmethod def lowercase__ ( *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A__ : str =ObjectDetectionPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' A__ : str =object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase_ , { """score""": ANY(lowerCAmelCase_ ), """label""": ANY(lowerCAmelCase_ ), """box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )}, } , ) import datasets A__ : Dict =datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) A__ : Any =[ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] A__ : Dict =object_detector(lowerCAmelCase_ , threshold=0.0 ) self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase_ , { """score""": ANY(lowerCAmelCase_ ), """label""": ANY(lowerCAmelCase_ ), """box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' pass @require_torch def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : List[str] ="""hf-internal-testing/tiny-detr-mobilenetsv3""" A__ : Dict =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) A__ : int =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : List[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) A__ : Optional[int] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""facebook/detr-resnet-50""" A__ : Tuple =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ ) A__ : int =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : Optional[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ : Optional[Any] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ : Optional[Any] ="""facebook/detr-resnet-50""" A__ : Optional[int] =pipeline("""object-detection""" , model=lowerCAmelCase_ ) A__ : int =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ : Optional[Any] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =0.9985 A__ : Optional[Any] ="""facebook/detr-resnet-50""" A__ : Dict =pipeline("""object-detection""" , model=lowerCAmelCase_ ) A__ : Any =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=lowerCAmelCase_ ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : Optional[Any] ="""Narsil/layoutlmv3-finetuned-funsd""" A__ : Any =0.9993 A__ : List[Any] =pipeline("""object-detection""" , model=lowerCAmelCase_ , threshold=lowerCAmelCase_ ) A__ : Dict =object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
687
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __snake_case : Optional[int] = logging.getLogger(__name__) __snake_case : Tuple = 50 # max width of layer names __snake_case : Optional[int] = 70 # max width of quantizer names def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" A__ : Any =parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""", type=__snake_case, default=8, help="""weight precision""" ) group.add_argument("""--aprec""", type=__snake_case, default=8, help="""activation precision""" ) group.add_argument("""--quant-per-tensor""", action="""store_true""", help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""", action="""store_true""", help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""", action="""store_true""", help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""", type=__snake_case, nargs="""+""", help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""", type=__snake_case, help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""", type=__snake_case, help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""", default="""max""", help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""", default=__snake_case, type=__snake_case, help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""", action="""store_true""", help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""", metavar="""N""", type=__snake_case, help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""", action="""store_true""", help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ), ) def __lowerCamelCase ( __snake_case : str ) -> Tuple: """simple docstring""" if args.calibrator == "max": A__ : Optional[int] ="""max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) A__ : str ="""histogram""" elif args.calibrator == "mse": A__ : int ="""histogram""" else: raise ValueError(f"Invalid calibrator {args.calibrator}" ) A__ : Optional[Any] =QuantDescriptor(num_bits=args.aprec, calib_method=__snake_case ) A__ : Tuple =QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(__snake_case ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Optional[int], __snake_case : Optional[int]=False, __snake_case : List[str]=False ) -> Optional[int]: """simple docstring""" logger.info("""Configuring Model for Quantization""" ) logger.info(f"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__snake_case, ["""embeddings"""], which="""weight""", _disabled=__snake_case ) if args.quant_disable: set_quantizer_by_name(__snake_case, [""""""], _disabled=__snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(__snake_case, args.quant_disable_keyword, _disabled=__snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(__snake_case, [r"""layer.\d+.""" + args.quant_disable_layer_module], _disabled=__snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(__snake_case, [r"""layer.\d+.""" + args.quant_enable_layer_module], _disabled=__snake_case ) if args.recalibrate_weights: recalibrate_weights(__snake_case ) if args.fuse_qkv: fuse_qkv(__snake_case, __snake_case ) if args.clip_gelu: clip_gelu(__snake_case, args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__snake_case ) def __lowerCamelCase ( __snake_case : Tuple ) -> int: """simple docstring""" logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"{name:80}: {module}" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict ) -> List[str]: """simple docstring""" logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator, calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""", percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__snake_case ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" def fusea(__snake_case : str, __snake_case : str, __snake_case : Union[str, Any] ): for mod in [qq, qk, qv]: if not hasattr(__snake_case, """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return A__ : Optional[int] =qq._amax.detach().item() A__ : Optional[Any] =qk._amax.detach().item() A__ : int =qv._amax.detach().item() A__ : Tuple =max(__snake_case, __snake_case, __snake_case ) qq._amax.fill_(__snake_case ) qk._amax.fill_(__snake_case ) qv._amax.fill_(__snake_case ) logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(f"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): A__ : int =mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__snake_case ) A__ : Optional[Any] =mod._input_quantizer._amax.data.detach().item() logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def __lowerCamelCase ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__snake_case, """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: A__ : str =mod.weight.shape[0] A__ : Dict =mod._weight_quantizer._amax.detach() A__ : Union[str, Any] =torch.ones(__snake_case, dtype=amax.dtype, device=amax.device ) * amax print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def __lowerCamelCase ( __snake_case : List[str] ) -> Dict: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__snake_case, """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer, """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) A__ : Optional[int] =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) A__ : str =set(range(len(mod.weight.size() ) ) ) - axis_set A__ : Any =pytorch_quantization.utils.reduce_amax(mod.weight, axis=__snake_case, keepdims=__snake_case ).detach() logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) A__ : Optional[Any] =amax def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Tuple=25, __snake_case : Optional[Any]=180, __snake_case : Tuple=None ) -> Optional[Any]: """simple docstring""" if ignore is None: A__ : Optional[Any] =[] elif not isinstance(__snake_case, __snake_case ): A__ : List[str] =[ignore] A__ : str =0 for name, mod in model.named_modules(): if not hasattr(__snake_case, """weight""" ): continue A__ : Any =max(__snake_case, len(__snake_case ) ) for name, mod in model.named_modules(): A__ : Dict =getattr(__snake_case, """_input_quantizer""", __snake_case ) A__ : Any =getattr(__snake_case, """_weight_quantizer""", __snake_case ) if not hasattr(__snake_case, """weight""" ): continue if type(__snake_case ) in ignore: continue if [True for s in ignore if type(__snake_case ) is str and s in name]: continue A__ : List[Any] =f"Act:{input_q.extra_repr()}" A__ : int =f"Wgt:{weight_q.extra_repr()}" A__ : Tuple =f"{name:{name_width}} {act_str} {wgt_str}" if len(__snake_case ) <= line_width: logger.info(__snake_case ) else: logger.info(f"{name:{name_width}} {act_str}" ) logger.info(f"{' ':{name_width}} {wgt_str}" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" A__ : List[str] =0 for name, mod in model.named_modules(): if isinstance(__snake_case, pytorch_quantization.nn.TensorQuantizer ): print(f"{name:80} {mod}" ) count += 1 print(f"{count} TensorQuantizers found in model" ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Optional[int], __snake_case : str, __snake_case : int, __snake_case : List[str] ) -> Tuple: """simple docstring""" A__ : Optional[int] =getattr(__snake_case, __snake_case, __snake_case ) if quantizer_mod is not None: assert hasattr(__snake_case, __snake_case ) setattr(__snake_case, __snake_case, __snake_case ) else: logger.warning(f"{name} has no {quantizer}" ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : Dict, __snake_case : Union[str, Any]="both", **__snake_case : Tuple ) -> Optional[int]: """simple docstring""" A__ : Dict =f"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += f" {k}={v}" if which in ["input", "both"]: set_quantizer(__snake_case, __snake_case, """_input_quantizer""", __snake_case, __snake_case ) if which in ["weight", "both"]: set_quantizer(__snake_case, __snake_case, """_weight_quantizer""", __snake_case, __snake_case ) logger.info(__snake_case ) def __lowerCamelCase ( __snake_case : Any, __snake_case : str, **__snake_case : Tuple ) -> Optional[Any]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(__snake_case, """_input_quantizer""" ) or hasattr(__snake_case, """_weight_quantizer""" ): for n in names: if re.search(__snake_case, __snake_case ): set_quantizers(__snake_case, __snake_case, **__snake_case ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(__snake_case, __snake_case ): A__ : Tuple =f"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += f" {k}={v}" setattr(__snake_case, __snake_case, __snake_case ) logger.info(__snake_case )
687
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
1
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowerCamelCase ( __snake_case : int = 8 ) -> str: """simple docstring""" A__ : Dict =ascii_letters + digits + punctuation return "".join(secrets.choice(__snake_case ) for _ in range(__snake_case ) ) def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> str: """simple docstring""" i -= len(__snake_case ) A__ : List[str] =i // 3 A__ : Any =i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) A__ : Union[str, Any] =( chars_incl + random(__snake_case, quotient + remainder ) + random(__snake_case, __snake_case ) + random(__snake_case, __snake_case ) ) A__ : Dict =list(__snake_case ) shuffle(__snake_case ) return "".join(__snake_case ) # random is a generalised function for letters, characters and numbers def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> str: """simple docstring""" return "".join(secrets.choice(__snake_case ) for _ in range(__snake_case ) ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : List[Any] ) -> List[str]: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : int ) -> Optional[int]: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def __lowerCamelCase ( __snake_case : str, __snake_case : int = 8 ) -> bool: """simple docstring""" if len(__snake_case ) < min_length: # Your Password must be at least 8 characters long return False A__ : Union[str, Any] =any(char in ascii_uppercase for char in password ) A__ : Dict =any(char in ascii_lowercase for char in password ) A__ : str =any(char in digits for char in password ) A__ : List[Any] =any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Any =int(input("""Please indicate the max length of your password: """ ).strip() ) A__ : int =input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""", password_generator(__snake_case ) ) print( """Alternative Password generated:""", alternative_password_generator(__snake_case, __snake_case ), ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
687
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : int ) -> List[str]: """simple docstring""" A__ : List[Any] =AlbertConfig.from_json_file(__snake_case ) print(f"Building PyTorch model from configuration: {config}" ) A__ : List[str] =AlbertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_albert(__snake_case, __snake_case, __snake_case ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict(), __snake_case ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
687
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCamelCase : '''simple docstring''' __snake_case = None __snake_case = None __snake_case = None # sigma(t_i) @classmethod def lowercase__ ( cls : Dict ) -> int: '''simple docstring''' return cls() @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' return True @register_to_config def __init__( self : Optional[Any] , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1_00 , lowerCAmelCase_ : float = 1.007 , lowerCAmelCase_ : float = 80 , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 50 , ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return KarrasVeSchedulerState.create() def lowercase__ ( self : List[Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = () ) -> KarrasVeSchedulerState: '''simple docstring''' A__ : str =jnp.arange(0 , lowerCAmelCase_ )[::-1].copy() A__ : int =[ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase_ , schedule=jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase_ , ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A__ : int =min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A__ : List[Any] =0 # sample eps ~ N(0, S_noise^2 * I) A__ : Union[str, Any] =random.split(lowerCAmelCase_ , num=1 ) A__ : str =self.config.s_noise * random.normal(key=lowerCAmelCase_ , shape=sample.shape ) A__ : Union[str, Any] =sigma + gamma * sigma A__ : Union[str, Any] =sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A__ : List[Any] =sample_hat + sigma_hat * model_output A__ : Union[str, Any] =(sample_hat - pred_original_sample) / sigma_hat A__ : Any =sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A__ : List[Any] =sample_prev + sigma_prev * model_output A__ : int =(sample_prev - pred_original_sample) / sigma_prev A__ : int =sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> Any: '''simple docstring''' raise NotImplementedError()
687
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case : Union[str, Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Tuple ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__snake_case, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['pixel_values'] def __init__( self : Any , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) A__ : Dict =size if size is not None else {"""shortest_edge""": 2_24} A__ : Optional[int] =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) A__ : List[Any] =crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} A__ : List[Any] =get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" ) A__ : Union[str, Any] =do_resize A__ : Union[str, Any] =size A__ : str =do_center_crop A__ : Optional[int] =crop_size A__ : str =resample A__ : Tuple =do_rescale A__ : Any =rescale_factor A__ : Any =do_normalize A__ : Dict =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ : int =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: '''simple docstring''' A__ : List[Any] =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" in size: A__ : List[str] =get_resize_output_image_size(lowerCAmelCase_ , size["""shortest_edge"""] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: A__ : Optional[Any] =(size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: '''simple docstring''' A__ : Dict =get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> Tuple: '''simple docstring''' return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A__ : Tuple =to_numpy_array(lowerCAmelCase_ ) if do_resize: A__ : Dict =self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) if do_center_crop: A__ : List[Any] =self.center_crop(lowerCAmelCase_ , size=lowerCAmelCase_ ) if do_rescale: A__ : Tuple =self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) if do_normalize: A__ : Tuple =self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) A__ : Union[str, Any] =to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) return image def lowercase__ ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> PIL.Image.Image: '''simple docstring''' A__ : str =do_resize if do_resize is not None else self.do_resize A__ : Optional[Any] =resample if resample is not None else self.resample A__ : str =do_center_crop if do_center_crop is not None else self.do_center_crop A__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale A__ : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor A__ : str =do_normalize if do_normalize is not None else self.do_normalize A__ : Tuple =image_mean if image_mean is not None else self.image_mean A__ : List[str] =image_std if image_std is not None else self.image_std A__ : Union[str, Any] =size if size is not None else self.size A__ : int =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) A__ : Optional[Any] =crop_size if crop_size is not None else self.crop_size A__ : Union[str, Any] =get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) A__ : Dict =make_batched(lowerCAmelCase_ ) A__ : int =[ [ self._preprocess_image( image=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , crop_size=lowerCAmelCase_ , do_rescale=lowerCAmelCase_ , rescale_factor=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , image_mean=lowerCAmelCase_ , image_std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , ) for img in video ] for video in videos ] A__ : Any ={"""pixel_values""": videos} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case : Tuple = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Tuple = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'mobilenet_v1' def __init__( self : Dict , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Optional[Any]=2_24 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Any="relu6" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0.999 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : int=0.001 , **lowerCAmelCase_ : Union[str, Any] , ) -> Any: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) A__ : str =num_channels A__ : Tuple =image_size A__ : Tuple =depth_multiplier A__ : Tuple =min_depth A__ : Union[str, Any] =hidden_act A__ : Optional[int] =tf_padding A__ : Dict =classifier_dropout_prob A__ : int =initializer_range A__ : Tuple =layer_norm_eps class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowercase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowercase__ ( self : List[str] ) -> float: '''simple docstring''' return 1e-4
687
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : int | str ) -> bool: """simple docstring""" A__ : List[str] =str(__snake_case ) return n == n[::-1] def __lowerCamelCase ( __snake_case : int = 1_000_000 ) -> List[str]: """simple docstring""" A__ : List[Any] =0 for i in range(1, __snake_case ): if is_palindrome(__snake_case ) and is_palindrome(bin(__snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
687
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
1
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __snake_case : Optional[List[str]] = None __snake_case : Optional[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __snake_case : Any = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = True __snake_case = None # Automatically constructed __snake_case = "PIL.Image.Image" __snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __snake_case = field(default='Image' , init=lowercase_ , repr=lowercase_ ) def __call__( self : List[str] ) -> List[str]: '''simple docstring''' return self.pa_type def lowercase__ ( self : Dict , lowerCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Optional[Any] =np.array(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowercase__ ( self : str , lowerCAmelCase_ : dict , lowerCAmelCase_ : List[Any]=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: A__ : Tuple ={} A__ , A__ : int =value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(lowerCAmelCase_ ): A__ : List[str] =PIL.Image.open(lowerCAmelCase_ ) else: A__ : Any =path.split("""::""" )[-1] try: A__ : Optional[Any] =string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["""repo_id"""] A__ : Optional[Any] =token_per_repo_id.get(lowerCAmelCase_ ) except ValueError: A__ : Optional[Any] =None with xopen(lowerCAmelCase_ , """rb""" , use_auth_token=lowerCAmelCase_ ) as f: A__ : Tuple =BytesIO(f.read() ) A__ : List[str] =PIL.Image.open(bytes_ ) else: A__ : Optional[int] =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase__ ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): A__ : str =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) A__ : Optional[Any] =pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A__ : Dict =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) A__ : Any =pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: A__ : Tuple =storage.field("""bytes""" ) else: A__ : Optional[int] =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: A__ : Dict =storage.field("""path""" ) else: A__ : List[str] =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) A__ : Tuple =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): A__ : Optional[Any] =pa.array( [encode_np_array(np.array(lowerCAmelCase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A__ : Tuple =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) A__ : List[Any] =pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : Dict ): with xopen(lowerCAmelCase_ , """rb""" ) as f: A__ : Union[str, Any] =f.read() return bytes_ A__ : List[Any] =pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A__ : Dict =pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) A__ : Dict =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A__ : Any =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( __snake_case : "PIL.Image.Image" ) -> bytes: """simple docstring""" A__ : Dict =BytesIO() if image.format in list_image_compression_formats(): A__ : Tuple =image.format else: A__ : Optional[int] ="""PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__snake_case, format=__snake_case ) return buffer.getvalue() def __lowerCamelCase ( __snake_case : "PIL.Image.Image" ) -> dict: """simple docstring""" if hasattr(__snake_case, """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__snake_case )} def __lowerCamelCase ( __snake_case : np.ndarray ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) A__ : Dict =array.dtype A__ : Dict =dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER A__ : Optional[int] =dtype.kind A__ : List[Any] =dtype.itemsize A__ : Any =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A__ : str =np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A__ : Union[str, Any] =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A__ : int =dtype_byteorder + dtype_kind + str(__snake_case ) A__ : Dict =np.dtype(__snake_case ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) A__ : int =PIL.Image.fromarray(array.astype(__snake_case ) ) return {"path": None, "bytes": image_to_bytes(__snake_case )} def __lowerCamelCase ( __snake_case : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: A__ , A__ : List[Any] =first_non_null_value(__snake_case ) if isinstance(__snake_case, __snake_case ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__snake_case, np.ndarray ): A__ : int =no_op_if_value_is_null(__snake_case ) return [obj_to_image_dict_func(__snake_case ) for obj in objs] elif isinstance(__snake_case, PIL.Image.Image ): A__ : Any =no_op_if_value_is_null(__snake_case ) return [obj_to_image_dict_func(__snake_case ) for obj in objs] else: return objs else: return objs
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
1
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case : Any = logging.getLogger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any]=2, __snake_case : Optional[Any]=3, __snake_case : List[str]=16, __snake_case : int = 10, __snake_case : int = 2 ) -> List[str]: """simple docstring""" def get_dataset(__snake_case : List[Any] ): A__ : Any =torch.randn(batch_size * n_batches, 1 ) return TensorDataset(__snake_case, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) A__ : str =get_dataset(__snake_case ) A__ : Dict =get_dataset(__snake_case ) A__ : int =DataLoader(__snake_case, shuffle=__snake_case, batch_size=__snake_case, num_workers=4 ) A__ : List[str] =DataLoader(__snake_case, shuffle=__snake_case, batch_size=__snake_case, num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict, __snake_case : Optional[int], __snake_case : Tuple, __snake_case : List[Any], __snake_case : Union[str, Any]=None ) -> Any: """simple docstring""" A__ : List[Any] =[] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: A__ , A__ : Optional[Any] =batch A__ : Union[str, Any] =model(__snake_case ) A__ : Optional[int] =torch.nn.functional.mse_loss(__snake_case, __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__() A__ : Tuple =nn.Parameter(torch.randn(1 ) ) A__ : Optional[int] =nn.Parameter(torch.randn(1 ) ) def lowercase__ ( self : str , lowerCAmelCase_ : str ) -> int: '''simple docstring''' return x * self.a + self.b class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : List[Any] =DummyModel() A__ : Any =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Union[str, Any] =dummy_dataloaders() A__ : Any =ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase_ , automatic_checkpoint_naming=lowerCAmelCase_ ) # Train baseline A__ : Union[str, Any] =Accelerator(project_config=lowerCAmelCase_ ) A__ , A__ , A__ , A__ : int =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowercase__ ( self : int ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Union[str, Any] =DummyModel() A__ : Optional[int] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Tuple =dummy_dataloaders() # Train baseline A__ : Any =Accelerator() A__ , A__ , A__ , A__ : str =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial A__ : Tuple =os.path.join(lowerCAmelCase_ , """initial""" ) accelerator.save_state(lowerCAmelCase_ ) ((A__) , (A__)) : Any =model.a.item(), model.b.item() A__ : List[str] =optimizer.state_dict() A__ : Tuple =train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((A__) , (A__)) : int =model.a.item(), model.b.item() A__ : str =optimizer.state_dict() # Train partially set_seed(42 ) A__ : List[Any] =DummyModel() A__ : Any =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Any =dummy_dataloaders() A__ : str =Accelerator() A__ , A__ , A__ , A__ : Dict =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.load_state(lowerCAmelCase_ ) ((A__) , (A__)) : Tuple =model.a.item(), model.b.item() A__ : Optional[int] =optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[Any] =train(2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save everything A__ : Any =os.path.join(lowerCAmelCase_ , """checkpoint""" ) accelerator.save_state(lowerCAmelCase_ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCAmelCase_ ) test_rands += train(1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((A__) , (A__)) : Any =model.a.item(), model.b.item() A__ : str =optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Dict =DummyModel() A__ : Union[str, Any] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : str =dummy_dataloaders() A__ : List[str] =ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ ) # Train baseline A__ : Tuple =Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) A__ , A__ , A__ , A__ : List[Any] =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial accelerator.save_state() ((A__) , (A__)) : List[str] =model.a.item(), model.b.item() A__ : str =optimizer.state_dict() A__ : Dict =train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((A__) , (A__)) : Optional[Any] =model.a.item(), model.b.item() A__ : Union[str, Any] =optimizer.state_dict() # Train partially set_seed(42 ) A__ : Optional[Any] =DummyModel() A__ : Union[str, Any] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : int =dummy_dataloaders() A__ : Dict =ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase_ ) A__ : int =Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) A__ , A__ , A__ , A__ : Optional[int] =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.load_state(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_0""" ) ) ((A__) , (A__)) : Optional[int] =model.a.item(), model.b.item() A__ : Union[str, Any] =optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =train(2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((A__) , (A__)) : Dict =model.a.item(), model.b.item() A__ : Tuple =optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : List[str] =torch.tensor([1, 2, 3] ) A__ : Dict =torch.tensor([2, 3, 4] ) A__ : Any =DummyModel() A__ : str =torch.optim.Adam(net.parameters() ) A__ : int =Accelerator() with self.assertRaises(lowerCAmelCase_ ) as ve: accelerator.register_for_checkpointing(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[Any] =str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Union[str, Any] =DummyModel() A__ : int =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Dict =torch.optim.lr_scheduler.StepLR(lowerCAmelCase_ , step_size=1 , gamma=0.99 ) A__ , A__ : Optional[int] =dummy_dataloaders() A__ : Dict =ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ ) # Train baseline A__ : Any =Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) A__ , A__ , A__ , A__ , A__ : List[Any] =accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial accelerator.save_state() A__ : str =scheduler.state_dict() train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(lowerCAmelCase_ , scheduler.state_dict() ) def lowercase__ ( self : str ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] =DummyModel() A__ : Union[str, Any] =ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ , total_limit=2 ) # Train baseline A__ : Tuple =Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) A__ : str =accelerator.prepare(lowerCAmelCase_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : int =["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case : List[str] = '/tmp/accelerate/state_checkpointing' __snake_case : Optional[int] = DummyModel() __snake_case : int = torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case : Any = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __snake_case , __snake_case : List[str] = dummy_dataloaders() __snake_case : List[str] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case : Any = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case : Optional[int] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case : Any = group['params'][0].device break assert param_device.type == accelerator.device.type __snake_case : Any = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __snake_case : List[Any] = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __snake_case : Union[str, Any] = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
687
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCamelCase ( unittest.TestCase , lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' A__ : List[str] =load_tool("""text-classification""" ) self.tool.setup() A__ : List[Any] =load_tool("""text-classification""" , remote=lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Union[str, Any] =self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" ) def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ : List[Any] =self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" ) def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : Union[str, Any] =self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" )
687
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets __snake_case : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' __snake_case : Optional[int] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' __snake_case : Optional[Any] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Any ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def lowercase__ ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]="uniform_average" , lowerCAmelCase_ : Optional[int]=True ) -> List[str]: '''simple docstring''' A__ : Optional[int] =mean_squared_error( lowerCAmelCase_ , lowerCAmelCase_ , sample_weight=lowerCAmelCase_ , multioutput=lowerCAmelCase_ , squared=lowerCAmelCase_ ) return {"mse": mse}
687
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
1
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 1 @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 10_00 , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None ) -> Any: '''simple docstring''' # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase_ ) # standard deviation of the initial noise distribution A__ : Tuple =1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. A__ : str =4 # running values A__ : Optional[Any] =[] def lowercase__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =num_inference_steps A__ : Optional[int] =torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] A__ : Optional[Any] =torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: A__ : Dict =torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: A__ : Union[str, Any] =torch.sin(steps * math.pi / 2 ) ** 2 A__ : Any =(1.0 - self.betas**2) ** 0.5 A__ : int =(torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] A__ : Dict =timesteps.to(lowerCAmelCase_ ) A__ : Dict =[] def lowercase__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) A__ : int =(self.timesteps == timestep).nonzero().item() A__ : Tuple =timestep_index + 1 A__ : Tuple =sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase_ ) if len(self.ets ) == 1: A__ : Any =self.ets[-1] elif len(self.ets ) == 2: A__ : Union[str, Any] =(3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: A__ : str =(23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: A__ : Dict =(1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) A__ : Optional[int] =self._get_prev_sample(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' A__ : List[str] =self.alphas[timestep_index] A__ : Union[str, Any] =self.betas[timestep_index] A__ : Union[str, Any] =self.alphas[prev_timestep_index] A__ : Tuple =self.betas[prev_timestep_index] A__ : Dict =(sample - sigma * ets) / max(lowerCAmelCase_ , 1e-8 ) A__ : Any =next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ) -> Optional[int]: '''simple docstring''' return self.config.num_train_timesteps
687
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
1
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 100 ) -> int: """simple docstring""" A__ : Optional[int] =set() A__ : List[Any] =0 A__ : Any =n + 1 # maximum limit for a in range(2, __snake_case ): for b in range(2, __snake_case ): A__ : Dict =a**b # calculates the current power collect_powers.add(__snake_case ) # adds the result to the set return len(__snake_case ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
687
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
1
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : int = 6 ) -> None: '''simple docstring''' A__ : Node | None =None A__ : Node | None =None self.create_linked_list(lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : int ) -> None: '''simple docstring''' A__ : Dict =Node() A__ : str =current_node A__ : Tuple =current_node A__ : Dict =current_node for _ in range(1 , lowerCAmelCase_ ): A__ : Union[str, Any] =Node() A__ : Optional[int] =current_node A__ : Tuple =previous_node A__ : Optional[int] =current_node A__ : Any =self.front A__ : Union[str, Any] =previous_node def lowercase__ ( self : Union[str, Any] ) -> bool: '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : List[str] ) -> Any | None: '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : Any , lowerCAmelCase_ : Any ) -> None: '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): A__ : List[Any] =self.rear.next if self.rear: A__ : Optional[Any] =data def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: A__ : int =self.front.data A__ : Any =None return data A__ : Tuple =self.front A__ : str =old_front.next A__ : str =old_front.data A__ : List[Any] =None return data def lowercase__ ( self : List[Any] ) -> None: '''simple docstring''' if self.is_empty(): raise Exception("""Empty Queue""" ) def lowercase__ ( self : Tuple ) -> None: '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] ) -> None: '''simple docstring''' A__ : Any | None =None A__ : Node | None =None A__ : Node | None =None if __name__ == "__main__": import doctest doctest.testmod()
687
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
1