code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( _snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 1_00 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , ): '''simple docstring''' if audio_length_in_s is None: snake_case: List[str] = self.unet.config.sample_size / self.unet.config.sample_rate snake_case: Dict = audio_length_in_s * self.unet.config.sample_rate snake_case: List[str] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) snake_case: Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) if sample_size % down_scale_factor != 0: snake_case: List[str] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) snake_case: Dict = int(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = next(iter(self.unet.parameters() ) ).dtype snake_case: Tuple = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case: Union[str, Any] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=audio.device ) snake_case: Tuple = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case: Optional[Any] = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # 2. compute previous image: x_t -> t_t-1 snake_case: Any = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample snake_case: List[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case: Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE__ )
713
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __A : int , __A : str ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCAmelCase_ ( __A : Dict , __A : List[str] , __A : Tuple ): '''simple docstring''' snake_case: Tuple = tmp_path / 'cache' snake_case: str = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case: Dict = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCAmelCase_ ( __A : Union[str, Any] , __A : List[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: str = tmp_path / 'cache' snake_case: Tuple = {'text': 'string'} snake_case: List[str] = features.copy() if features else default_expected_features snake_case: Dict = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case: Optional[Any] = TextDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCAmelCase_ ( __A : int , __A : Optional[int] , __A : Optional[int] ): '''simple docstring''' snake_case: int = tmp_path / 'cache' snake_case: Tuple = {'text': 'string'} snake_case: int = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCAmelCase_ ( __A : Optional[int] , __A : Optional[Any] , __A : Tuple ): '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case: Any = text_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case: Any = [text_path] snake_case: str = tmp_path / 'cache' snake_case: int = {'text': 'string'} snake_case: Union[str, Any] = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : int=("train",) ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: snake_case: Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCAmelCase_ ( __A : Optional[int] , __A : Any , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = tmp_path / 'cache' snake_case: Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case: Union[str, Any] = TextDatasetReader({'train': text_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCAmelCase_ ( __A : str , __A : Union[str, Any] , __A : Tuple ): '''simple docstring''' snake_case: Optional[int] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case: Dict = {'text': 'string'} snake_case: Union[str, Any] = features.copy() if features else default_expected_features snake_case: Union[str, Any] = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case: List[Any] = TextDatasetReader({'train': text_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCAmelCase_ ( __A : Dict , __A : List[Any] , __A : Any ): '''simple docstring''' if split: snake_case: Optional[int] = {split: text_path} else: snake_case: Any = 'train' snake_case: str = {'train': text_path, 'test': text_path} snake_case: Optional[int] = tmp_path / 'cache' snake_case: Tuple = {'text': 'string'} snake_case: Tuple = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
714
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
0
'''simple docstring''' import math import os import sys def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case: Dict = """""" try: with open(__A , 'rb' ) as binary_file: snake_case: List[Any] = binary_file.read() for dat in data: snake_case: Optional[int] = f"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] , __A : Optional[int] , __A : List[str] ): '''simple docstring''' lexicon.pop(__A ) snake_case: str = last_match_id if math.loga(__A ).is_integer(): for curr_key in lexicon: snake_case: Any = """0""" + lexicon[curr_key] snake_case: str = bin(__A )[2:] def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: List[str] = {"""0""": """0""", """1""": """1"""} snake_case: List[Any] = """""", """""" snake_case: Dict = len(__A ) for i in range(len(__A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case: Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__A , __A , __A , __A ) index += 1 snake_case: Optional[int] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": snake_case: Tuple = lexicon[curr_string] result += last_match_id return result def lowerCAmelCase_ ( __A : int , __A : Optional[Any] ): '''simple docstring''' snake_case: int = os.path.getsize(__A ) snake_case: List[Any] = bin(__A )[2:] snake_case: Optional[int] = len(__A ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Dict ): '''simple docstring''' snake_case: int = 8 try: with open(__A , 'wb' ) as opened_file: snake_case: Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__A ) , __A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCAmelCase_ ( __A : int , __A : int ): '''simple docstring''' snake_case: Optional[Any] = read_file_binary(__A ) snake_case: List[Any] = compress_data(__A ) snake_case: List[str] = add_file_length(__A , __A ) write_file_binary(__A , __A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
715
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE ( a__ , a__ ): '''simple docstring''' __UpperCamelCase = "swin" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**_A ) snake_case: str = image_size snake_case: List[str] = patch_size snake_case: str = num_channels snake_case: Optional[Any] = embed_dim snake_case: Optional[int] = depths snake_case: Any = len(_A ) snake_case: Union[str, Any] = num_heads snake_case: Dict = window_size snake_case: Dict = mlp_ratio snake_case: Tuple = qkv_bias snake_case: Any = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: int = drop_path_rate snake_case: int = hidden_act snake_case: Tuple = use_absolute_embeddings snake_case: List[Any] = layer_norm_eps snake_case: Optional[Any] = initializer_range snake_case: Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Union[str, Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) snake_case: Optional[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )] snake_case: Tuple = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE ( a__ ): '''simple docstring''' __UpperCamelCase = version.parse("1.11" ) @property def _UpperCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return 1E-4
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
import argparse from collections import defaultdict import yaml __UpperCAmelCase = "docs/source/en/_toctree.yml" def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: Union[str, Any] = defaultdict(_lowerCamelCase ) snake_case: Dict = [] snake_case: List[Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_lowerCamelCase ) snake_case: str = new_doc_list snake_case: Optional[int] = [key for key, value in counts.items() if value > 1] snake_case: Optional[int] = [] for duplicate_key in duplicates: snake_case: Optional[Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) snake_case: Optional[int] = sorted(_lowerCamelCase , key=lambda __A : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCamelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_lowerCamelCase ) # Sort return overview_doc def lowerCAmelCase_ ( __A : str=False ): '''simple docstring''' with open(_lowerCamelCase , encoding='utf-8' ) as f: snake_case: List[Any] = yaml.safe_load(f.read() ) # Get to the API doc snake_case: Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case: List[Any] = content[api_idx]["sections"] # Then to the model doc snake_case: List[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 snake_case: Tuple = api_doc[scheduler_idx]["sections"] snake_case: int = clean_doc_toc(_lowerCamelCase ) snake_case: List[Any] = False if new_scheduler_doc != scheduler_doc: snake_case: List[Any] = True if overwrite: snake_case: Tuple = new_scheduler_doc if diff: if overwrite: snake_case: Optional[int] = api_doc with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowerCAmelCase_ ( __A : Union[str, Any]=False ): '''simple docstring''' with open(_lowerCamelCase , encoding='utf-8' ) as f: snake_case: Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc snake_case: Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case: Any = content[api_idx]["sections"] # Then to the model doc snake_case: Any = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 snake_case: Any = False snake_case: int = api_doc[pipeline_idx]["sections"] snake_case: Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: snake_case: str = pipeline_doc["section"] snake_case: Optional[int] = clean_doc_toc(_lowerCamelCase ) if overwrite: snake_case: Any = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCamelCase ) # sort overall pipeline doc snake_case: Union[str, Any] = clean_doc_toc(_lowerCamelCase ) if new_pipeline_docs != pipeline_docs: snake_case: Tuple = True if overwrite: snake_case: Union[str, Any] = new_pipeline_docs if diff: if overwrite: snake_case: int = api_doc with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets __UpperCAmelCase = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" __UpperCAmelCase = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" __UpperCAmelCase = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="binary" , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) __UpperCamelCase = Features({"audio": Audio()} ) __UpperCamelCase = Features({"transcription": Value("string" )} ) __UpperCamelCase = "audio" __UpperCamelCase = "transcription" def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , __UpperCamelCase ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case: List[str] = copy.deepcopy(self ) snake_case: str = self.input_schema.copy() snake_case: int = features[self.audio_column] snake_case: List[str] = input_schema return task_template @property def _UpperCamelCase ( self ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
719
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = graph # mapping node to its parent in resulting breadth first tree snake_case: str = {} snake_case: Optional[int] = source_vertex def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = {self.source_vertex} snake_case: Tuple = None snake_case: Optional[Any] = [self.source_vertex] # first in first out queue while queue: snake_case: List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case_ ) snake_case: str = vertex queue.append(snake_case_ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case: Union[str, Any] = self.parent.get(snake_case_ ) if target_vertex_parent is None: snake_case: Union[str, Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case_ ) return self.shortest_path(snake_case_ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
720
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en''' __UpperCAmelCase = '''.''' def lowerCAmelCase_ ( __A : Any , __A : List[str] , __A : Optional[int] ): '''simple docstring''' with open(__UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case: int = f.readlines() # Find the start prompt. snake_case: int = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 snake_case: Union[str, Any] = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __UpperCAmelCase = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. __UpperCAmelCase = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __UpperCAmelCase = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __UpperCAmelCase = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: int = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , __UpperCamelCase ) return [m.group(0 ) for m in matches] def lowerCAmelCase_ ( __A : int , __A : int ): '''simple docstring''' snake_case: Dict = 2 if text == """✅""" or text == """❌""" else len(__UpperCamelCase ) snake_case: Tuple = (width - text_length) // 2 snake_case: Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case: Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } snake_case: List[str] = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. snake_case: Dict = collections.defaultdict(__UpperCamelCase ) snake_case: List[Any] = collections.defaultdict(__UpperCamelCase ) snake_case: str = collections.defaultdict(__UpperCamelCase ) snake_case: str = collections.defaultdict(__UpperCamelCase ) snake_case: Dict = collections.defaultdict(__UpperCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(__UpperCamelCase ): snake_case: Union[str, Any] = None if attr_name.endswith('Tokenizer' ): snake_case: Dict = slow_tokenizers snake_case: Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): snake_case: Optional[Any] = fast_tokenizers snake_case: str = attr_name[:-13] elif _re_tf_models.match(__UpperCamelCase ) is not None: snake_case: List[Any] = tf_models snake_case: Tuple = _re_tf_models.match(__UpperCamelCase ).groups()[0] elif _re_flax_models.match(__UpperCamelCase ) is not None: snake_case: Dict = flax_models snake_case: Tuple = _re_flax_models.match(__UpperCamelCase ).groups()[0] elif _re_pt_models.match(__UpperCamelCase ) is not None: snake_case: List[Any] = pt_models snake_case: Any = _re_pt_models.match(__UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(__UpperCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): snake_case: Any = True break # Try again after removing the last word in the name snake_case: Tuple = """""".join(camel_case_split(__UpperCamelCase )[:-1] ) # Let's build that table! snake_case: Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) snake_case: str = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). snake_case: str = [len(__UpperCamelCase ) + 2 for c in columns] snake_case: Dict = max([len(__UpperCamelCase ) for name in model_names] ) + 2 # Build the table per se snake_case: List[Any] = """|""" + """|""".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for c, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" snake_case: List[Any] = {True: """✅""", False: """❌"""} for name in model_names: snake_case: Union[str, Any] = model_name_to_prefix[name] snake_case: Optional[int] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for l, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + "|\n" return table def lowerCAmelCase_ ( __A : Any=False ): '''simple docstring''' snake_case: Optional[int] = _find_text_in_file( filename=os.path.join(__UpperCamelCase , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) snake_case: int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__UpperCamelCase , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase = parser.parse_args() check_model_table(args.fix_and_overwrite)
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: int = 3_84 if "tiny" in model_name: snake_case: List[Any] = [3, 3, 9, 3] snake_case: Optional[int] = [96, 1_92, 3_84, 7_68] if "small" in model_name: snake_case: Optional[Any] = [3, 3, 27, 3] snake_case: int = [96, 1_92, 3_84, 7_68] if "base" in model_name: snake_case: List[str] = [3, 3, 27, 3] snake_case: List[Any] = [1_28, 2_56, 5_12, 10_24] snake_case: List[Any] = 5_12 if "large" in model_name: snake_case: int = [3, 3, 27, 3] snake_case: Union[str, Any] = [1_92, 3_84, 7_68, 15_36] snake_case: List[Any] = 7_68 if "xlarge" in model_name: snake_case: str = [3, 3, 27, 3] snake_case: int = [2_56, 5_12, 10_24, 20_48] snake_case: int = 10_24 # set label information snake_case: Union[str, Any] = 1_50 snake_case: str = 'huggingface/label-files' snake_case: Tuple = 'ade20k-id2label.json' snake_case: List[str] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) snake_case: str = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case: Optional[Any] = {v: k for k, v in idalabel.items()} snake_case: str = ConvNextConfig( depths=snake_case__ , hidden_sizes=snake_case__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) snake_case: str = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: Tuple = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( __A : str , __A : Optional[int] , __A : Any ): '''simple docstring''' snake_case: Any = dct.pop(snake_case__ ) snake_case: Dict = val def lowerCAmelCase_ ( __A : Any , __A : str , __A : Tuple ): '''simple docstring''' snake_case: List[str] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } snake_case: int = model_name_to_url[model_name] snake_case: str = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' )['state_dict'] snake_case: Tuple = get_upernet_config(snake_case__ ) snake_case: Dict = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case: Tuple = state_dict.pop(snake_case__ ) if "bn" in key: snake_case: List[str] = key.replace('bn' , 'batch_norm' ) snake_case: Dict = val # rename keys snake_case: Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image snake_case: str = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' snake_case: Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) snake_case: Any = SegformerImageProcessor() snake_case: Union[str, Any] = processor(snake_case__ , return_tensors='pt' ).pixel_values with torch.no_grad(): snake_case: Tuple = model(snake_case__ ) if model_name == "upernet-convnext-tiny": snake_case: Dict = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": snake_case: int = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": snake_case: str = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": snake_case: str = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": snake_case: List[str] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[F'upernet-convnext-{size}' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 7_68 , ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE__ ) ) snake_case: List[str] = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[Any] = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) ) snake_case: Optional[Any] = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) ) return self def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = (embeds * self.std) + self.mean return embeds
701
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Optional[int] , __A : Dict , __A : List[Any] , __A : Union[str, Any] , __A : List[Any] , __A : List[str] ): '''simple docstring''' for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case: List[str] = 'lm_head' snake_case: Any = getattr(__A , __A ) if weight_type is not None: snake_case: Tuple = getattr(__A , __A ).shape else: snake_case: Dict = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Union[str, Any] = value elif weight_type == "weight_g": snake_case: int = value elif weight_type == "weight_v": snake_case: Optional[Any] = value elif weight_type == "bias": snake_case: str = value else: snake_case: Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : str , __A : Dict , __A : Union[str, Any] ): '''simple docstring''' snake_case: Dict = [] snake_case: Tuple = fairseq_model.state_dict() snake_case: Optional[Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case: int = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True else: for key, mapped_key in MAPPING.items(): snake_case: Any = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: Tuple = True if "*" in mapped_key: snake_case: Tuple = name.split(__A )[0].split('.' )[-2] snake_case: str = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Any = 'weight_g' elif "weight_v" in name: snake_case: List[Any] = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case: Union[str, Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A : Union[str, Any] , __A : List[Any] , __A : Union[str, Any] , __A : Optional[int] , __A : int ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: List[Any] = name.split('.' ) snake_case: Tuple = int(items[0] ) snake_case: Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def lowerCAmelCase_ ( __A : str , __A : List[str] , __A : Any=None , __A : Any=None , __A : Dict=True ): '''simple docstring''' if config_path is not None: snake_case: List[str] = UniSpeechConfig.from_pretrained(__A ) else: snake_case: Union[str, Any] = UniSpeechConfig() if is_finetuned: if dict_path: snake_case: str = Dictionary.load_from_json(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case: Tuple = target_dict.pad_index snake_case: int = target_dict.bos_index snake_case: Any = target_dict.eos_index snake_case: str = len(target_dict.symbols ) snake_case: Optional[Any] = os.path.join(__A , 'vocab.json' ) if not os.path.isdir(__A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__A ) ) return os.makedirs(__A , exist_ok=__A ) snake_case: str = target_dict.indices # fairseq has the <pad> and <s> switched snake_case: Union[str, Any] = 42 snake_case: Union[str, Any] = 43 with open(__A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__A , __A ) snake_case: Union[str, Any] = WavaVecaPhonemeCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__A , ) snake_case: Union[str, Any] = True if config.feat_extract_norm == 'layer' else False snake_case: Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case: Tuple = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) snake_case: Optional[Any] = UniSpeechForCTC(__A ) else: snake_case: str = UniSpeechForPreTraining(__A ) if is_finetuned: snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case: List[Any] = model[0].eval() recursively_load_weights(__A , __A , __A ) hf_unispeech.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
702
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
703
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( __A : Dict="ro" , __A : str="en" , __A : List[Any]="wmt16" , __A : str=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) snake_case: Any = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) snake_case: str = datasets.load_dataset(_lowerCamelCase , _lowerCamelCase ) if save_dir is None: snake_case: str = f"""{dataset}-{pair}""" snake_case: List[Any] = Path(_lowerCamelCase ) save_dir.mkdir(exist_ok=_lowerCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets snake_case: Union[str, Any] = "val" if split == "validation" else split snake_case: Optional[int] = save_dir.joinpath(f"""{fn}.source""" ) snake_case: Tuple = save_dir.joinpath(f"""{fn}.target""" ) snake_case: Optional[Any] = src_path.open('w+' ) snake_case: str = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case: Optional[Any] = x["translation"] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
704
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = IFInpaintingPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} def _UpperCamelCase ( self ): '''simple docstring''' return self._get_dummy_components() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' if str(_a ).startswith('mps' ): snake_case: Optional[Any] = torch.manual_seed(_a ) else: snake_case: Tuple = torch.Generator(device=_a ).manual_seed(_a ) snake_case: Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case: str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _UpperCamelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_save_load_local() def _UpperCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
705
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __UpperCAmelCase = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __UpperCAmelCase = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __UpperCAmelCase = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __UpperCAmelCase = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __UpperCAmelCase = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = DPRContextEncoderTokenizer class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = DPRQuestionEncoderTokenizer __UpperCAmelCase = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __UpperCAmelCase = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __UpperCAmelCase = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__a ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors=a_ , return_attention_mask=a_ , **a_ , ) elif titles is None or texts is None: snake_case: Optional[int] = titles if texts is None else texts return super().__call__( a_ , a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors=a_ , return_attention_mask=a_ , **a_ , ) snake_case: List[Any] = titles if not isinstance(a_ , a_ ) else [titles] snake_case: Optional[Any] = texts if not isinstance(a_ , a_ ) else [texts] snake_case: List[Any] = len(a_ ) snake_case: Union[str, Any] = questions if not isinstance(a_ , a_ ) else [questions] * n_passages assert len(a_ ) == len( a_ ), F"""There should be as many titles than texts but got {len(a_ )} titles and {len(a_ )} texts.""" snake_case: int = super().__call__(a_ , a_ , padding=a_ , truncation=a_ )["""input_ids"""] snake_case: List[Any] = super().__call__(a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ )["""input_ids"""] snake_case: List[str] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(a_ , a_ ) ] } if return_attention_mask is not False: snake_case: int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case: str = attention_mask return self.pad(a_ , padding=a_ , max_length=a_ , return_tensors=a_ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 16 , SCREAMING_SNAKE_CASE__ = 64 , SCREAMING_SNAKE_CASE__ = 4 , ): '''simple docstring''' snake_case: Optional[Any] = reader_input["""input_ids"""] snake_case: Optional[int] = reader_output[:3] snake_case: Union[str, Any] = len(a_ ) snake_case: Any = sorted(range(a_ ) , reverse=a_ , key=relevance_logits.__getitem__ ) snake_case: List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case: int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case: Any = sequence_ids.index(self.pad_token_id ) else: snake_case: Optional[Any] = len(a_ ) snake_case: List[str] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=a_ , top_spans=a_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=a_ , start_index=a_ , end_index=a_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(a_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: int = [] for start_index, start_score in enumerate(a_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case: Tuple = sorted(a_ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=a_ ) snake_case: Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case: int = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(a_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__a ) class SCREAMING_SNAKE_CASE ( __a , __a ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = DPRReaderTokenizer
706
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' def wrapper(*__A : List[Any] , **__A : Optional[int] ): snake_case: List[Any] = timeit.default_timer() snake_case: Optional[Any] = func(*__snake_case , **__snake_case ) snake_case: Dict = timeit.default_timer() - starttime return delta snake_case: Union[str, Any] = func.__name__ return wrapper def lowerCAmelCase_ ( __A : Tuple , __A : Optional[int]=1_00 , __A : Optional[int]=None ): '''simple docstring''' snake_case: int = [] snake_case: Optional[int] = seq_shapes or {} for i in range(__snake_case ): snake_case: int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case , _ArrayXD ): snake_case: Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case , datasets.Value ): if v.dtype == "string": snake_case: List[str] = 'The small grey turtle was surprisingly fast when challenged.' else: snake_case: Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case , datasets.Sequence ): while isinstance(__snake_case , datasets.Sequence ): snake_case: Optional[int] = v.feature snake_case: Dict = seq_shapes[k] snake_case: Optional[int] = np.random.rand(*__snake_case ).astype(v.dtype ) snake_case: str = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase_ ( __A : Dict , __A : List[str] , __A : int=1_00 , __A : Tuple=None ): '''simple docstring''' snake_case: Optional[int] = generate_examples(__snake_case , num_examples=__snake_case , seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case , path=__snake_case ) as writer: for key, record in dummy_data: snake_case: Tuple = features.encode_example(__snake_case ) writer.write(__snake_case ) snake_case , snake_case: int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) snake_case: str = datasets.Dataset.from_file(filename=__snake_case , info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
707
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
0
import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.2 , SCREAMING_SNAKE_CASE__=0.2 ): '''simple docstring''' snake_case: Optional[int] = bp_numa snake_case: int = bp_numa snake_case: Optional[int] = bp_numa snake_case: List[str] = conva_get[:2] snake_case: str = conva_get[2] snake_case: Tuple = size_pa snake_case: Union[str, Any] = rate_w snake_case: Optional[Any] = rate_t snake_case: str = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] snake_case: Dict = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case: List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case: Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 snake_case: Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 snake_case: List[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowercase_ , 'wb' ) as f: pickle.dump(lowercase_ , lowercase_ ) print(F"""Model saved: {save_path}""" ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(lowercase_ , 'rb' ) as f: snake_case: List[Any] = pickle.load(lowercase_ ) # noqa: S301 snake_case: Any = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) snake_case: Tuple = model_dic.get('size_pooling1' ) snake_case: Tuple = model_dic.get('num_bp1' ) snake_case: Dict = model_dic.get('num_bp2' ) snake_case: Tuple = model_dic.get('num_bp3' ) snake_case: List[str] = model_dic.get('rate_weight' ) snake_case: Optional[int] = model_dic.get('rate_thre' ) # create model instance snake_case: List[str] = CNN(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # modify model parameter snake_case: int = model_dic.get('w_conv1' ) snake_case: str = model_dic.get('wkj' ) snake_case: List[Any] = model_dic.get('vji' ) snake_case: Union[str, Any] = model_dic.get('thre_conv1' ) snake_case: Union[str, Any] = model_dic.get('thre_bp2' ) snake_case: List[str] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return round(lowercase_ , 3 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = convs[0] snake_case: Tuple = convs[1] snake_case: Tuple = np.shape(lowercase_ )[0] # get the data slice of original image data, data_focus snake_case: Dict = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): snake_case: Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase_ ) # calculate the feature map of every single kernel, and saved as list of matrix snake_case: List[Any] = [] snake_case: int = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase_ ): snake_case: Any = [] for i_focus in range(len(lowercase_ ) ): snake_case: List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase_ ) ) snake_case: Optional[int] = np.asmatrix(lowercase_ ).reshape( lowercase_ , lowercase_ ) data_featuremap.append(lowercase_ ) # expanding the data slice to One dimenssion snake_case: Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase_ ) ) snake_case: Tuple = np.asarray(lowercase_ ) return focus_list, data_featuremap def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="average_pool" ): '''simple docstring''' snake_case: int = len(featuremaps[0] ) snake_case: Optional[int] = int(size_map / size_pooling ) snake_case: Dict = [] for i_map in range(len(lowercase_ ) ): snake_case: Any = featuremaps[i_map] snake_case: List[Any] = [] for i_focus in range(0 , lowercase_ , lowercase_ ): for j_focus in range(0 , lowercase_ , lowercase_ ): snake_case: List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase_ ) ) snake_case: int = np.asmatrix(lowercase_ ).reshape(lowercase_ , lowercase_ ) featuremap_pooled.append(lowercase_ ) return featuremap_pooled def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = [] for i in range(len(lowercase_ ) ): snake_case: List[str] = np.shape(data[i] ) snake_case: Optional[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) snake_case: int = data_listed.getA().tolist()[0] data_expanded.extend(lowercase_ ) snake_case: Union[str, Any] = np.asarray(lowercase_ ) return data_expanded def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = np.asarray(lowercase_ ) snake_case: Optional[Any] = np.shape(lowercase_ ) snake_case: Tuple = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = [] snake_case: List[str] = 0 for i_map in range(lowercase_ ): snake_case: Any = np.ones((size_map, size_map) ) for i in range(0 , lowercase_ , lowercase_ ): for j in range(0 , lowercase_ , lowercase_ ): snake_case: List[str] = pd_pool[ i_pool ] snake_case: Tuple = i_pool + 1 snake_case: Dict = np.multiply( lowercase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase_ ) return pd_all def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=bool ): '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(lowercase_ )) ) print((' - - Shape: Teach_Data ', np.shape(lowercase_ )) ) snake_case: Tuple = 0 snake_case: Optional[Any] = [] snake_case: str = 1_00_00 while rp < n_repeat and mse >= error_accuracy: snake_case: Any = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(lowercase_ ) ): # print('------------Learning Image: %d--------------'%p) snake_case: Any = np.asmatrix(datas_train[p] ) snake_case: Optional[int] = np.asarray(datas_teach[p] ) snake_case: List[Any] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case: List[Any] = self.pooling(lowercase_ , self.size_poolinga ) snake_case: List[str] = np.shape(lowercase_ ) snake_case: Dict = self._expand(lowercase_ ) snake_case: Tuple = data_bp_input snake_case: Union[str, Any] = np.dot(lowercase_ , self.vji.T ) - self.thre_bpa snake_case: Tuple = self.sig(lowercase_ ) snake_case: Tuple = np.dot(lowercase_ , self.wkj.T ) - self.thre_bpa snake_case: Tuple = self.sig(lowercase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- snake_case: int = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase_ , (1 - bp_outa) ) ) snake_case: str = np.multiply( np.dot(lowercase_ , self.wkj ) , np.multiply(lowercase_ , (1 - bp_outa) ) ) snake_case: List[Any] = np.dot(lowercase_ , self.vji ) snake_case: Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) snake_case: Tuple = pd_conva_pooled.T.getA().tolist() snake_case: Any = self._calculate_gradient_from_pool( lowercase_ , lowercase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): snake_case: Dict = self._expand_mat(pd_conva_all[k_conv] ) snake_case: Union[str, Any] = self.rate_weight * np.dot(lowercase_ , lowercase_ ) snake_case: str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) snake_case: Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer snake_case: Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight snake_case: int = self.vji + pd_j_all.T * bp_outa * self.rate_weight snake_case: List[Any] = self.thre_bpa - pd_k_all * self.rate_thre snake_case: Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image snake_case: Any = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) snake_case: Dict = rp + 1 snake_case: Any = error_count / patterns all_mse.append(lowercase_ ) def draw_error(): snake_case: str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase_ , '+-' ) plt.plot(lowercase_ , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(lowercase_ , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(lowercase_ )) ) for p in range(len(lowercase_ ) ): snake_case: Any = np.asmatrix(datas_test[p] ) snake_case: Any = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case: List[str] = self.pooling(lowercase_ , self.size_poolinga ) snake_case: List[Any] = self._expand(lowercase_ ) snake_case: str = data_bp_input snake_case: int = bp_outa * self.vji.T - self.thre_bpa snake_case: Union[str, Any] = self.sig(lowercase_ ) snake_case: Tuple = bp_outa * self.wkj.T - self.thre_bpa snake_case: Any = self.sig(lowercase_ ) produce_out.extend(bp_outa.getA().tolist() ) snake_case: List[Any] = [list(map(self.do_round , lowercase_ ) ) for each in produce_out] return np.asarray(lowercase_ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = np.asmatrix(lowercase_ ) snake_case: Optional[int] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case: Dict = self.pooling(lowercase_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( __A : list ): '''simple docstring''' if len(_lowercase ) == 0: return [] snake_case: Optional[Any] = min(_lowercase ), max(_lowercase ) snake_case: Union[str, Any] = int(max_value - min_value ) + 1 snake_case: list[list] = [[] for _ in range(_lowercase )] for i in my_list: buckets[int(i - min_value )].append(_lowercase ) return [v for bucket in buckets for v in sorted(_lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
709
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCAmelCase_ ( __A : Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return x.sum() def lowerCAmelCase_ ( __A : Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = {} snake_case: Optional[Any] = [] snake_case: Union[str, Any] = 1 snake_case: Any = [1, 2] snake_case: int = {'a': 1, 'b': 2} snake_case: Dict = {'a': [1, 2], 'b': [3, 4]} snake_case: int = {'a': {'1': 1}, 'b': 2} snake_case: str = {'a': 1, 'b': 2, 'c': 3, 'd': 4} snake_case: List[str] = {} snake_case: Optional[Any] = [] snake_case: str = 2 snake_case: Union[str, Any] = [2, 3] snake_case: Optional[int] = {'a': 2, 'b': 3} snake_case: List[Any] = {'a': [2, 3], 'b': [4, 5]} snake_case: Optional[Any] = {'a': {'1': 2}, 'b': 3} snake_case: List[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) snake_case: Optional[Any] = 2 self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) snake_case: int = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} snake_case: int = {'a': 2, 'b': 0, 'c': 2} snake_case: Optional[Any] = { 'a': np.eye(2 ).astype(__lowerCAmelCase ), 'b': np.zeros(3 ).astype(__lowerCAmelCase ), 'c': np.ones(2 ).astype(__lowerCAmelCase ), } self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase , num_proc=__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__lowerCAmelCase , __lowerCAmelCase , map_numpy=__lowerCAmelCase , num_proc=__lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda SCREAMING_SNAKE_CASE__ : x + 1 , __lowerCAmelCase , num_proc=__lowerCAmelCase ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = {'a': 1, 'b': 2} snake_case: Union[str, Any] = {'a': 3, 'b': 4} snake_case: Optional[Any] = {'a': 5, 'b': 6} snake_case: Optional[int] = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) , __lowerCAmelCase ) def _UpperCamelCase ( self ): '''simple docstring''' class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = "bar" snake_case: str = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(__lowerCAmelCase , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCAmelCase_ ( __A : Any , __A : str , __A : str ): '''simple docstring''' with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: snake_case: Union[str, Any] = {f"""{i}""": i for i in range(UpperCAmelCase__ )} snake_case: str = map_nested(lambda __A : x + 10 , UpperCAmelCase__ , num_proc=UpperCAmelCase__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' @require_tf def _UpperCamelCase ( self ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers snake_case: Optional[Any] = layers.Dense(2 ) def gen_random_output(): snake_case: List[Any] = tf.random.uniform((1, 3) ) return model(__lowerCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=__lowerCAmelCase ): snake_case: Tuple = gen_random_output() with temp_seed(42 , set_tensorflow=__lowerCAmelCase ): snake_case: List[Any] = gen_random_output() snake_case: Optional[Any] = gen_random_output() np.testing.assert_equal(__lowerCAmelCase , __lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' import torch def gen_random_output(): snake_case: Optional[int] = torch.nn.Linear(3 , 2 ) snake_case: Dict = torch.rand(1 , 3 ) return model(__lowerCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=__lowerCAmelCase ): snake_case: Tuple = gen_random_output() with temp_seed(42 , set_pytorch=__lowerCAmelCase ): snake_case: int = gen_random_output() snake_case: Optional[int] = gen_random_output() np.testing.assert_equal(__lowerCAmelCase , __lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _UpperCamelCase ( self ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): snake_case: Tuple = gen_random_output() with temp_seed(42 ): snake_case: Optional[int] = gen_random_output() snake_case: Any = gen_random_output() np.testing.assert_equal(__lowerCAmelCase , __lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: List[Any] = NestedDataStructure(UpperCAmelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def lowerCAmelCase_ ( __A : Tuple , __A : Any ): '''simple docstring''' snake_case: Tuple = NestedDataStructure(UpperCAmelCase__ ).flatten() assert output == expected_output def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[Any] = A(x=1 , y='foobar' ) snake_case: List[Any] = {'x': 1, 'y': 'foobar'} assert asdict(UpperCAmelCase__ ) == expected_output snake_case: List[str] = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} snake_case: Optional[int] = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(UpperCAmelCase__ ) == expected_output with pytest.raises(UpperCAmelCase__ ): asdict([1, A(x=10 , y='foo' )] ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' return text.split() def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCAmelCase_ ( ): '''simple docstring''' with Pool(2 ) as pool: snake_case: str = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCAmelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case: List[Any] = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCAmelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case: Tuple = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase__ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(UpperCAmelCase__ ) == 4
710
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case: Union[str, Any] = [tuple(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else key for key in keys] snake_case: Union[str, Any] = Counter(UpperCAmelCase_ ) snake_case: List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' snake_case: Any = super().construct_mapping(UpperCAmelCase_ , deep=UpperCAmelCase_ ) self._check_no_duplicates_on_constructed_node(UpperCAmelCase_ ) return mapping def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case: Optional[int] = full_content[1:].index('---' ) + 1 snake_case: Optional[int] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_snake_case ) class SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with open(UpperCAmelCase_ , encoding='utf-8' ) as readme_file: snake_case , snake_case: Union[str, Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase_ ) else: return cls() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if path.exists(): with open(UpperCAmelCase_ , encoding='utf-8' ) as readme_file: snake_case: Optional[Any] = readme_file.read() else: snake_case: str = None snake_case: Dict = self._to_readme(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(UpperCAmelCase_ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if readme_content is not None: snake_case , snake_case: str = _split_yaml_from_readme(UpperCAmelCase_ ) snake_case: List[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: snake_case: Dict = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = yaml.load(UpperCAmelCase_ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case: Dict = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase_ ) def _UpperCamelCase ( self ): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ , encoding='utf-8' , ).decode('utf-8' ) __UpperCAmelCase = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser __UpperCAmelCase = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") __UpperCAmelCase = ap.parse_args() __UpperCAmelCase = Path(args.readme_filepath) __UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
711
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' if "resnet-50" in model_name: snake_case: str = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: snake_case: str = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) snake_case: int = DetrConfig(use_timm_backbone=_lowercase , backbone_config=_lowercase ) # set label attributes snake_case: Dict = '''panoptic''' in model_name if is_panoptic: snake_case: str = 2_50 else: snake_case: Any = 91 snake_case: Optional[int] = '''huggingface/label-files''' snake_case: Dict = '''coco-detection-id2label.json''' snake_case: Tuple = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='dataset' ) , 'r' ) ) snake_case: int = {int(_lowercase ): v for k, v in idalabel.items()} snake_case: str = idalabel snake_case: Optional[int] = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[Any] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( f"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", f"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def lowerCAmelCase_ ( __A : List[Any] , __A : str , __A : Optional[int] ): '''simple docstring''' snake_case: int = state_dict.pop(_lowercase ) snake_case: List[str] = val def lowerCAmelCase_ ( __A : Any , __A : Dict=False ): '''simple docstring''' snake_case: Tuple = '''''' if is_panoptic: snake_case: List[Any] = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case: int = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case: List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case: Any = in_proj_weight[:2_56, :] snake_case: int = in_proj_bias[:2_56] snake_case: Any = in_proj_weight[2_56:5_12, :] snake_case: Union[str, Any] = in_proj_bias[2_56:5_12] snake_case: int = in_proj_weight[-2_56:, :] snake_case: int = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case: Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case: str = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case: Optional[int] = in_proj_weight[:2_56, :] snake_case: Tuple = in_proj_bias[:2_56] snake_case: Union[str, Any] = in_proj_weight[2_56:5_12, :] snake_case: int = in_proj_bias[2_56:5_12] snake_case: List[str] = in_proj_weight[-2_56:, :] snake_case: Optional[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention snake_case: Dict = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) snake_case: Any = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case: Union[str, Any] = in_proj_weight_cross_attn[:2_56, :] snake_case: int = in_proj_bias_cross_attn[:2_56] snake_case: Tuple = in_proj_weight_cross_attn[2_56:5_12, :] snake_case: List[Any] = in_proj_bias_cross_attn[2_56:5_12] snake_case: Union[str, Any] = in_proj_weight_cross_attn[-2_56:, :] snake_case: Any = in_proj_bias_cross_attn[-2_56:] def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case: Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A : Dict , __A : List[Any]=None , __A : Dict=False ): '''simple docstring''' snake_case: str = get_detr_config(_lowercase ) # load original model from torch hub snake_case: Optional[int] = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f"""Converting model {model_name}...""" ) snake_case: str = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=_lowercase ).eval() snake_case: int = detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowercase ): if is_panoptic: snake_case: List[str] = '''detr.''' + src rename_key(_lowercase , _lowercase , _lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case: Optional[Any] = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case: str = state_dict.pop(_lowercase ) snake_case: Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case: Optional[Any] = state_dict.pop(_lowercase ) snake_case: Optional[int] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case: Optional[Any] = state_dict.pop(_lowercase ) snake_case: Union[str, Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case: Optional[Any] = state_dict.pop(_lowercase ) snake_case: List[str] = val # finally, create HuggingFace model and load state dict snake_case: List[str] = DetrForSegmentation(_lowercase ) if is_panoptic else DetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion on an image snake_case: List[Any] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' snake_case: List[str] = DetrImageProcessor(format=_lowercase ) snake_case: List[str] = processor(images=prepare_img() , return_tensors='pt' ) snake_case: Optional[int] = encoding['''pixel_values'''] snake_case: List[str] = detr(_lowercase ) snake_case: List[Any] = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(f"""nielsr/{model_name}""" ) processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") __UpperCAmelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCAmelCase = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
0
'''simple docstring''' def lowerCAmelCase_ ( __A : Any ): # noqa: E741 '''simple docstring''' snake_case: Any = len(__A ) snake_case: List[Any] = 0 snake_case: Optional[Any] = [0] * n snake_case: Union[str, Any] = [False] * n snake_case: Union[str, Any] = [False] * n def dfs(__A : Dict , __A : str , __A : Any , __A : List[str] ): if parent == root: out_edge_count += 1 snake_case: List[str] = True snake_case: str = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case: Optional[int] = dfs(__A , __A , __A , __A ) snake_case: List[str] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: snake_case: Any = True # AP found via cycle if at == low[to]: snake_case: Dict = True else: snake_case: Any = min(low[at] , __A ) return out_edge_count for i in range(__A ): if not visited[i]: snake_case: Optional[int] = 0 snake_case: Tuple = dfs(__A , __A , -1 , __A ) snake_case: Any = out_edge_count > 1 for x in range(len(__A ) ): if is_art[x] is True: print(__A ) # Adjacency list of graph __UpperCAmelCase = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
714
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowerCAmelCase_ ( __A : Optional[int]=2 , __A : Union[str, Any]=3 , __A : Any=16 , __A : Any = 10 , __A : Union[str, Any] = 2 ): '''simple docstring''' def get_dataset(__A : Any ): snake_case: Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) snake_case: Union[str, Any] = get_dataset(SCREAMING_SNAKE_CASE_ ) snake_case: Any = get_dataset(SCREAMING_SNAKE_CASE_ ) snake_case: Dict = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) snake_case: Dict = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase_ ( __A : str , __A : Optional[Any] , __A : Optional[int] , __A : Any , __A : List[Any] , __A : Optional[Any]=None ): '''simple docstring''' snake_case: Optional[Any] = [] for epoch in range(SCREAMING_SNAKE_CASE_ ): # Train quickly model.train() for batch in dataloader: snake_case , snake_case: Dict = batch snake_case: Tuple = model(SCREAMING_SNAKE_CASE_ ) snake_case: Dict = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Parameter(torch.randn(1 ) ) snake_case: Dict = nn.Parameter(torch.randn(1 ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) snake_case: Dict = DummyModel() snake_case: Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) snake_case , snake_case: int = dummy_dataloaders() snake_case: int = ProjectConfiguration(total_limit=1 , project_dir=__lowercase , automatic_checkpoint_naming=__lowercase ) # Train baseline snake_case: List[str] = Accelerator(project_config=__lowercase ) snake_case , snake_case , snake_case , snake_case: Any = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) snake_case: Optional[Any] = DummyModel() snake_case: Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) snake_case , snake_case: Optional[int] = dummy_dataloaders() # Train baseline snake_case: int = Accelerator() snake_case , snake_case , snake_case , snake_case: Dict = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial snake_case: Union[str, Any] = os.path.join(__lowercase , 'initial' ) accelerator.save_state(__lowercase ) ((snake_case) , (snake_case)): Optional[int] = model.a.item(), model.b.item() snake_case: List[str] = optimizer.state_dict() snake_case: int = train(3 , __lowercase , __lowercase , __lowercase , __lowercase ) ((snake_case) , (snake_case)): Dict = model.a.item(), model.b.item() snake_case: Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) snake_case: int = DummyModel() snake_case: Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) snake_case , snake_case: str = dummy_dataloaders() snake_case: Optional[Any] = Accelerator() snake_case , snake_case , snake_case , snake_case: Any = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.load_state(__lowercase ) ((snake_case) , (snake_case)): Dict = model.a.item(), model.b.item() snake_case: Dict = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) snake_case: Dict = train(2 , __lowercase , __lowercase , __lowercase , __lowercase ) # Save everything snake_case: str = os.path.join(__lowercase , 'checkpoint' ) accelerator.save_state(__lowercase ) # Load everything back in and make sure all states work accelerator.load_state(__lowercase ) test_rands += train(1 , __lowercase , __lowercase , __lowercase , __lowercase ) ((snake_case) , (snake_case)): Dict = model.a.item(), model.b.item() snake_case: Tuple = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) snake_case: Optional[int] = DummyModel() snake_case: Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) snake_case , snake_case: Optional[Any] = dummy_dataloaders() snake_case: str = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ) # Train baseline snake_case: List[str] = Accelerator(project_dir=__lowercase , project_config=__lowercase ) snake_case , snake_case , snake_case , snake_case: Union[str, Any] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial accelerator.save_state() ((snake_case) , (snake_case)): Tuple = model.a.item(), model.b.item() snake_case: Tuple = optimizer.state_dict() snake_case: Optional[Any] = train(3 , __lowercase , __lowercase , __lowercase , __lowercase ) ((snake_case) , (snake_case)): Union[str, Any] = model.a.item(), model.b.item() snake_case: Dict = optimizer.state_dict() # Train partially set_seed(42 ) snake_case: List[str] = DummyModel() snake_case: str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) snake_case , snake_case: int = dummy_dataloaders() snake_case: str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__lowercase ) snake_case: Any = Accelerator(project_dir=__lowercase , project_config=__lowercase ) snake_case , snake_case , snake_case , snake_case: str = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.load_state(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_0' ) ) ((snake_case) , (snake_case)): str = model.a.item(), model.b.item() snake_case: Dict = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) snake_case: Union[str, Any] = train(2 , __lowercase , __lowercase , __lowercase , __lowercase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , __lowercase , __lowercase , __lowercase , __lowercase ) ((snake_case) , (snake_case)): Tuple = model.a.item(), model.b.item() snake_case: List[str] = optimizer.state_dict() self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = torch.tensor([1, 2, 3] ) snake_case: Optional[Any] = torch.tensor([2, 3, 4] ) snake_case: Any = DummyModel() snake_case: Union[str, Any] = torch.optim.Adam(net.parameters() ) snake_case: Union[str, Any] = Accelerator() with self.assertRaises(__lowercase ) as ve: accelerator.register_for_checkpointing(__lowercase , __lowercase , __lowercase , __lowercase ) snake_case: int = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) snake_case: Optional[int] = DummyModel() snake_case: Dict = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) snake_case: List[Any] = torch.optim.lr_scheduler.StepLR(__lowercase , step_size=1 , gamma=0.99 ) snake_case , snake_case: int = dummy_dataloaders() snake_case: Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ) # Train baseline snake_case: Optional[Any] = Accelerator(project_dir=__lowercase , project_config=__lowercase ) snake_case , snake_case , snake_case , snake_case , snake_case: Union[str, Any] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Save initial accelerator.save_state() snake_case: Union[str, Any] = scheduler.state_dict() train(3 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.assertNotEqual(__lowercase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(__lowercase , scheduler.state_dict() ) def _UpperCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) snake_case: Optional[int] = DummyModel() snake_case: List[Any] = ProjectConfiguration(automatic_checkpoint_naming=__lowercase , total_limit=2 ) # Train baseline snake_case: List[Any] = Accelerator(project_dir=__lowercase , project_config=__lowercase ) snake_case: Union[str, Any] = accelerator.prepare(__lowercase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowercase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowercase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = "/tmp/accelerate/state_checkpointing" __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group["params"][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: __UpperCAmelCase = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: __UpperCAmelCase = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
715
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
'''simple docstring''' from math import pow def lowerCAmelCase_ ( __A : List[str] , __A : int , __A : List[str] , __A : Tuple , __A : str , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case: str = int(pow(_lowerCAmelCase , _lowerCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case: int = backtrack( _lowerCAmelCase , _lowerCAmelCase , current_number + 1 , _lowerCAmelCase , _lowerCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case: Optional[int] = backtrack( _lowerCAmelCase , _lowerCAmelCase , current_number + 1 , _lowerCAmelCase , _lowerCAmelCase ) return current_sum, solutions_count def lowerCAmelCase_ ( __A : Tuple , __A : Union[str, Any] ): '''simple docstring''' if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(_lowerCAmelCase , _lowerCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=18 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=4_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , SCREAMING_SNAKE_CASE__=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , SCREAMING_SNAKE_CASE__=True , ): '''simple docstring''' snake_case: str = size if size is not None else {'height': 2_24, 'width': 2_24} snake_case: Dict = crop_size if crop_size is not None else {'height': 18, 'width': 18} snake_case: Tuple = parent snake_case: List[str] = batch_size snake_case: Tuple = num_channels snake_case: List[Any] = image_size snake_case: List[Any] = min_resolution snake_case: List[Any] = max_resolution snake_case: int = do_resize snake_case: List[Any] = size snake_case: Optional[Any] = do_center_crop snake_case: int = crop_size snake_case: Optional[int] = do_normalize snake_case: List[str] = image_mean snake_case: Optional[Any] = image_std snake_case: Tuple = do_convert_rgb def _UpperCamelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: snake_case: str = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: snake_case: Tuple = [] for i in range(self.batch_size ): snake_case , snake_case: Dict = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension snake_case: Optional[int] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] if torchify: snake_case: Union[str, Any] = [torch.from_numpy(SCREAMING_SNAKE_CASE__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_convert_rgb' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) snake_case: Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case: Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input snake_case: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case: List[Any] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case: str = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input snake_case: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case: Optional[int] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case: str = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input snake_case: List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case: List[Any] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 3 @property def _UpperCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_convert_rgb' ) ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case: int = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input snake_case: Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case: str = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "CLIPImageProcessor" __UpperCamelCase = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase_ , ) snake_case: Dict = kwargs.pop('feature_extractor' ) snake_case: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: snake_case: str = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: snake_case: Tuple = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: snake_case: Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.tokenizer.model_input_names snake_case: str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
719
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = pipeline( 'document-question-answering' , model=__a , tokenizer=__a , image_processor=__a ) snake_case: List[Any] = INVOICE_URL snake_case: str = list(zip(*apply_tesseract(load_image(__a ) , __a , '' ) ) ) snake_case: Optional[Any] = """What is the placebo?""" snake_case: Tuple = [ { """image""": load_image(__a ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = dqa_pipeline(__a , top_k=2 ) self.assertEqual( __a , [ [ {'score': ANY(__a ), 'answer': ANY(__a ), 'start': ANY(__a ), 'end': ANY(__a )}, {'score': ANY(__a ), 'answer': ANY(__a ), 'start': ANY(__a ), 'end': ANY(__a )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) snake_case: Optional[int] = INVOICE_URL snake_case: Optional[int] = """How many cats are there?""" snake_case: Any = [ {"""score""": 0.00_01, """answer""": """oy 2312/2019""", """start""": 38, """end""": 39}, {"""score""": 0.00_01, """answer""": """oy 2312/2019 DUE""", """start""": 38, """end""": 40}, ] snake_case: Optional[int] = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual(nested_simplify(__a , decimals=4 ) , __a ) snake_case: Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(__a , decimals=4 ) , __a ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably snake_case: Union[str, Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case: Tuple = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual(__a , [] ) # We can optionnally pass directly the words and bounding boxes snake_case: List[str] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case: str = [] snake_case: int = [] snake_case: Dict = dqa_pipeline(image=__a , question=__a , words=__a , boxes=__a , top_k=2 ) self.assertEqual(__a , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) snake_case: Optional[Any] = INVOICE_URL snake_case: Union[str, Any] = """What is the invoice number?""" snake_case: Dict = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) snake_case: Optional[Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) snake_case: Tuple = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.00_09, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) snake_case: Union[str, Any] = INVOICE_URL snake_case: Any = """What is the invoice number?""" snake_case: Any = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) snake_case: int = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) snake_case: Optional[Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.99_48, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__a ) snake_case: str = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__a , revision='3dc6de3' , ) snake_case: Tuple = INVOICE_URL snake_case: int = """What is the invoice number?""" snake_case: List[str] = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) snake_case: Optional[int] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) snake_case: Union[str, Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) snake_case: str = list(zip(*apply_tesseract(load_image(__a ) , __a , '' ) ) ) # This model should also work if `image` is set to None snake_case: Optional[Any] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.08_19, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__a ) snake_case: int = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__a , revision='3dc6de3' , max_seq_len=50 , ) snake_case: int = INVOICE_URL snake_case: int = """What is the invoice number?""" snake_case: List[Any] = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) snake_case: str = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) snake_case: List[str] = list(zip(*apply_tesseract(load_image(__a ) , __a , '' ) ) ) # This model should also work if `image` is set to None snake_case: Dict = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.99_98, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) snake_case: str = INVOICE_URL snake_case: Any = """What is the invoice number?""" snake_case: Tuple = dqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual(nested_simplify(__a , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass
720
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
0
'''simple docstring''' def lowerCAmelCase_ ( __A : int , __A : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase_ ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[32, 64, 1_28] , SCREAMING_SNAKE_CASE__=[1, 2, 1] , SCREAMING_SNAKE_CASE__=[2, 2, 4] , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=["stage1", "stage2"] , SCREAMING_SNAKE_CASE__=[1, 2] , ): '''simple docstring''' snake_case: Tuple = parent snake_case: str = batch_size snake_case: str = image_size snake_case: Union[str, Any] = patch_size snake_case: Dict = num_channels snake_case: List[Any] = embed_dim snake_case: List[Any] = hidden_sizes snake_case: Dict = depths snake_case: Union[str, Any] = num_heads snake_case: Dict = window_size snake_case: List[Any] = mlp_ratio snake_case: str = qkv_bias snake_case: Dict = hidden_dropout_prob snake_case: List[Any] = attention_probs_dropout_prob snake_case: Optional[int] = drop_path_rate snake_case: str = hidden_act snake_case: List[Any] = use_absolute_embeddings snake_case: List[Any] = patch_norm snake_case: Union[str, Any] = layer_norm_eps snake_case: Tuple = initializer_range snake_case: Dict = is_training snake_case: List[Any] = scope snake_case: Any = use_labels snake_case: Tuple = type_sequence_label_size snake_case: Any = encoder_stride snake_case: Union[str, Any] = out_features snake_case: List[str] = out_indices def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: Any = None if self.use_labels: snake_case: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case: List[Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = FocalNetModel(config=A__ ) model.to(A__ ) model.eval() snake_case: int = model(A__ ) snake_case: Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = FocalNetBackbone(config=A__ ) model.to(A__ ) model.eval() snake_case: List[str] = model(A__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None snake_case: Optional[Any] = None snake_case: int = FocalNetBackbone(config=A__ ) model.to(A__ ) model.eval() snake_case: Any = model(A__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = FocalNetForMaskedImageModeling(config=A__ ) model.to(A__ ) model.eval() snake_case: Tuple = model(A__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case: Union[str, Any] = 1 snake_case: Dict = FocalNetForMaskedImageModeling(A__ ) model.to(A__ ) model.eval() snake_case: int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case: Optional[Any] = model(A__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.type_sequence_label_size snake_case: Union[str, Any] = FocalNetForImageClassification(A__ ) model.to(A__ ) model.eval() snake_case: List[str] = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case: Dict = 1 snake_case: List[str] = FocalNetForImageClassification(A__ ) model.to(A__ ) model.eval() snake_case: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case: Optional[int] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case: Tuple = config_and_inputs snake_case: Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __UpperCamelCase = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = FocalNetModelTester(self ) snake_case: Dict = ConfigTester(self , config_class=A__ , embed_dim=37 , has_text_modality=A__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ): '''simple docstring''' return def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case: Any = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case: Union[str, Any] = model_class(A__ ) snake_case: Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case: Tuple = [*signature.parameters.keys()] snake_case: str = ['pixel_values'] self.assertListEqual(arg_names[:1] , A__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): snake_case: List[str] = model(**self._prepare_for_class(A__ , A__ ) ) snake_case: Dict = outputs.hidden_states snake_case: str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A__ ) , A__ ) # FocalNet has a different seq_length snake_case: Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case: str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case: List[Any] = outputs.reshaped_hidden_states self.assertEqual(len(A__ ) , A__ ) snake_case , snake_case , snake_case , snake_case: List[Any] = reshaped_hidden_states[0].shape snake_case: int = ( reshaped_hidden_states[0].view(A__ , A__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: str = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: snake_case: Optional[Any] = True self.check_hidden_states_output(A__ , A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: Any = True self.check_hidden_states_output(A__ , A__ , A__ , A__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Any = 3 snake_case: List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case: Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case: int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case: Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: snake_case: List[str] = True self.check_hidden_states_output(A__ , A__ , A__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: Optional[Any] = True self.check_hidden_states_output(A__ , A__ , A__ , (padded_height, padded_width) ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: Dict = FocalNetModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case: List[Any] = _config_zero_init(A__ ) for model_class in self.all_model_classes: snake_case: int = model_class(config=A__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A__ ) snake_case: List[str] = self.default_image_processor snake_case: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case: Tuple = image_processor(images=A__ , return_tensors='pt' ).to(A__ ) # forward pass with torch.no_grad(): snake_case: str = model(**A__ ) # verify the logits snake_case: List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A__ ) snake_case: List[Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class SCREAMING_SNAKE_CASE ( __a , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () __UpperCamelCase = FocalNetConfig __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = FocalNetModelTester(self )
700
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
0
'''simple docstring''' import itertools import math def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[Any] = 2 while True: if is_prime(_SCREAMING_SNAKE_CASE ): yield num num += 1 def lowerCAmelCase_ ( __A : Dict = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(F'{solution() = }')
701
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "AutoImageProcessor" __UpperCamelCase = "AutoTokenizer" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(__UpperCamelCase , __UpperCamelCase ) snake_case: Optional[int] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: snake_case: Union[str, Any] = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: snake_case: Union[str, Any] = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: snake_case: Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
702
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase = 250_004 __UpperCAmelCase = 250_020 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( a__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MBartTokenizer __UpperCamelCase = MBartTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case: str = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) snake_case: Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case: List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case: str = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case: Tuple = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _UpperCamelCase ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case: Any = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case: List[Any] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case: Dict = tempfile.mkdtemp() snake_case: int = tokenizer_r.save_pretrained(lowercase__ ) snake_case: Dict = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) snake_case: Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way snake_case: Tuple = tokenizer_r.from_pretrained(lowercase__ ) snake_case: List[str] = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=True snake_case: Tuple = tempfile.mkdtemp() snake_case: List[str] = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) snake_case: Any = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way snake_case: Union[str, Any] = tokenizer_r.from_pretrained(lowercase__ ) snake_case: Dict = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=False snake_case: List[str] = tempfile.mkdtemp() snake_case: List[Any] = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) snake_case: str = tokenizer_p.save_pretrained(lowercase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case: str = tokenizer_r.from_pretrained(lowercase__ ) snake_case: Tuple = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = """facebook/mbart-large-en-ro""" __UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __UpperCamelCase = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def _UpperCamelCase ( cls ): '''simple docstring''' snake_case: MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) snake_case: int = 1 return cls def _UpperCamelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_00_20 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) snake_case: Dict = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] snake_case: str = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) snake_case: Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase__ ) snake_case: str = 10 snake_case: Dict = self.tokenizer(lowercase__ , max_length=lowercase__ , truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase__ ) self.assertEqual(len(lowercase__ ) , lowercase__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_00_26, 25_00_01] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = tempfile.mkdtemp() snake_case: Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) snake_case: Tuple = MBartTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase__ ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors='pt' ) snake_case: Union[str, Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) snake_case: Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case: List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer(self.src_text , padding=lowercase__ , truncation=lowercase__ , max_length=3 , return_tensors='pt' ) snake_case: Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=10 , return_tensors='pt' ) snake_case: Any = targets['''input_ids'''] snake_case: Dict = shift_tokens_right(lowercase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(lowercase__ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 30_34, 2, 25_00_04]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_00_01, } , )
703
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
0
'''simple docstring''' from numpy import exp, pi, sqrt def lowerCAmelCase_ ( __A : Optional[Any] , __A : float = 0.0 , __A : float = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' from math import sqrt def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: List[Any] = 0 for i in range(1 , int(sqrt(a_ ) + 1 ) ): if n % i == 0 and i != sqrt(a_ ): total += i + n // i elif i == sqrt(a_ ): total += i return total - n def lowerCAmelCase_ ( __A : int = 1_00_00 ): '''simple docstring''' snake_case: int = sum( i for i in range(1 , a_ ) if sum_of_divisors(sum_of_divisors(a_ ) ) == i and sum_of_divisors(a_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
705
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = graph # mapping node to its parent in resulting breadth first tree snake_case: Dict = {} snake_case: int = source_vertex def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = {self.source_vertex} snake_case: int = None snake_case: List[Any] = [self.source_vertex] # first in first out queue while queue: snake_case: Tuple = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = vertex queue.append(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex snake_case: Dict = self.parent.get(SCREAMING_SNAKE_CASE__ ) if target_vertex_parent is None: snake_case: List[Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) return self.shortest_path(SCREAMING_SNAKE_CASE__ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
706
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) __UpperCAmelCase = ["names", "prefix"] __UpperCAmelCase = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __UpperCAmelCase = ["encoding_errors", "on_bad_lines"] __UpperCAmelCase = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase = "," __UpperCamelCase = None __UpperCamelCase = "infer" __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = "." __UpperCamelCase = None __UpperCamelCase = '"' __UpperCamelCase = 0 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = 0 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = None __UpperCamelCase = 1_0000 __UpperCamelCase = None __UpperCamelCase = "strict" __UpperCamelCase = "error" __UpperCamelCase = None def _UpperCamelCase ( self ): '''simple docstring''' if self.delimiter is not None: snake_case: str = self.delimiter if self.column_names is not None: snake_case: List[str] = self.column_names @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase = CsvConfig def _UpperCamelCase ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case: Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): snake_case: Optional[Any] = data_files if isinstance(__a , __a ): snake_case: Dict = [files] snake_case: List[Any] = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case: Tuple = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): snake_case: List[str] = [files] snake_case: List[Any] = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={'files': files} ) ) return splits def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.config.features is not None: snake_case: Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(__a ) for feature in self.config.features.values() ): # cheaper cast snake_case: Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example snake_case: str = table_cast(__a , __a ) return pa_table def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str snake_case: Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): snake_case: str = pd.read_csv(__a , iterator=__a , dtype=__a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__a ): snake_case: int = pa.Table.from_pandas(__a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a ) except ValueError as e: logger.error(F"""Failed to read file \'{file}\' with error {type(__a )}: {e}""" ) raise
707
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "BridgeTowerImageProcessor" __UpperCamelCase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(_snake_case , _snake_case ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Dict = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel_values + pixel_mask snake_case: Union[str, Any] = self.image_processor( _snake_case , return_tensors=_snake_case , do_normalize=_snake_case , do_center_crop=_snake_case , **_snake_case ) encoding.update(_snake_case ) return encoding def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.tokenizer.model_input_names snake_case: List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
0
'''simple docstring''' def lowerCAmelCase_ ( __A : Any , __A : Dict ): '''simple docstring''' if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
709
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __UpperCAmelCase = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowerCAmelCase_ ( __A : Any , __A : Optional[int] , __A : Dict , __A : int=None ): '''simple docstring''' snake_case: Union[str, Any] = XLNetConfig.from_json_file(snake_case_ ) snake_case: List[str] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) snake_case: str = finetuning_task snake_case: int = GLUE_TASKS_NUM_LABELS[finetuning_task] snake_case: int = XLNetForSequenceClassification(snake_case_ ) elif "squad" in finetuning_task: snake_case: Optional[Any] = finetuning_task snake_case: str = XLNetForQuestionAnswering(snake_case_ ) else: snake_case: Optional[int] = XLNetLMHeadModel(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model snake_case: Union[str, Any] = os.path.join(snake_case_ , snake_case_ ) snake_case: Any = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) __UpperCAmelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
710
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import os def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[Any] = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) snake_case: int = os.path.join(__UpperCamelCase , 'triangle.txt' ) with open(__UpperCamelCase ) as f: snake_case: Dict = f.readlines() snake_case: Optional[Any] = [] for line in triangle: snake_case: Optional[Any] = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__UpperCamelCase ) ) a.append(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): for j in range(len(a[i] ) ): snake_case: Optional[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case: List[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCamelCase , __UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
711
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "convbert" def __init__( self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=9 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) snake_case: Optional[int] = vocab_size snake_case: List[str] = hidden_size snake_case: List[str] = num_hidden_layers snake_case: Tuple = num_attention_heads snake_case: List[Any] = intermediate_size snake_case: List[str] = hidden_act snake_case: int = hidden_dropout_prob snake_case: Dict = attention_probs_dropout_prob snake_case: Dict = max_position_embeddings snake_case: Union[str, Any] = type_vocab_size snake_case: Optional[int] = initializer_range snake_case: List[str] = layer_norm_eps snake_case: Optional[int] = embedding_size snake_case: Optional[int] = head_ratio snake_case: List[Any] = conv_kernel_size snake_case: Union[str, Any] = num_groups snake_case: Dict = classifier_dropout class SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case: List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case: Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
712
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
0
'''simple docstring''' def lowerCAmelCase_ ( __A : list ): '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
713
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' @wraps(a__ ) def _inner_fn(*__A : Optional[int] , **__A : Tuple ): warnings.warn( (f"""\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.""") , a__ , ) return fn(*a__ , **a__ ) return _inner_fn
714
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = inspect.getfile(accelerate.test_utils ) snake_case: str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) snake_case: List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) snake_case: Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) snake_case: Dict = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) snake_case: str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) snake_case: List[str] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = Accelerator() __UpperCAmelCase = (accelerator.state.process_index + 2, 10) __UpperCAmelCase = torch.randint(0, 10, shape).to(accelerator.device) __UpperCAmelCase = "" __UpperCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __UpperCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __UpperCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
715
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __UpperCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCAmelCase_ ( __A : Any , __A : List[Any] , __A : Optional[int] , __A : int , __A : Optional[Any] , __A : str , __A : List[str] , __A : str=False , ): '''simple docstring''' output_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , use_external_data_format=_UpperCAmelCase , enable_onnx_checker=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) else: export( _UpperCAmelCase , _UpperCAmelCase , f=output_path.as_posix() , input_names=_UpperCAmelCase , output_names=_UpperCAmelCase , dynamic_axes=_UpperCAmelCase , do_constant_folding=_UpperCAmelCase , opset_version=_UpperCAmelCase , ) @torch.no_grad() def lowerCAmelCase_ ( __A : int , __A : Dict , __A : Optional[Any] , __A : str = False ): '''simple docstring''' snake_case: int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case: Tuple = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: snake_case: Dict = 'cpu' snake_case: str = Path(_UpperCAmelCase ) # VAE DECODER snake_case: List[str] = AutoencoderKL.from_pretrained(model_path + '/vae' ) snake_case: List[Any] = vae_decoder.config.latent_channels # forward only through the decoder part snake_case: Tuple = vae_decoder.decode onnx_export( _UpperCAmelCase , model_args=( torch.randn(1 , _UpperCAmelCase , 25 , 25 ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_UpperCAmelCase , ) del vae_decoder if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __UpperCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : Optional[Any] , __A : Optional[Any]=False ): '''simple docstring''' snake_case: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case: int = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase_ ( __A : str , __A : Dict , __A : Optional[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case: Optional[int] = '' else: snake_case: List[str] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case: List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case: Union[str, Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case: Any = in_proj_weight[ : config.hidden_size, : ] snake_case: Tuple = in_proj_bias[: config.hidden_size] snake_case: Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case: Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case: List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case: Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__A , __A ) def lowerCAmelCase_ ( __A : Tuple , __A : str , __A : Optional[Any] ): '''simple docstring''' snake_case: List[str] = dct.pop(__A ) snake_case: List[str] = val def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case: Optional[Any] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A : Tuple , __A : Union[str, Any] , __A : Dict=True ): '''simple docstring''' snake_case: Optional[int] = ViTConfig() # patch_size if model_name[-1] == "8": snake_case: Optional[int] = 8 # set labels if required if not base_model: snake_case: Any = 10_00 snake_case: Tuple = 'huggingface/label-files' snake_case: str = 'imagenet-1k-id2label.json' snake_case: int = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) snake_case: Any = {int(__A ): v for k, v in idalabel.items()} snake_case: Tuple = idalabel snake_case: Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case: str = 3_84 snake_case: Dict = 15_36 snake_case: Tuple = 12 snake_case: Dict = 6 # load original model from torch hub snake_case: List[str] = torch.hub.load('facebookresearch/dino:main' , __A ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case: List[Any] = original_model.state_dict() if base_model: remove_classification_head_(__A ) snake_case: Any = create_rename_keys(__A , base_model=__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model if base_model: snake_case: Union[str, Any] = ViTModel(__A , add_pooling_layer=__A ).eval() else: snake_case: Optional[Any] = ViTForImageClassification(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by ViTImageProcessor snake_case: Tuple = ViTImageProcessor() snake_case: List[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case: List[Any] = encoding['pixel_values'] snake_case: Optional[Any] = model(__A ) if base_model: snake_case: List[Any] = original_model(__A ) assert torch.allclose(__A , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: snake_case: str = original_model(__A ) assert logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1E-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] __UpperCAmelCase = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: int = torch.load(_lowercase , map_location='cpu' ) return sd def lowerCAmelCase_ ( __A : Dict , __A : Any , __A : str=rename_keys_prefix ): '''simple docstring''' snake_case: int = OrderedDict() snake_case: List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue snake_case: str = key for name_pair in rename_keys_prefix: snake_case: str = new_key.replace(name_pair[0] , name_pair[1] ) snake_case: Dict = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately snake_case: Tuple = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Optional[int] ): '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: snake_case: List[Any] = 'pretraining' if "vcr" in checkpoint_path: snake_case: Dict = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: snake_case: Any = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: snake_case: List[str] = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: snake_case: str = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: snake_case: int = {'visual_embedding_dim': 5_12} snake_case: Dict = 'multichoice' elif "vqa_advanced" in checkpoint_path: snake_case: int = {'visual_embedding_dim': 20_48} snake_case: str = 'vqa_advanced' elif "vqa" in checkpoint_path: snake_case: List[Any] = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} snake_case: Tuple = 'vqa' elif "nlvr" in checkpoint_path: snake_case: Optional[Any] = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } snake_case: List[Any] = 'nlvr' snake_case: Optional[Any] = VisualBertConfig(**_lowercase ) # Load State Dict snake_case: str = load_state_dict(_lowercase ) snake_case: Dict = get_new_dict(_lowercase , _lowercase ) if model_type == "pretraining": snake_case: Dict = VisualBertForPreTraining(_lowercase ) elif model_type == "vqa": snake_case: int = VisualBertForQuestionAnswering(_lowercase ) elif model_type == "nlvr": snake_case: Dict = VisualBertForVisualReasoning(_lowercase ) elif model_type == "multichoice": snake_case: Any = VisualBertForMultipleChoice(_lowercase ) model.load_state_dict(_lowercase ) # Save Checkpoints Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") __UpperCAmelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __UpperCAmelCase = "sshleifer/bart-tiny-random" __UpperCAmelCase = "patrickvonplaten/t5-tiny-random" @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return AutoConfig.from_pretrained(_lowercase ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(_lowercase ): create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=_lowercase , d=_lowercase )
719
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = '''linear''' __UpperCamelCase = '''cosine''' __UpperCamelCase = '''cosine_with_restarts''' __UpperCamelCase = '''polynomial''' __UpperCamelCase = '''constant''' __UpperCamelCase = '''constant_with_warmup''' __UpperCamelCase = '''piecewise_constant''' def lowerCAmelCase_ ( __A : Optimizer , __A : int = -1 ): '''simple docstring''' return LambdaLR(lowercase_ , lambda __A : 1 , last_epoch=lowercase_ ) def lowerCAmelCase_ ( __A : Optimizer , __A : int , __A : int = -1 ): '''simple docstring''' def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1.0 , lowercase_ ) ) return 1.0 return LambdaLR(lowercase_ , lowercase_ , last_epoch=lowercase_ ) def lowerCAmelCase_ ( __A : Optimizer , __A : str , __A : int = -1 ): '''simple docstring''' snake_case: List[Any] = {} snake_case: List[str] = step_rules.split(',' ) for rule_str in rule_list[:-1]: snake_case: Union[str, Any] = rule_str.split(':' ) snake_case: List[Any] = int(lowercase_ ) snake_case: Union[str, Any] = float(lowercase_ ) snake_case: Optional[int] = value snake_case: Dict = float(rule_list[-1] ) def create_rules_function(__A : str , __A : Union[str, Any] ): def rule_func(__A : int ) -> float: snake_case: Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowercase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case: Optional[Any] = create_rules_function(lowercase_ , lowercase_ ) return LambdaLR(lowercase_ , lowercase_ , last_epoch=lowercase_ ) def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Union[str, Any] , __A : Tuple , __A : Optional[int]=-1 ): '''simple docstring''' def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) def lowerCAmelCase_ ( __A : Optimizer , __A : int , __A : int , __A : float = 0.5 , __A : int = -1 ): '''simple docstring''' def lr_lambda(__A : Dict ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) snake_case: List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowercase_ ) * 2.0 * progress )) ) return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) def lowerCAmelCase_ ( __A : Optimizer , __A : int , __A : int , __A : int = 1 , __A : int = -1 ): '''simple docstring''' def lr_lambda(__A : str ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) snake_case: Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowercase_ ) * progress) % 1.0) )) ) return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) def lowerCAmelCase_ ( __A : Optional[int] , __A : List[str] , __A : int , __A : Dict=1E-7 , __A : List[str]=1.0 , __A : Tuple=-1 ): '''simple docstring''' snake_case: Any = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(lowercase_ ) / float(max(1 , lowercase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case: Optional[int] = lr_init - lr_end snake_case: Optional[int] = num_training_steps - num_warmup_steps snake_case: Any = 1 - (current_step - num_warmup_steps) / decay_steps snake_case: str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCAmelCase_ ( __A : Union[str, SchedulerType] , __A : Optimizer , __A : Optional[str] = None , __A : Optional[int] = None , __A : Optional[int] = None , __A : int = 1 , __A : float = 1.0 , __A : int = -1 , ): '''simple docstring''' snake_case: Dict = SchedulerType(lowercase_ ) snake_case: int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowercase_ , last_epoch=lowercase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowercase_ , step_rules=lowercase_ , last_epoch=lowercase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowercase_ , num_warmup_steps=lowercase_ , last_epoch=lowercase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowercase_ , num_warmup_steps=lowercase_ , num_training_steps=lowercase_ , num_cycles=lowercase_ , last_epoch=lowercase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowercase_ , num_warmup_steps=lowercase_ , num_training_steps=lowercase_ , power=lowercase_ , last_epoch=lowercase_ , ) return schedule_func( lowercase_ , num_warmup_steps=lowercase_ , num_training_steps=lowercase_ , last_epoch=lowercase_ )
720
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
from __future__ import annotations import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: str = str(_lowerCamelCase ) snake_case: List[str] = [n] for i in range(1 , len(_lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if len(str(_lowerCamelCase ) ) > 3: if not is_prime(int(str(_lowerCamelCase )[-3:] ) ) or not is_prime(int(str(_lowerCamelCase )[:3] ) ): return False return True def lowerCAmelCase_ ( __A : int = 11 ): '''simple docstring''' snake_case: Any = [] snake_case: Dict = 13 while len(_lowerCamelCase ) != count: if validate(_lowerCamelCase ): snake_case: Optional[int] = list_truncated_nums(_lowerCamelCase ) if all(is_prime(_lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCamelCase ) num += 2 return list_truncated_primes def lowerCAmelCase_ ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(11)) = }')
700
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' __UpperCamelCase = """albert""" def __init__( self , SCREAMING_SNAKE_CASE__=3_00_00 , SCREAMING_SNAKE_CASE__=1_28 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=1_63_84 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu_new" , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: int = vocab_size snake_case: Dict = embedding_size snake_case: Tuple = hidden_size snake_case: int = num_hidden_layers snake_case: List[str] = num_hidden_groups snake_case: str = num_attention_heads snake_case: List[Any] = inner_group_num snake_case: Union[str, Any] = hidden_act snake_case: Optional[Any] = intermediate_size snake_case: int = hidden_dropout_prob snake_case: Optional[Any] = attention_probs_dropout_prob snake_case: str = max_position_embeddings snake_case: Tuple = type_vocab_size snake_case: Optional[int] = initializer_range snake_case: List[str] = layer_norm_eps snake_case: Dict = classifier_dropout_prob snake_case: int = position_embedding_type class SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case: int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case: List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
701
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__ ) if config is None: assert isinstance(self.model , lowercase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) snake_case: str = self.model.config else: snake_case: Union[str, Any] = config snake_case: Any = data_args snake_case: Optional[Any] = self.config.tgt_vocab_size if isinstance(self.config , lowercase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: snake_case: Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case: List[Any] = label_smoothed_nll_loss def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.optimizer is None: snake_case: Optional[Any] = ["bias", "LayerNorm.weight"] snake_case: Dict = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] snake_case: List[str] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case: Optional[int] = Adafactor snake_case: List[Any] = {"scale_parameter": False, "relative_step": False} else: snake_case: int = AdamW snake_case: Dict = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } snake_case: Optional[Any] = self.args.learning_rate if self.sharded_ddp: snake_case: List[str] = OSS( params=lowercase__ , optim=lowercase__ , **lowercase__ , ) else: snake_case: int = optimizer_cls(lowercase__ , **lowercase__ ) if self.lr_scheduler is None: snake_case: List[str] = self._get_lr_scheduler(lowercase__ ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case: Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case: str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case: Dict = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowercase__ ) return scheduler def _UpperCamelCase ( self ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case: List[str] = model(**lowercase__ , use_cache=lowercase__ )[0] snake_case: Union[str, Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case: Optional[Any] = model(**lowercase__ , labels=lowercase__ , use_cache=lowercase__ )[:2] else: # compute label smoothed loss snake_case: str = model(**lowercase__ , use_cache=lowercase__ )[0] snake_case: List[str] = torch.nn.functional.log_softmax(lowercase__ , dim=-1 ) snake_case: Optional[int] = self.loss_fn(lowercase__ , lowercase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = inputs.pop('labels' ) snake_case: Any = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) return loss def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Tuple = self._prepare_inputs(lowercase__ ) snake_case: int = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case: str = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **lowercase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case: List[str] = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs['max_length'] ) snake_case: Any = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data snake_case: str = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) snake_case: Union[str, Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case: Any = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case: Optional[int] = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs['max_length'] ) return (loss, logits, labels) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) snake_case: Optional[int] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case: List[str] = tensor return padded_tensor
702
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
0
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : int , __A : str ): '''simple docstring''' snake_case: str = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) snake_case: Optional[int] = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = ["CLIPEncoderLayer"] def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = CLIPVisionModel(config.vision_config ) snake_case: Tuple = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = nn.Parameter(torch.ones(17 ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = self.vision_model(SCREAMING_SNAKE_CASE__ )[1] # pooled_output snake_case: Optional[int] = self.visual_projection(SCREAMING_SNAKE_CASE__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case: Any = cosine_distance(SCREAMING_SNAKE_CASE__ , self.special_care_embeds ).cpu().float().numpy() snake_case: Any = cosine_distance(SCREAMING_SNAKE_CASE__ , self.concept_embeds ).cpu().float().numpy() snake_case: List[str] = [] snake_case: Optional[int] = image_embeds.shape[0] for i in range(SCREAMING_SNAKE_CASE__ ): snake_case: List[str] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case: str = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case: int = special_cos_dist[i][concept_idx] snake_case: str = self.special_care_embeds_weights[concept_idx].item() snake_case: Optional[Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) snake_case: str = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case: Optional[int] = cos_dist[i][concept_idx] snake_case: List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case: List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(SCREAMING_SNAKE_CASE__ ) result.append(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.vision_model(SCREAMING_SNAKE_CASE__ )[1] # pooled_output snake_case: Optional[Any] = self.visual_projection(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = cosine_distance(SCREAMING_SNAKE_CASE__ , self.special_care_embeds ) snake_case: Optional[Any] = cosine_distance(SCREAMING_SNAKE_CASE__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case: Union[str, Any] = 0.0 snake_case: Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case: str = torch.any(special_scores > 0 , dim=1 ) snake_case: List[str] = special_care * 0.01 snake_case: Tuple = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case: int = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case: Tuple = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
703
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __UpperCAmelCase = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __UpperCAmelCase = re.compile(r"\b(a|an|the)\b", re.UNICODE) __UpperCAmelCase = None def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: List[str] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=__snake_case , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=__snake_case , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case: Any = bool(qa['answers']['text'] ) return qid_to_has_ans def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' def remove_articles(__A : int ): return ARTICLES_REGEX.sub(' ' , __snake_case ) def white_space_fix(__A : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(__A : Any ): snake_case: str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' if not s: return [] return normalize_answer(__snake_case ).split() def lowerCAmelCase_ ( __A : int , __A : List[Any] ): '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Dict ): '''simple docstring''' snake_case: Tuple = get_tokens(__snake_case ) snake_case: Optional[int] = get_tokens(__snake_case ) snake_case: Optional[Any] = collections.Counter(__snake_case ) & collections.Counter(__snake_case ) snake_case: Dict = sum(common.values() ) if len(__snake_case ) == 0 or len(__snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case: Optional[int] = 1.0 * num_same / len(__snake_case ) snake_case: Optional[int] = 1.0 * num_same / len(__snake_case ) snake_case: Tuple = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: List[Any] = {} snake_case: Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case: Optional[Any] = qa['id'] snake_case: Optional[int] = [t for t in qa['answers']['text'] if normalize_answer(__snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case: str = [''] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue snake_case: Optional[int] = preds[qid] # Take max over all gold answers snake_case: List[Any] = max(compute_exact(__snake_case , __snake_case ) for a in gold_answers ) snake_case: Tuple = max(compute_fa(__snake_case , __snake_case ) for a in gold_answers ) return exact_scores, fa_scores def lowerCAmelCase_ ( __A : str , __A : int , __A : List[str] , __A : Tuple ): '''simple docstring''' snake_case: Dict = {} for qid, s in scores.items(): snake_case: Optional[Any] = na_probs[qid] > na_prob_thresh if pred_na: snake_case: List[str] = float(not qid_to_has_ans[qid] ) else: snake_case: str = s return new_scores def lowerCAmelCase_ ( __A : int , __A : Optional[Any] , __A : List[Any]=None ): '''simple docstring''' if not qid_list: snake_case: str = len(__snake_case ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores.values() ) / total), ('f1', 1_00.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: snake_case: Optional[int] = len(__snake_case ) return collections.OrderedDict( [ ('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : List[str] ): '''simple docstring''' for k in new_eval: snake_case: str = new_eval[k] def lowerCAmelCase_ ( __A : Dict , __A : str , __A : Tuple , __A : List[Any] ): '''simple docstring''' plt.step(__snake_case , __snake_case , color='b' , alpha=0.2 , where='post' ) plt.fill_between(__snake_case , __snake_case , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__snake_case ) plt.savefig(__snake_case ) plt.clf() def lowerCAmelCase_ ( __A : Dict , __A : Optional[Any] , __A : Optional[int] , __A : int , __A : Tuple=None , __A : Any=None ): '''simple docstring''' snake_case: Dict = sorted(__snake_case , key=lambda __A : na_probs[k] ) snake_case: Dict = 0.0 snake_case: Union[str, Any] = 1.0 snake_case: Optional[int] = 0.0 snake_case: List[Any] = [1.0] snake_case: Any = [0.0] snake_case: Tuple = 0.0 for i, qid in enumerate(__snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case: Tuple = true_pos / float(i + 1 ) snake_case: Union[str, Any] = true_pos / float(__snake_case ) if i == len(__snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__snake_case ) recalls.append(__snake_case ) if out_image: plot_pr_curve(__snake_case , __snake_case , __snake_case , __snake_case ) return {"ap": 1_00.0 * avg_prec} def lowerCAmelCase_ ( __A : str , __A : List[str] , __A : str , __A : List[str] , __A : Union[str, Any] , __A : int ): '''simple docstring''' if out_image_dir and not os.path.exists(__snake_case ): os.makedirs(__snake_case ) snake_case: Optional[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case: Union[str, Any] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) snake_case: Any = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) snake_case: Optional[int] = {k: float(__snake_case ) for k, v in qid_to_has_ans.items()} snake_case: List[str] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(__snake_case , __snake_case , 'pr_exact' ) merge_eval(__snake_case , __snake_case , 'pr_f1' ) merge_eval(__snake_case , __snake_case , 'pr_oracle' ) def lowerCAmelCase_ ( __A : Dict , __A : Tuple , __A : Optional[int] , __A : str ): '''simple docstring''' if not qid_list: return snake_case: str = [na_probs[k] for k in qid_list] snake_case: str = np.ones_like(__snake_case ) / float(len(__snake_case ) ) plt.hist(__snake_case , weights=__snake_case , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(__snake_case , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def lowerCAmelCase_ ( __A : Tuple , __A : List[str] , __A : Optional[int] , __A : Union[str, Any] ): '''simple docstring''' snake_case: Optional[Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case: Union[str, Any] = num_no_ans snake_case: Dict = cur_score snake_case: Optional[int] = 0.0 snake_case: Dict = sorted(__snake_case , key=lambda __A : na_probs[k] ) for i, qid in enumerate(__snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case: List[str] = scores[qid] else: if preds[qid]: snake_case: List[str] = -1 else: snake_case: Dict = 0 cur_score += diff if cur_score > best_score: snake_case: Tuple = cur_score snake_case: int = na_probs[qid] return 1_00.0 * best_score / len(__snake_case ), best_thresh def lowerCAmelCase_ ( __A : Any , __A : Any , __A : int , __A : Tuple , __A : Tuple , __A : int ): '''simple docstring''' snake_case , snake_case: Optional[int] = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case , snake_case: str = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case: Optional[int] = best_exact snake_case: Optional[int] = exact_thresh snake_case: Any = best_fa snake_case: List[str] = fa_thresh def lowerCAmelCase_ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: snake_case: Any = json.load(__snake_case ) snake_case: Any = dataset_json['data'] with open(OPTS.pred_file ) as f: snake_case: List[str] = json.load(__snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case: Dict = json.load(__snake_case ) else: snake_case: Union[str, Any] = {k: 0.0 for k in preds} snake_case: Tuple = make_qid_to_has_ans(__snake_case ) # maps qid to True/False snake_case: Union[str, Any] = [k for k, v in qid_to_has_ans.items() if v] snake_case: List[Any] = [k for k, v in qid_to_has_ans.items() if not v] snake_case , snake_case: Union[str, Any] = get_raw_scores(__snake_case , __snake_case ) snake_case: str = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) snake_case: Union[str, Any] = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) snake_case: Optional[int] = make_eval_dict(__snake_case , __snake_case ) if has_ans_qids: snake_case: Any = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , 'HasAns' ) if no_ans_qids: snake_case: Tuple = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , OPTS.out_image_dir ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(__snake_case , __snake_case ) else: print(json.dumps(__snake_case , indent=2 ) ) if __name__ == "__main__": __UpperCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
705
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __UpperCAmelCase = { '''gpt-neox-20b''': 2_048, } class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) snake_case: Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: snake_case: Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) snake_case: int = add_prefix_space snake_case: List[Any] = pre_tok_class(**snake_case__ ) snake_case: Tuple = add_prefix_space def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: Union[str, Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: snake_case: List[str] = input_ids[-self.model_max_length :] return input_ids
706
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = CodeGenTokenizer __UpperCamelCase = CodeGenTokenizerFast __UpperCamelCase = True __UpperCamelCase = {'''add_prefix_space''': True} __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case: List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] snake_case: Dict = dict(zip(a_ , range(len(a_ ) ) ) ) snake_case: Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case: str = {"unk_token": "<unk>"} snake_case: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a_ ) ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **a_ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = "lower newer" snake_case: Optional[Any] = "lower newer" return input_text, output_text def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case: List[Any] = "lower newer" snake_case: str = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] snake_case: str = tokenizer.tokenize(a_ , add_prefix_space=a_ ) self.assertListEqual(a_ , a_ ) snake_case: Dict = tokens + [tokenizer.unk_token] snake_case: Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def _UpperCamelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return snake_case: Union[str, Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=a_ ) snake_case: Union[str, Any] = "lower newer" # Testing tokenization snake_case: Tuple = tokenizer.tokenize(a_ , add_prefix_space=a_ ) snake_case: List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids without special tokens snake_case: Any = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) snake_case: Tuple = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids with special tokens snake_case: Any = self.get_rust_tokenizer(add_prefix_space=a_ ) snake_case: Dict = tokenizer.encode(a_ , add_prefix_space=a_ ) snake_case: str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # Testing the unknown token snake_case: int = tokens + [rust_tokenizer.unk_token] snake_case: Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Optional[int] = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) # Simple input snake_case: Optional[Any] = "This is a simple input" snake_case: Tuple = ["This is a simple input 1", "This is a simple input 2"] snake_case: int = ("This is a simple input", "This is a pair") snake_case: List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding='max_length' ) # Simple input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding='max_length' ) # Simple input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding='max_length' , ) # Pair input self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding='max_length' ) # Pair input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding='max_length' ) # Pair input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding='max_length' , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input snake_case: Dict = "This is a simple input" snake_case: List[Any] = ["This is a simple input looooooooong", "This is a simple input"] snake_case: Optional[int] = ("This is a simple input", "This is a pair") snake_case: Union[str, Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] snake_case: Optional[Any] = tokenizer.pad_token_id snake_case: str = tokenizer(a_ , padding='max_length' , max_length=30 , return_tensors='np' ) snake_case: Tuple = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors='np' ) snake_case: Any = tokenizer(*a_ , padding='max_length' , max_length=60 , return_tensors='np' ) snake_case: Optional[int] = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = "$$$" snake_case: Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ ) snake_case: Optional[Any] = "This is a simple input" snake_case: List[Any] = ["This is a simple input 1", "This is a simple input 2"] snake_case: str = tokenizer.bos_token_id snake_case: Dict = tokenizer(a_ ) snake_case: List[str] = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0] , a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case: Union[str, Any] = tokenizer.decode(out_s.input_ids ) snake_case: Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) snake_case: Union[str, Any] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" snake_case: str = "\nif len_a > len_b: result = a\nelse: result = b" snake_case: str = tokenizer.encode(a_ ) snake_case: int = ["^#", re.escape('<|endoftext|>' ), "^'''", "^\"\"\"", "\n\n\n"] snake_case: Optional[Any] = tokenizer.decode(a_ , truncate_before_pattern=a_ ) self.assertEqual(a_ , a_ ) def _UpperCamelCase ( self ): '''simple docstring''' pass
707
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
0
def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Optional[int] ): '''simple docstring''' snake_case: List[str] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCAmelCase_ ( __A : str , __A : List[str] , __A : Optional[Any] ): '''simple docstring''' snake_case: Tuple = 0 while b > 0: if b & 1: snake_case: Union[str, Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
0
'''simple docstring''' from __future__ import annotations import numpy as np def lowerCAmelCase_ ( __A : list[float] ): '''simple docstring''' return np.maximum(0 , _A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
709
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser(A_ ) snake_case: Any = parser.parse_args_into_dataclasses()[0] snake_case: Tuple = TensorFlowBenchmark(args=A_ ) try: snake_case: Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: snake_case: List[str] = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' snake_case: Union[str, Any] = ' '.join(str(A_ ).split(' ' )[:-1] ) snake_case: List[str] = '' snake_case: Dict = eval(str(A_ ).split(' ' )[-1] ) snake_case: List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A_ ) if len(A_ ) > 0: snake_case: str = full_error_msg + begin_error_msg + str(A_ ) raise ValueError(A_ ) benchmark.run() if __name__ == "__main__": main()
710
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model'''} __UpperCAmelCase = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __UpperCAmelCase = { '''AI-Sweden/gpt-sw3-126m''': 2_048, '''AI-Sweden/gpt-sw3-350m''': 2_048, '''AI-Sweden/gpt-sw3-1.6b''': 2_048, '''AI-Sweden/gpt-sw3-6.7b''': 2_048, '''AI-Sweden/gpt-sw3-20b''': 2_048, } class SCREAMING_SNAKE_CASE ( snake_case__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Any = {} if sp_model_kwargs is None else sp_model_kwargs snake_case: str = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) snake_case: Any = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case: int = '<|endoftext|>' if eos_token is None else eos_token snake_case: Any = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case: Optional[int] = unk_token if pad_token is None else pad_token snake_case: List[Any] = eos_token if bos_token is None else bos_token else: snake_case: List[str] = '<pad>' if pad_token is None else pad_token snake_case: Optional[int] = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) snake_case: Union[str, Any] = do_lower_case snake_case: int = remove_space snake_case: Any = keep_accents snake_case: str = vocab_file snake_case: Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off snake_case: str = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case: Union[str, Any] = re.compile( F"""[{''.join(map(_A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self ): '''simple docstring''' snake_case: List[str] = self.__dict__.copy() snake_case: Tuple = None return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: List[Any] = {} snake_case: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = self.non_printing_characters_re.sub('' , _A ) # Normalize whitespaces snake_case: str = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization snake_case: Optional[Any] = unicodedata.normalize('NFC' , _A ) return text def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = self.preprocess_text(_A ) return self.sp_model.encode(_A , out_type=_A ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = [] snake_case: Optional[int] = '' snake_case: List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token snake_case: Tuple = True snake_case: int = [] else: current_sub_tokens.append(_A ) snake_case: List[str] = False out_string += self.sp_model.decode(_A ) return out_string def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if isinstance(_A , _A ): snake_case: Union[str, Any] = self.preprocess_text(_A ) snake_case: Optional[Any] = self.sp_model.encode(_A ) else: snake_case: Any = [self.preprocess_text(_A ) for t in text] snake_case: str = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": snake_case: Dict = torch.tensor(_A ) return token_ids def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.decode(_A ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] snake_case: Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(_A ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=_A )
711
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __UpperCAmelCase = NewType("DataClass", Any) __UpperCAmelCase = NewType("DataClassType", Any) def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: int = {str(__snake_case ): choice for choice in choices} return lambda __A : str_to_choice.get(__snake_case , __snake_case ) def lowerCAmelCase_ ( *, __A : List[Any] = None , __A : Optional[int] = None , __A : Optional[int] = dataclasses.MISSING , __A : Dict = dataclasses.MISSING , __A : Optional[Any] = None , **__A : Dict , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case: Optional[int] = {} if aliases is not None: snake_case: int = aliases if help is not None: snake_case: List[Any] = help return dataclasses.field(metadata=__snake_case , default=__snake_case , default_factory=__snake_case , **__snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = 42 def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "formatter_class" not in kwargs: snake_case: List[str] = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): snake_case: Dict = [dataclass_types] snake_case: Tuple = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = F"""--{field.name}""" snake_case: int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) snake_case: Optional[Any] = kwargs.pop('aliases' , [] ) if isinstance(__a , __a ): snake_case: List[Any] = [aliases] snake_case: List[Any] = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(__a , 'UnionType' ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F""" Problem encountered in field \'{field.name}\'.""" ) if type(__a ) not in field.type.__args__: # filter `str` in Union snake_case: Optional[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case: Dict = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case: Tuple = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case: Union[str, Any] = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case: Tuple = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: snake_case: Union[str, Any] = field.type.__args__ else: snake_case: List[str] = [x.value for x in field.type] snake_case: Optional[Any] = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: snake_case: Optional[int] = field.default else: snake_case: Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case: List[str] = copy(__a ) # Hack because type=bool in argparse does not behave as we want. snake_case: List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case: List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case: str = default # This tells argparse we accept 0 or 1 value after --field_name snake_case: str = '?' # This is the value that will get picked if we do --field_name (without value) snake_case: List[str] = True elif isclass(__a ) and issubclass(__a , __a ): snake_case: Optional[Any] = field.type.__args__[0] snake_case: Tuple = '+' if field.default_factory is not dataclasses.MISSING: snake_case: int = field.default_factory() elif field.default is dataclasses.MISSING: snake_case: Optional[int] = True else: snake_case: List[str] = field.type if field.default is not dataclasses.MISSING: snake_case: Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: snake_case: Optional[Any] = field.default_factory() else: snake_case: str = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case: List[str] = False parser.add_argument(F"""--no_{field.name}""" , action='store_false' , dest=field.name , **__a ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if hasattr(__a , '_argument_group_name' ): snake_case: Dict = self.add_argument_group(dtype._argument_group_name ) else: snake_case: Tuple = self try: snake_case: Optional[int] = get_type_hints(__a ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__a ): snake_case: int = '.'.join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue snake_case: List[str] = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case: str = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case: List[Any] = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case , snake_case: List[Any] = args_file_parser.parse_known_args(args=__a ) snake_case: str = vars(__a ).get(args_file_flag.lstrip('-' ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) snake_case: str = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case: Tuple = file_args + args if args is not None else file_args + sys.argv[1:] snake_case , snake_case: Union[str, Any] = self.parse_known_args(args=__a ) snake_case: Tuple = [] for dtype in self.dataclass_types: snake_case: Optional[int] = {f.name for f in dataclasses.fields(__a ) if f.init} snake_case: Optional[int] = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) snake_case: List[str] = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' snake_case: List[str] = set(args.keys() ) snake_case: Any = [] for dtype in self.dataclass_types: snake_case: Any = {f.name for f in dataclasses.fields(__a ) if f.init} snake_case: List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case: Optional[int] = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__a )}""" ) return tuple(__a ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' with open(Path(__a ) , encoding='utf-8' ) as open_json_file: snake_case: List[Any] = json.loads(open_json_file.read() ) snake_case: int = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' snake_case: Optional[int] = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
712
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( __A : Optional[int] , __A : Tuple , __A : Dict , __A : Union[str, Any] ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case: Tuple = array[indexa], array[indexa] def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Any , __A : List[str] , __A : Optional[Any] ): '''simple docstring''' if length > 1: snake_case: Dict = int(length / 2 ) for i in range(lowerCamelCase_ , low + middle ): comp_and_swap(lowerCamelCase_ , lowerCamelCase_ , i + middle , lowerCamelCase_ ) bitonic_merge(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) bitonic_merge(lowerCamelCase_ , low + middle , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase_ ( __A : Optional[Any] , __A : int , __A : Any , __A : Union[str, Any] ): '''simple docstring''' if length > 1: snake_case: int = int(length / 2 ) bitonic_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 ) bitonic_sort(lowerCamelCase_ , low + middle , lowerCamelCase_ , 0 ) bitonic_merge(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
713
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' snake_case: int = {} with open(A__ , 'r' ) as file: for line_number, line in enumerate(A__ ): snake_case: Union[str, Any] = line.strip() if line: snake_case: List[str] = line.split() snake_case: Tuple = line_number snake_case: Tuple = words[0] snake_case: Optional[Any] = value return result def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Tuple , __A : str , __A : Union[str, Any] , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: Tuple = getattr(A__ , A__ ) snake_case: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): snake_case: int = PARAM_MAPPING[full_name.split('.' )[-1]] snake_case: List[str] = 'param' if weight_type is not None and weight_type != "param": snake_case: str = getattr(A__ , A__ ).shape elif weight_type is not None and weight_type == "param": snake_case: Any = hf_pointer for attribute in hf_param_name.split('.' ): snake_case: List[Any] = getattr(A__ , A__ ) snake_case: Any = shape_pointer.shape # let's reduce dimension snake_case: Dict = value[0] else: snake_case: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Tuple = value elif weight_type == "weight_g": snake_case: Any = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: str = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): snake_case: int = getattr(A__ , A__ ) snake_case: Optional[int] = value else: snake_case: Tuple = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[str] , __A : Union[str, Any] , __A : str , __A : List[Any] , __A : int ): '''simple docstring''' snake_case: Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): snake_case: int = PARAM_MAPPING[full_name.split('.' )[-1]] snake_case: List[Any] = 'param' if weight_type is not None and weight_type != "param": snake_case: Dict = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case: Dict = '.'.join([key, hf_param_name] ) else: snake_case: Any = key snake_case: Any = value if 'lm_head' in full_key else value[0] __UpperCAmelCase = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowerCAmelCase_ ( __A : Any , __A : List[Any] , __A : Any=None , __A : Union[str, Any]=None ): '''simple docstring''' snake_case: Optional[int] = False for key, mapped_key in MAPPING.items(): snake_case: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: Optional[Any] = True if "*" in mapped_key: snake_case: List[Any] = name.split(A__ )[0].split('.' )[-2] snake_case: int = mapped_key.replace('*' , A__ ) if "weight_g" in name: snake_case: Union[str, Any] = 'weight_g' elif "weight_v" in name: snake_case: List[Any] = 'weight_v' elif "bias" in name: snake_case: Any = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case: List[Any] = 'weight' else: snake_case: Union[str, Any] = None if hf_dict is not None: rename_dict(A__ , A__ , A__ , A__ , A__ ) else: set_recursively(A__ , A__ , A__ , A__ , A__ ) return is_used return is_used def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Tuple , __A : int ): '''simple docstring''' snake_case: str = [] snake_case: Optional[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case: List[str] = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True else: snake_case: Union[str, Any] = load_wavaveca_layer(A__ , A__ , A__ ) if not is_used: unused_weights.append(A__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A : int , __A : int , __A : str , __A : int , __A : Union[str, Any] ): '''simple docstring''' snake_case: Dict = full_name.split('conv_layers.' )[-1] snake_case: str = name.split('.' ) snake_case: Union[str, Any] = int(items[0] ) snake_case: int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case: List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A__ ) @torch.no_grad() def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[int] , __A : Dict=None , __A : Tuple=None , __A : List[str]=True , __A : Optional[int]=False ): '''simple docstring''' if config_path is not None: snake_case: Dict = WavaVecaConfig.from_pretrained(A__ ) else: snake_case: List[str] = WavaVecaConfig() if is_seq_class: snake_case: Any = read_txt_into_dict(A__ ) snake_case: Tuple = idalabel snake_case: str = WavaVecaForSequenceClassification(A__ ) snake_case: Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) feature_extractor.save_pretrained(A__ ) elif is_finetuned: if dict_path: snake_case: List[Any] = Dictionary.load(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case: List[Any] = target_dict.pad_index snake_case: Optional[Any] = target_dict.bos_index snake_case: Tuple = target_dict.eos_index snake_case: int = len(target_dict.symbols ) snake_case: List[str] = os.path.join(A__ , 'vocab.json' ) if not os.path.isdir(A__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) snake_case: List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case: Optional[Any] = 0 snake_case: Union[str, Any] = 1 with open(A__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(A__ , A__ ) snake_case: Any = WavaVecaCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A__ , ) snake_case: Union[str, Any] = True if config.feat_extract_norm == 'layer' else False snake_case: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) snake_case: List[Any] = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) snake_case: int = WavaVecaForCTC(A__ ) else: snake_case: Dict = WavaVecaForPreTraining(A__ ) if is_finetuned or is_seq_class: snake_case , snake_case , snake_case: List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case: Union[str, Any] = argparse.Namespace(task='audio_pretraining' ) snake_case: int = fairseq.tasks.setup_task(A__ ) snake_case , snake_case , snake_case: Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A__ ) snake_case: List[str] = model[0].eval() recursively_load_weights(A__ , A__ , not is_finetuned ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
714
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : Optional[int] , __A : Optional[int]=False ): '''simple docstring''' snake_case: Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case: List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase_ ( __A : str , __A : int , __A : List[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case: List[str] = '' else: snake_case: Tuple = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case: str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case: int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case: Any = in_proj_weight[ : config.hidden_size, : ] snake_case: Optional[int] = in_proj_bias[: config.hidden_size] snake_case: Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case: Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case: Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case: Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a__ , a__ ) def lowerCAmelCase_ ( __A : Optional[Any] , __A : str , __A : List[str] ): '''simple docstring''' snake_case: Tuple = dct.pop(a__ ) snake_case: List[str] = val def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case: Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A : Any , __A : Dict , __A : List[Any]=True ): '''simple docstring''' snake_case: List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": snake_case: Any = 8 # set labels if required if not base_model: snake_case: str = 10_00 snake_case: Any = 'huggingface/label-files' snake_case: Any = 'imagenet-1k-id2label.json' snake_case: Optional[int] = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) snake_case: List[Any] = {int(a__ ): v for k, v in idalabel.items()} snake_case: Optional[Any] = idalabel snake_case: Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case: Any = 3_84 snake_case: Union[str, Any] = 15_36 snake_case: str = 12 snake_case: Any = 6 # load original model from torch hub snake_case: str = torch.hub.load('facebookresearch/dino:main' , a__ ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case: Any = original_model.state_dict() if base_model: remove_classification_head_(a__ ) snake_case: Optional[Any] = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , a__ ) # load HuggingFace model if base_model: snake_case: Dict = ViTModel(a__ , add_pooling_layer=a__ ).eval() else: snake_case: Dict = ViTForImageClassification(a__ ).eval() model.load_state_dict(a__ ) # Check outputs on an image, prepared by ViTImageProcessor snake_case: List[Any] = ViTImageProcessor() snake_case: Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case: Union[str, Any] = encoding['pixel_values'] snake_case: Union[str, Any] = model(a__ ) if base_model: snake_case: Any = original_model(a__ ) assert torch.allclose(a__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: snake_case: Tuple = original_model(a__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) Path(a__ ).mkdir(exist_ok=a__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") __UpperCAmelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' with open(__A , 'rb' ) as f: snake_case: List[str] = Image.open(__A ) return im.convert('RGB' ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A folder containing the training data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A folder containing the validation data."} ) __UpperCamelCase = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(snake_case )} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field(default=snake_case , metadata={"help": "Name or path of preprocessor config."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' snake_case: str = torch.stack([example['pixel_values'] for example in examples] ) snake_case: List[Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case: str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case: Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , __A , __A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case: Union[str, Any] = training_args.get_process_log_level() logger.setLevel(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case: Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case: Optional[Any] = {} if data_args.train_dir is not None: snake_case: str = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: snake_case: Dict = os.path.join(data_args.validation_dir , '**' ) snake_case: Tuple = load_dataset( 'imagefolder' , data_files=__A , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case: List[Any] = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __A ) and data_args.train_val_split > 0.0: snake_case: List[str] = dataset['''train'''].train_test_split(data_args.train_val_split ) snake_case: List[Any] = split['''train'''] snake_case: List[str] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case: List[str] = dataset['''train'''].features['''labels'''].names snake_case: Dict = {}, {} for i, label in enumerate(__A ): snake_case: Dict = str(__A ) snake_case: Tuple = label # Load the accuracy metric from the datasets package snake_case: Optional[int] = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) snake_case: Any = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel=__A , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case: Tuple = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) snake_case: str = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case: Any = image_processor.size['''shortest_edge'''] else: snake_case: Tuple = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case: Union[str, Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) snake_case: List[Any] = Compose( [ RandomResizedCrop(__A ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case: Optional[Any] = Compose( [ Resize(__A ), CenterCrop(__A ), ToTensor(), normalize, ] ) def train_transforms(__A : Union[str, Any] ): snake_case: Optional[int] = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(__A : Any ): snake_case: Union[str, Any] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: snake_case: Optional[Any] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__A ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: snake_case: Dict = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__A ) # Initalize our trainer snake_case: Dict = Trainer( model=__A , args=__A , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Union[str, Any] = None if training_args.resume_from_checkpoint is not None: snake_case: Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: List[Any] = last_checkpoint snake_case: Dict = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case: List[Any] = trainer.evaluate() trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) # Write model card and (optionally) push to hub snake_case: List[str] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) if __name__ == "__main__": main()
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( __A : str ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__A ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__A ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = "src/transformers" __UpperCAmelCase = "docs/source/en/tasks" def lowerCAmelCase_ ( __A : Dict , __A : List[str] , __A : Optional[int] ): '''simple docstring''' with open(__a , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case: int = f.readlines() # Find the start prompt. snake_case: Any = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 snake_case: Optional[int] = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' snake_case: Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] snake_case: List[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__a , set() ) snake_case: List[str] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCAmelCase_ ( __A : Union[str, Any] , __A : Union[str, Any]=False ): '''simple docstring''' snake_case , snake_case , snake_case , snake_case: str = _find_text_in_file( filename=os.path.join(__a , __a ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) snake_case: Dict = get_model_list_for_task(__a ) if current_list != new_list: if overwrite: with open(os.path.join(__a , __a ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
720
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""ConvNextFeatureExtractor"""] __UpperCAmelCase = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
0
'''simple docstring''' from typing import Any def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' if not input_list: return [] snake_case: str = [input_list.count(_lowerCAmelCase ) for value in input_list] snake_case: Any = max(_lowerCAmelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowerCAmelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
702
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , _lowercase ) import datasets snake_case: Union[str, Any] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) snake_case: int = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = 'Intel/dpt-large' snake_case: Union[str, Any] = pipeline('depth-estimation' , model=_lowercase ) snake_case: str = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) snake_case: List[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
703
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
0
'''simple docstring''' import unittest import numpy as np def lowerCAmelCase_ ( __A : Dict , __A : str , __A : int , __A : Optional[Any] = None , ): '''simple docstring''' snake_case: Any = np.shape(__SCREAMING_SNAKE_CASE ) snake_case: int = np.shape(__SCREAMING_SNAKE_CASE ) snake_case: str = np.shape(__SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: snake_case: Union[str, Any] = ( "Expected the same number of rows for A and B. " f"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: snake_case: str = ( "Expected the same number of columns for B and C. " f"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__SCREAMING_SNAKE_CASE ) snake_case: Any = pseudo_inv if a_inv is None: try: snake_case: Optional[Any] = np.linalg.inv(__SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case: List[Any] = np.array([[2, 1], [6, 3]] ) snake_case: str = schur_complement(lowercase_ , lowercase_ , lowercase_ ) snake_case: int = np.block([[a, b], [b.T, c]] ) snake_case: int = np.linalg.det(lowercase_ ) snake_case: int = np.linalg.det(lowercase_ ) snake_case: str = np.linalg.det(lowercase_ ) self.assertAlmostEqual(lowercase_ , det_a * det_s ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case: List[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case: Any = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowercase_ ): schur_complement(lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
704
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case: List[Any] = {} snake_case: List[str] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = i snake_case: Union[str, Any] = i snake_case: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: Dict = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case: Union[str, Any] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: str = i snake_case: Optional[int] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _UpperCamelCase ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case: int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _UpperCamelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" snake_case: List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) snake_case: Optional[int] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , 'do_lower_case' ) else False snake_case: int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ['的', '人', '有'] snake_case: Any = ''.join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case: Tuple = True snake_case: List[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = False snake_case: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: int = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case: Union[str, Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case: int = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Any = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) snake_case: str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Dict = '你好,你是谁' snake_case: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase_ ( __A : Any , __A : Any , __A : Optional[Any] , __A : str , __A : Dict ): '''simple docstring''' with open(__A ) as metadata_file: snake_case: int = json.load(__A ) snake_case: List[str] = LukeConfig(use_entity_aware_attention=__A , **metadata['model_config'] ) # Load in the weights from the checkpoint_path snake_case: List[str] = torch.load(__A , map_location='cpu' )['module'] # Load the entity vocab file snake_case: Any = load_original_entity_vocab(__A ) # add an entry for [MASK2] snake_case: int = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case: Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks snake_case: Union[str, Any] = AddedToken('<ent>' , lstrip=__A , rstrip=__A ) snake_case: Optional[Any] = AddedToken('<ent2>' , lstrip=__A , rstrip=__A ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__A ) with open(os.path.join(__A , 'tokenizer_config.json' ) , 'r' ) as f: snake_case: int = json.load(__A ) snake_case: List[Any] = 'MLukeTokenizer' with open(os.path.join(__A , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(__A , __A ) with open(os.path.join(__A , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(__A , __A ) snake_case: List[Any] = MLukeTokenizer.from_pretrained(__A ) # Initialize the embeddings of the special tokens snake_case: Tuple = tokenizer.convert_tokens_to_ids(['@'] )[0] snake_case: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] snake_case: Union[str, Any] = state_dict['embeddings.word_embeddings.weight'] snake_case: List[Any] = word_emb[ent_init_index].unsqueeze(0 ) snake_case: List[Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case: List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case: Any = state_dict[bias_name] snake_case: Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case: Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case: Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case: Dict = f"""encoder.layer.{layer_index}.attention.self.""" snake_case: Union[str, Any] = state_dict[prefix + matrix_name] snake_case: Optional[int] = state_dict[prefix + matrix_name] snake_case: Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case: str = state_dict['entity_embeddings.entity_embeddings.weight'] snake_case: Dict = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case: str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case: Optional[Any] = state_dict['entity_predictions.bias'] snake_case: Any = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case: List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case: Any = LukeForMaskedLM(config=__A ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) snake_case: Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): snake_case: Optional[int] = state_dict[key] else: snake_case: Union[str, Any] = state_dict[key] snake_case , snake_case: List[str] = model.load_state_dict(__A , strict=__A ) if set(__A ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case: str = MLukeTokenizer.from_pretrained(__A , task='entity_classification' ) snake_case: int = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' snake_case: Tuple = (0, 9) snake_case: List[Any] = tokenizer(__A , entity_spans=[span] , return_tensors='pt' ) snake_case: Optional[int] = model(**__A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case: Any = torch.Size((1, 33, 7_68) ) snake_case: int = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case: List[str] = torch.Size((1, 1, 7_68) ) snake_case: Union[str, Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __A , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case: Any = MLukeTokenizer.from_pretrained(__A ) snake_case: Optional[int] = 'Tokyo is the capital of <mask>.' snake_case: Dict = (24, 30) snake_case: str = tokenizer(__A , entity_spans=[span] , return_tensors='pt' ) snake_case: str = model(**__A ) snake_case: List[str] = encoding['input_ids'][0].tolist() snake_case: int = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) snake_case: List[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__A ) snake_case: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() snake_case: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(__A ) ) model.save_pretrained(__A ) def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: List[str] = ['[MASK]', '[PAD]', '[UNK]'] snake_case: int = [json.loads(__A ) for line in open(__A )] snake_case: Optional[Any] = {} for entry in data: snake_case: Union[str, Any] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case: int = entity_id break snake_case: int = f"""{language}:{entity_name}""" snake_case: Dict = entity_id return new_mapping if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __UpperCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
705
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan __UpperCAmelCase = 6378137.0 __UpperCAmelCase = 6356752.314245 __UpperCAmelCase = 6_378_137 def lowerCAmelCase_ ( __A : float , __A : float , __A : float , __A : float ): '''simple docstring''' snake_case: Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) snake_case: Tuple = radians(__A ) snake_case: Tuple = radians(__A ) # Equation snake_case: List[Any] = sin((phi_a - phi_a) / 2 ) snake_case: Dict = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda snake_case: Union[str, Any] = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' def lowerCAmelCase_ ( __A : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
692
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None class SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __UpperCamelCase = datasets.Audio() __UpperCamelCase = "audio" __UpperCamelCase = AudioFolderConfig __UpperCamelCase = 42 # definition at the bottom of the script __UpperCamelCase = AudioClassification(audio_column="audio" , label_column="label" ) __UpperCAmelCase = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __UpperCAmelCase = AUDIO_EXTENSIONS
707
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' snake_case: Tuple = model.config snake_case: str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) snake_case: Optional[Any] = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if "encoder.model" in name: snake_case: Optional[Any] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: snake_case: str = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: snake_case: Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: snake_case: Optional[int] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: snake_case: Tuple = 'encoder.' + name if "attn.proj" in name: snake_case: Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: snake_case: Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: snake_case: Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case: Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: snake_case: List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case: Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": snake_case: Dict = 'encoder.layernorm.weight' if name == "encoder.norm.bias": snake_case: int = 'encoder.layernorm.bias' return name def lowerCAmelCase_ ( __A : List[Any] , __A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case: List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: snake_case: Union[str, Any] = key.split('.' ) snake_case: Optional[Any] = int(key_split[3] ) snake_case: Any = int(key_split[5] ) snake_case: Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case: Union[str, Any] = val[:dim, :] snake_case: Any = val[dim : dim * 2, :] snake_case: List[str] = val[-dim:, :] else: snake_case: str = val[:dim] snake_case: Union[str, Any] = val[dim : dim * 2] snake_case: List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: snake_case: Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __A : List[Any] , __A : Any=None , __A : List[str]=False ): '''simple docstring''' snake_case: str = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model snake_case , snake_case: Optional[Any] = get_configs(__A ) snake_case: Optional[int] = DonutSwinModel(__A ) snake_case: Tuple = MBartForCausalLM(__A ) snake_case: Optional[Any] = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() snake_case: Optional[int] = original_model.state_dict() snake_case: Optional[int] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document snake_case: Union[str, Any] = load_dataset('hf-internal-testing/example-documents' ) snake_case: str = dataset['test'][0]['image'].convert('RGB' ) snake_case: Optional[int] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) snake_case: Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) snake_case: Dict = DonutProcessor(__A , __A ) snake_case: Optional[Any] = processor(__A , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": snake_case: int = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' snake_case: Optional[Any] = 'When is the coffee break?' snake_case: Optional[int] = task_prompt.replace('{user_input}' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": snake_case: Dict = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: snake_case: str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": snake_case: str = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": snake_case: int = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt snake_case: Optional[Any] = 'hello world' else: raise ValueError('Model name not supported' ) snake_case: Optional[int] = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='pt' )[ 'input_ids' ] snake_case: Any = original_model.encoder.model.patch_embed(__A ) snake_case , snake_case: Dict = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states snake_case: Tuple = original_model.encoder(__A ) snake_case: List[str] = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states snake_case: List[Any] = original_model(__A , __A , __A ).logits snake_case: List[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __UpperCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
0
from __future__ import annotations from math import pi, sqrt def lowerCAmelCase_ ( __A : float , __A : float ): '''simple docstring''' if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case: Union[str, Any] = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = np.random.randn(3 , 4 ) snake_case: Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case: Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Dict = np.random.randn(3 , 4 , 5 ) snake_case: str = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Optional[int] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) snake_case: Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: List[str] = np.random.randn(3 , 4 , 5 ) snake_case: Tuple = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = np.random.randn(3 , 4 ) snake_case: Tuple = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: str = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) ) snake_case: Any = np.random.randn(3 , 4 , 5 ) snake_case: List[str] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(1 , 3 , 4 ) snake_case: List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: int = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = np.random.randn(1 , 3 , 4 ) snake_case: Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) ) snake_case: Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Union[str, Any] = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case: List[Any] = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case: Tuple = np.random.randn(1 , 4 , 1 , 5 ) snake_case: Tuple = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = np.random.randn(3 , 4 ) snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_tf def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = np.random.randn(3 , 4 ) snake_case: Any = tf.constant(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) ) @require_flax def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = np.random.randn(3 , 4 ) snake_case: int = jnp.array(SCREAMING_SNAKE_CASE__ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
692
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__() snake_case: int = nn.Linear(3 , 4 ) snake_case: Tuple = nn.BatchNormad(4 ) snake_case: Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCamelCase__ ) ) ) class SCREAMING_SNAKE_CASE ( __A ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class SCREAMING_SNAKE_CASE ( __A ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return output + 1 class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = ModelForTest() snake_case: Union[str, Any] = ModelHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(test_model._hf_hook , UpperCamelCase__ ) self.assertTrue(hasattr(UpperCamelCase__ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(UpperCamelCase__ ) self.assertFalse(hasattr(UpperCamelCase__ , '_hf_hook' ) ) self.assertFalse(hasattr(UpperCamelCase__ , '_old_forward' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = ModelForTest() snake_case: Optional[Any] = ModelHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ , append=UpperCamelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCamelCase__ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(UpperCamelCase__ ) self.assertFalse(hasattr(UpperCamelCase__ , '_hf_hook' ) ) self.assertFalse(hasattr(UpperCamelCase__ , '_old_forward' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = ModelForTest() snake_case: Dict = torch.randn(2 , 3 ) snake_case: Optional[int] = test_model(x + 1 ) snake_case: Dict = test_model(x + 2 ) snake_case: List[Any] = PreForwardHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: Tuple = test_model(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case: Optional[int] = PreForwardHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: List[str] = test_model(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case: Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: Tuple = test_model(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = ModelForTest() snake_case: List[Any] = torch.randn(2 , 3 ) snake_case: Tuple = test_model(UpperCamelCase__ ) snake_case: Union[str, Any] = PostForwardHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: Any = test_model(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain snake_case: Optional[int] = PostForwardHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: int = test_model(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks snake_case: Tuple = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: str = test_model(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , output + 2 , atol=1E-5 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = ModelForTest() snake_case: Optional[Any] = torch.randn(2 , 3 ) snake_case: List[Any] = test_model(UpperCamelCase__ ) snake_case: Any = PostForwardHook() add_hook_to_module(UpperCamelCase__ , UpperCamelCase__ ) snake_case: List[Any] = test_model(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) snake_case: Optional[int] = True snake_case: Optional[Any] = test_model(UpperCamelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device snake_case: int = torch.randn(2 , 3 ) snake_case: Dict = model(UpperCamelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCamelCase__ , AlignDevicesHook(io_same_device=UpperCamelCase__ ) ) snake_case: Union[str, Any] = torch.randn(2 , 3 ).to(0 ) snake_case: int = model(UpperCamelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices snake_case: str = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCamelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case: Dict = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCamelCase__ ) snake_case: str = torch.randn(2 , 3 ) snake_case: Any = model(UpperCamelCase__ ) self.assertEqual(output.device , UpperCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload snake_case: str = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCamelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) snake_case: Union[str, Any] = torch.randn(2 , 3 ) snake_case: Union[str, Any] = model(UpperCamelCase__ ) self.assertEqual(output.device , UpperCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices snake_case: Union[str, Any] = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(UpperCamelCase__ , execution_device=UpperCamelCase__ , offload=UpperCamelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case: Any = torch.device(UpperCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCamelCase__ ) snake_case: Optional[Any] = torch.randn(2 , 3 ) snake_case: Optional[int] = model(UpperCamelCase__ ) self.assertEqual(output.device , UpperCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCamelCase__ , execution_device=UpperCamelCase__ , offload=UpperCamelCase__ , offload_buffers=UpperCamelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) snake_case: int = torch.randn(2 , 3 ) snake_case: List[str] = model(UpperCamelCase__ ) self.assertEqual(output.device , UpperCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices snake_case: Union[str, Any] = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( UpperCamelCase__ , execution_device=UpperCamelCase__ , offload=UpperCamelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device snake_case: List[str] = torch.device(UpperCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCamelCase__ ) snake_case: Any = torch.randn(2 , 3 ) snake_case: List[str] = model(UpperCamelCase__ ) self.assertEqual(output.device , UpperCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCamelCase__ , execution_device=UpperCamelCase__ , offload=UpperCamelCase__ , weights_map=model.state_dict() , offload_buffers=UpperCamelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) snake_case: Tuple = torch.randn(2 , 3 ) snake_case: Dict = model(UpperCamelCase__ ) self.assertEqual(output.device , UpperCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
709
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = "PoolFormerConfig" # Base docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = [1, 512, 7, 7] # Image classification docstring __UpperCAmelCase = "sail/poolformer_s12" __UpperCAmelCase = "tabby, tabby cat" __UpperCAmelCase = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( __A : Tuple , __A : float = 0.0 , __A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input snake_case: Union[str, Any] = 1 - drop_prob snake_case: List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case: List[Any] = keep_prob + torch.rand(__A , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case: Any = input.div(__A ) * random_tensor return output class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' super().__init__() snake_case: List[str] = drop_prob def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def _UpperCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' super().__init__() snake_case: List[str] = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) snake_case: List[str] = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) snake_case: Union[str, Any] = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.projection(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class SCREAMING_SNAKE_CASE ( nn.GroupNorm ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: Any = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) snake_case: str = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = ACTaFN[config.hidden_act] else: snake_case: int = config.hidden_act def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.act_fn(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.drop(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = self.conva(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Dict = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets snake_case: Union[str, Any] = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() snake_case: Optional[Any] = config.use_layer_scale if config.use_layer_scale: snake_case: Any = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.use_layer_scale: snake_case: str = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case: str = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = () snake_case: Dict = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case: Any = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = (output,) + outputs return outputs else: snake_case: Optional[Any] = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection snake_case: Union[str, Any] = pooling_output + hidden_states snake_case: List[Any] = () # Second residual connection inside the PoolFormerOutput block snake_case: List[str] = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) snake_case: Dict = hidden_states + layer_output snake_case: Optional[Any] = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: List[Any] = config # stochastic depth decay rule snake_case: List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case: Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case: List[Any] = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks snake_case: str = [] snake_case: int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case: List[str] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) snake_case: Tuple = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True ): '''simple docstring''' snake_case: str = () if output_hidden_states else None snake_case: Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case: Dict = layers # Get patch embeddings from hidden_states snake_case: int = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = blk(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = layer_outputs[0] if output_hidden_states: snake_case: List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PoolFormerConfig __UpperCamelCase = "poolformer" __UpperCamelCase = "pixel_values" __UpperCamelCase = True def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: List[Any] = value __UpperCAmelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = config snake_case: Tuple = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case: Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: List[Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Any = nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , snake_case , ) class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = config.num_labels snake_case: str = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm snake_case: int = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case: Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' snake_case: Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case: Optional[Any] = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) snake_case: Any = outputs[0] snake_case: str = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) snake_case: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case: Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case: Dict = 'single_label_classification' else: snake_case: List[str] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case: Union[str, Any] = MSELoss() if self.num_labels == 1: snake_case: List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case: int = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": snake_case: Union[str, Any] = CrossEntropyLoss() snake_case: Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case: int = BCEWithLogitsLoss() snake_case: Optional[int] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: snake_case: str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
692
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __UpperCAmelCase = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __UpperCAmelCase = logging.WARNING def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[Any] = os.getenv('DATASETS_VERBOSITY' , __A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowerCAmelCase_ ( ): '''simple docstring''' return __name__.split('.' )[0] def lowerCAmelCase_ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCAmelCase_ ( __A : Union[str, Any] = None ): '''simple docstring''' if name is None: snake_case: Optional[Any] = _get_library_name() return logging.getLogger(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( __A : List[Any] ): '''simple docstring''' _get_library_root_logger().setLevel(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' return set_verbosity(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' return set_verbosity(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' return set_verbosity(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' return set_verbosity(__A ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[int] = False def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): # pylint: disable=unused-argument '''simple docstring''' snake_case: Dict = args[0] if args else None def __iter__( self ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def empty_fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): '''simple docstring''' return self def __exit__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return __UpperCAmelCase = True class SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self , *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCamelCase_ , **lowerCamelCase_ ) else: return EmptyTqdm(*lowerCamelCase_ , **lowerCamelCase_ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase_ , **lowerCamelCase_ ) def _UpperCamelCase ( self ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __UpperCAmelCase = _tqdm_cls() def lowerCAmelCase_ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase_ ( ): '''simple docstring''' global _tqdm_active snake_case: str = True def lowerCAmelCase_ ( ): '''simple docstring''' global _tqdm_active snake_case: Union[str, Any] = False
710
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __UpperCAmelCase = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: List[str] = self.layer[current_layer](UpperCamelCase__ , UpperCamelCase__ , head_mask[current_layer] ) snake_case: Any = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowercase_ , ) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(UpperCamelCase__ ) snake_case: Any = BertEncoderWithPabee(UpperCamelCase__ ) self.init_weights() snake_case: Union[str, Any] = 0 snake_case: List[Any] = 0 snake_case: Optional[Any] = 0 snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = threshold def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = patience def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = 0 snake_case: int = 0 def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.inference_layers_num / self.inference_instances_num snake_case: List[Any] = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(UpperCamelCase__ ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: snake_case: List[str] = input_ids.size() elif inputs_embeds is not None: snake_case: List[Any] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) snake_case: Dict = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case: Any = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) if token_type_ids is None: snake_case: Optional[Any] = torch.zeros(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case: Optional[Any] = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: snake_case , snake_case , snake_case: List[str] = encoder_hidden_states.size() snake_case: Tuple = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: snake_case: int = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) snake_case: List[Any] = self.invert_attention_mask(UpperCamelCase__ ) else: snake_case: Any = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case: Optional[Any] = self.get_head_mask(UpperCamelCase__ , self.config.num_hidden_layers ) snake_case: Dict = self.embeddings( input_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ ) snake_case: Dict = embedding_output if self.training: snake_case: Dict = [] for i in range(self.config.num_hidden_layers ): snake_case: Any = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) snake_case: Tuple = self.pooler(UpperCamelCase__ ) snake_case: Dict = output_layers[i](output_dropout(UpperCamelCase__ ) ) res.append(UpperCamelCase__ ) elif self.patience == 0: # Use all layers for inference snake_case: List[str] = self.encoder( UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) snake_case: Union[str, Any] = self.pooler(encoder_outputs[0] ) snake_case: Optional[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase__ )] else: snake_case: List[str] = 0 snake_case: str = None snake_case: List[str] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 snake_case: Any = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) snake_case: str = self.pooler(UpperCamelCase__ ) snake_case: List[Any] = output_layers[i](UpperCamelCase__ ) if regression: snake_case: Optional[int] = logits.detach() if patient_result is not None: snake_case: Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: snake_case: Optional[Any] = 0 else: snake_case: List[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: snake_case: List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase__ ) ): patient_counter += 1 else: snake_case: Optional[int] = 0 snake_case: List[Any] = logits if patient_counter == self.patience: break snake_case: Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowercase_ , ) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__(UpperCamelCase__ ) snake_case: List[Any] = config.num_labels snake_case: Union[str, Any] = BertModelWithPabee(UpperCamelCase__ ) snake_case: Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) snake_case: Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): '''simple docstring''' snake_case: List[Any] = self.bert( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) snake_case: List[str] = (logits[-1],) if labels is not None: snake_case: Dict = None snake_case: str = 0 for ix, logits_item in enumerate(UpperCamelCase__ ): if self.num_labels == 1: # We are doing regression snake_case: Optional[int] = MSELoss() snake_case: List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: snake_case: Dict = CrossEntropyLoss() snake_case: List[Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: snake_case: Optional[int] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 snake_case: List[str] = (total_loss / total_weights,) + outputs return outputs
711
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __UpperCAmelCase = { "facebook/xglm-564M": 2_048, } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case: Optional[Any] = 7 snake_case: List[str] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case: str = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) snake_case: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) snake_case: int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case: Tuple = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case: Optional[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} snake_case: Union[str, Any] = len(self.sp_model ) snake_case: str = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' snake_case: List[Any] = self.__dict__.copy() snake_case: Union[str, Any] = None snake_case: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case: Union[str, Any] = {} snake_case: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case: Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _UpperCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case: Dict = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ' ' ).strip() return out_string def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case: List[str] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: snake_case: int = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
692
0
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __UpperCAmelCase = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCAmelCase_ ( __A : Optional[Any] , __A : Any=None ): '''simple docstring''' require_version(deps[pkg] , __lowerCAmelCase )
712
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
0
'''simple docstring''' def lowerCAmelCase_ ( __A : int , __A : str ): '''simple docstring''' print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCAmelCase_ ( __A : str , __A : str ): '''simple docstring''' snake_case: Optional[int] = [[float('inf' ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): snake_case: Any = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case: Any = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": __UpperCAmelCase = int(input("Enter number of vertices: ")) __UpperCAmelCase = int(input("Enter number of edges: ")) __UpperCAmelCase = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __UpperCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __UpperCAmelCase = int(input("Enter source:")) __UpperCAmelCase = int(input("Enter destination:")) __UpperCAmelCase = float(input("Enter weight:")) __UpperCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
713
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __A : Any , __A : Optional[Any] , __A : Union[str, Any] , __A : int , __A : Optional[int] ): '''simple docstring''' for attribute in key.split('.' ): snake_case: List[str] = getattr(__A , __A ) if weight_type is not None: snake_case: Optional[int] = getattr(__A , __A ).shape else: snake_case: Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case: Optional[int] = value elif weight_type == "weight_g": snake_case: List[str] = value elif weight_type == "weight_v": snake_case: Dict = value elif weight_type == "bias": snake_case: Optional[Any] = value else: snake_case: int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: List[Any] = [] snake_case: List[Any] = fairseq_model.state_dict() snake_case: Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case: Dict = None for name, value in fairseq_dict.items(): snake_case: Tuple = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) snake_case: List[Any] = True elif name.split('.' )[0] == "proj": snake_case: List[Any] = fairseq_model.proj snake_case: int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case: int = True if "*" in mapped_key: snake_case: List[str] = name.split(__A )[0].split('.' )[-2] snake_case: Dict = mapped_key.replace('*' , __A ) if "weight_g" in name: snake_case: Tuple = 'weight_g' elif "weight_v" in name: snake_case: int = 'weight_v' elif "bias" in name: snake_case: Tuple = 'bias' elif "weight" in name: snake_case: List[Any] = 'weight' else: snake_case: Any = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __A : List[str] , __A : List[Any] , __A : int , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: int = full_name.split('conv_layers.' )[-1] snake_case: Tuple = name.split('.' ) snake_case: Any = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case: Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case: int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case: Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case: str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def lowerCAmelCase_ ( __A : Dict ): '''simple docstring''' snake_case , snake_case: List[Any] = emb.weight.shape snake_case: Optional[int] = nn.Linear(__A , __A , bias=__A ) snake_case: Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' with open(__A , 'r' , encoding='utf-8' ) as f: snake_case: List[Any] = f.readlines() snake_case: Any = [line.split(' ' )[0] for line in lines] snake_case: int = len(__A ) snake_case: Dict = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Any , __A : List[Any] , __A : int , __A : str , ): '''simple docstring''' snake_case: Union[str, Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: str = SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) snake_case: List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) snake_case , snake_case , snake_case: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case: List[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case: Optional[Any] = WavaVecaModel(__A ) snake_case: Any = recursively_load_weights_wavaveca(model.encoder , __A ) snake_case: Union[str, Any] = SpeechaTextaForCausalLM(__A ) snake_case , snake_case: Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case: str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case: int = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) snake_case: List[Any] = False # add projection layer snake_case: Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case: Union[str, Any] = nn.Parameter(projection_layer.bias ) snake_case: List[Any] = create_vocab_dict(__A ) with open(os.path.join(__A , 'vocab.json' ) , 'w' ) as fp: json.dump(__A , __A ) snake_case: Union[str, Any] = SpeechaTextaTokenizer(os.path.join(__A , 'vocab.json' ) ) tokenizer.save_pretrained(__A ) snake_case: Tuple = hf_wavavec.config.to_dict() snake_case: int = tokenizer.pad_token_id snake_case: Dict = tokenizer.bos_token_id snake_case: Optional[int] = tokenizer.eos_token_id snake_case: Dict = 'speech_to_text_2' snake_case: Optional[Any] = 'wav2vec2' snake_case: Tuple = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
692
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(features=_A , cache_dir=_A , keep_in_memory=_A , **_A ) snake_case: int = Sql( cache_dir=_A , features=_A , sql=_A , con=_A , **_A , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = None snake_case: str = None snake_case: Union[str, Any] = None snake_case: str = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , ) # Build dataset for splits snake_case: Optional[Any] = self.builder.as_dataset( split='train' , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) snake_case: int = dataset snake_case: int = name snake_case: Optional[Any] = con snake_case: List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case: str = num_proc snake_case: int = to_sql_kwargs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.to_sql_kwargs.pop('sql' , _A ) snake_case: Union[str, Any] = self.to_sql_kwargs.pop('con' , _A ) snake_case: int = self.to_sql_kwargs.pop('index' , _A ) snake_case: Optional[Any] = self._write(index=_A , **self.to_sql_kwargs ) return written def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case , snake_case: Dict = args snake_case: List[Any] = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs snake_case: Union[str, Any] = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case: List[str] = batch.to_pandas() snake_case: Union[str, Any] = df.to_sql(self.name , self.con , index=_A , **_A ) return num_rows or len(_A ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: snake_case , snake_case: str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
714
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 1_00 ): '''simple docstring''' snake_case: List[str] = n * (n + 1) * (2 * n + 1) / 6 snake_case: List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
692
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” __UpperCAmelCase = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __UpperCAmelCase = 0 __UpperCAmelCase = 0XE_000 __UpperCAmelCase = 0XE_001 __UpperCAmelCase = 0XE_002 __UpperCAmelCase = 0XE_003 __UpperCAmelCase = 0XE_004 # Maps special codepoints to human-readable names. __UpperCAmelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __UpperCAmelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE__=chr(__UpperCamelCase ) , SCREAMING_SNAKE_CASE__=chr(__UpperCamelCase ) , SCREAMING_SNAKE_CASE__=chr(__UpperCamelCase ) , SCREAMING_SNAKE_CASE__=chr(__UpperCamelCase ) , SCREAMING_SNAKE_CASE__=chr(__UpperCamelCase ) , SCREAMING_SNAKE_CASE__=chr(__UpperCamelCase ) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20_48 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' snake_case: List[str] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token snake_case: List[str] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token snake_case: Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token snake_case: Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token snake_case: Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case: str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , model_max_length=__UpperCamelCase , **__UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. snake_case: List[str] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): snake_case: List[str] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. snake_case: List[Any] = { codepoint: name for name, codepoint in self._special_codepoints.items() } snake_case: List[str] = UNICODE_VOCAB_SIZE snake_case: Optional[Any] = len(self._special_codepoints ) @property def _UpperCamelCase ( self ): '''simple docstring''' return self._unicode_vocab_size def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return list(__UpperCamelCase ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' try: return ord(__UpperCamelCase ) except TypeError: raise ValueError(F"""invalid token: \'{token}\'""" ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCamelCase ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return "".join(__UpperCamelCase ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: Tuple = [self.sep_token_id] snake_case: Union[str, Any] = [self.cls_token_id] snake_case: int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) snake_case: Any = [1] + ([0] * len(__UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCamelCase )) + [1] return result def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' snake_case: List[str] = [self.sep_token_id] snake_case: Dict = [self.cls_token_id] snake_case: str = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): '''simple docstring''' return ()
715
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __UpperCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __UpperCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __UpperCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( __A : Dict , __A : List[Any] ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case: List[Any] = k.replace(__A , __A ) return k def lowerCAmelCase_ ( __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[int] = BigBirdPegasusConfig(**__A ) snake_case: List[Any] = BigBirdPegasusForConditionalGeneration(__A ) snake_case: Any = torch_model.state_dict() snake_case: Any = {} # separating decoder weights snake_case: Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} snake_case: Any = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): snake_case: List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Any = DECODER_PATTERNS snake_case: int = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: Optional[Any] = v.T snake_case: Any = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): snake_case: List[Any] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue snake_case: Union[str, Any] = REMAINING_PATTERNS snake_case: str = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): snake_case: int = v.T snake_case: Any = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case: str = mapping['model.embed_positions.weight'] snake_case: Any = mapping.pop('model.embed_positions.weight' ) snake_case , snake_case: Union[str, Any] = torch_model.load_state_dict(__A , strict=__A ) snake_case: Optional[int] = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' snake_case: Tuple = tf.train.list_variables(__A ) snake_case: str = {} snake_case: List[str] = ['global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): snake_case: str = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case: Any = tf.train.load_variable(__A , __A ) snake_case: Optional[int] = array return tf_weights def lowerCAmelCase_ ( __A : str , __A : str , __A : dict ): '''simple docstring''' snake_case: int = get_tf_weights_as_numpy(__A ) snake_case: int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCAmelCase = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) snake_case: List[str] = self.transformer_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = 'src/transformers' shutil.rmtree(self.transformer_dir ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: Union[str, Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case: List[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case: Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) snake_case: Any = black.format_str(SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = os.path.join(self.transformer_dir , 'new_code.py' ) with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='\n' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , SCREAMING_SNAKE_CASE__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with a really long name snake_case: Dict = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , SCREAMING_SNAKE_CASE__ , overwrite_result=re.sub('Bert' , 'TestModel' , SCREAMING_SNAKE_CASE__ ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] snake_case: Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) snake_case: str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) snake_case: Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) snake_case , snake_case: Dict = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , localized_readme['format_model_list'] ) self.assertFalse(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case , snake_case: Optional[Any] = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) snake_case: int = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) snake_case: str = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) snake_case , snake_case: Dict = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
717
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = tempfile.mkdtemp() snake_case: Optional[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: Optional[int] = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Union[str, Any] = self.get_image_processor() snake_case: List[str] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Any = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[int] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Tuple = self.get_tokenizer() snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.prepare_image_inputs() snake_case: List[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Dict = 'Alexandra,T-shirt的价格是15便士。' snake_case: Tuple = self.prepare_image_inputs() snake_case: Any = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.get_image_processor() snake_case: str = self.get_tokenizer() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: int = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_image_processor() snake_case: Dict = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = 'Alexandra,T-shirt的价格是15便士。' snake_case: List[Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
0
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : Any , __A : int , __A : Dict ): '''simple docstring''' snake_case: Dict = WavaVecaForSequenceClassification.from_pretrained(__A , config=__A ) snake_case: Optional[int] = downstream_dict['''projector.weight'''] snake_case: Optional[int] = downstream_dict['''projector.bias'''] snake_case: Dict = downstream_dict['''model.post_net.linear.weight'''] snake_case: Optional[Any] = downstream_dict['''model.post_net.linear.bias'''] return model def lowerCAmelCase_ ( __A : Optional[int] , __A : Dict , __A : Union[str, Any] ): '''simple docstring''' snake_case: str = WavaVecaForAudioFrameClassification.from_pretrained(__A , config=__A ) snake_case: List[Any] = downstream_dict['''model.linear.weight'''] snake_case: Tuple = downstream_dict['''model.linear.bias'''] return model def lowerCAmelCase_ ( __A : Optional[int] , __A : Any , __A : List[Any] ): '''simple docstring''' snake_case: Dict = WavaVecaForXVector.from_pretrained(__A , config=__A ) snake_case: Tuple = downstream_dict['''connector.weight'''] snake_case: Any = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case: int = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case: int = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case: List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] snake_case: Any = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] snake_case: Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] snake_case: Any = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] snake_case: Union[str, Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowerCAmelCase_ ( __A : Union[str, Any] , __A : List[str] , __A : Dict , __A : Any ): '''simple docstring''' snake_case: List[str] = torch.load(__A , map_location='cpu' ) snake_case: Dict = checkpoint['''Downstream'''] snake_case: Optional[Any] = WavaVecaConfig.from_pretrained(__A ) snake_case: Tuple = WavaVecaFeatureExtractor.from_pretrained( __A , return_attention_mask=__A , do_normalize=__A ) snake_case: List[str] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): snake_case: Dict = convert_classification(__A , __A , __A ) elif arch.endswith('ForAudioFrameClassification' ): snake_case: Union[str, Any] = convert_diarization(__A , __A , __A ) elif arch.endswith('ForXVector' ): snake_case: Any = convert_xvector(__A , __A , __A ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case: str = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") __UpperCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( snake_case ): '''simple docstring''' __UpperCamelCase = "swinv2" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: int = image_size snake_case: Union[str, Any] = patch_size snake_case: List[str] = num_channels snake_case: Tuple = embed_dim snake_case: str = depths snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = num_heads snake_case: Optional[int] = window_size snake_case: Any = mlp_ratio snake_case: Optional[int] = qkv_bias snake_case: Union[str, Any] = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: Dict = drop_path_rate snake_case: List[str] = hidden_act snake_case: int = use_absolute_embeddings snake_case: Any = layer_norm_eps snake_case: Dict = initializer_range snake_case: List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Tuple = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) snake_case: Union[str, Any] = (0, 0, 0, 0)
692
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = IFInpaintingPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} def _UpperCamelCase ( self ): '''simple docstring''' return self._get_dummy_components() def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): snake_case: Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: snake_case: int = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: str = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _UpperCamelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' self._test_save_load_local() def _UpperCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
719
'''simple docstring''' import os import sys import unittest __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase = os.path.join(git_repo_path, "src", "transformers") __UpperCAmelCase = "\n{0} = None\n" __UpperCAmelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __UpperCAmelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tokenizers' ) snake_case: List[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'tensorflow_text' ) snake_case: int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers' ) snake_case: Optional[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tensorflow_text' ) snake_case: Dict = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'sentencepiece_and_tokenizers_and_vision' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE__ ) self.assertIn('tensorflow_text' , SCREAMING_SNAKE_CASE__ ) self.assertIn('sentencepiece_and_tokenizers' , SCREAMING_SNAKE_CASE__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '\nCONSTANT = None\n' ) snake_case: Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE__ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case: Optional[int] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case: Tuple = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case: Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE__ )
692
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ): '''simple docstring''' snake_case: Optional[Any] = parent snake_case: List[Any] = batch_size snake_case: Optional[int] = seq_length snake_case: List[Any] = is_training snake_case: Optional[int] = use_input_mask snake_case: Optional[Any] = use_token_type_ids snake_case: Optional[Any] = use_labels snake_case: Optional[Any] = vocab_size snake_case: List[str] = hidden_size snake_case: int = num_hidden_layers snake_case: Tuple = num_attention_heads snake_case: Optional[Any] = intermediate_size snake_case: Optional[Any] = hidden_act snake_case: Dict = hidden_dropout_prob snake_case: int = attention_probs_dropout_prob snake_case: Any = max_position_embeddings snake_case: str = type_vocab_size snake_case: List[Any] = type_sequence_label_size snake_case: Optional[Any] = initializer_range snake_case: List[Any] = num_labels snake_case: str = num_choices snake_case: Dict = scope def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case: Optional[Any] = None if self.use_input_mask: snake_case: int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case: int = None snake_case: List[str] = None snake_case: str = None if self.use_labels: snake_case: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case: int = ids_tensor([self.batch_size] , self.num_choices ) snake_case: Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = DistilBertModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[str] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Any = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Tuple = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[str] = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = self.num_labels snake_case: List[Any] = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = self.num_labels snake_case: List[Any] = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: int = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Union[str, Any] = self.num_choices snake_case: Optional[Any] = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case: Optional[int] = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.prepare_config_and_inputs() ((snake_case) , (snake_case) , (snake_case) , (snake_case) , (snake_case) , (snake_case)): int = config_and_inputs snake_case: Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCamelCase = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = DistilBertModelTester(self ) snake_case: Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , dim=37 ) def _UpperCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: List[str] = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return snake_case: List[Any] = True snake_case: Optional[Any] = model_class(config=SCREAMING_SNAKE_CASE__ ) snake_case: int = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.jit.trace( SCREAMING_SNAKE_CASE__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'traced_model.pt' ) ) snake_case: Optional[int] = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE__ , 'traced_model.pt' ) , map_location=SCREAMING_SNAKE_CASE__ ) loaded(inputs_dict['input_ids'].to(SCREAMING_SNAKE_CASE__ ) , inputs_dict['attention_mask'].to(SCREAMING_SNAKE_CASE__ ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = DistilBertModel.from_pretrained('distilbert-base-uncased' ) snake_case: Any = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case: str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case: str = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] snake_case: Optional[Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) snake_case: Any = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
720
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = question_encoder snake_case: Union[str, Any] = generator snake_case: Optional[int] = self.question_encoder def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'question_encoder_tokenizer' ) snake_case: Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE__ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE__ ) @classmethod def _UpperCamelCase ( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case: int = kwargs.pop('config' , SCREAMING_SNAKE_CASE__ ) if config is None: snake_case: str = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) snake_case: Dict = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE__ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.question_encoder def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.generator def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "longest" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE__ , ) if max_length is None: snake_case: Optional[Any] = self.current_tokenizer.model_max_length snake_case: int = self( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case: Any = self.current_tokenizer.model_max_length snake_case: List[str] = self( text_target=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: Dict = labels['input_ids'] return model_inputs
692
0
'''simple docstring''' import numpy as np class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case: int = (0, 0) snake_case: Tuple = None snake_case: List[Any] = 0 snake_case: Union[str, Any] = 0 snake_case: str = 0 def __eq__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self ): '''simple docstring''' print(self.position ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__=(5, 5) ): '''simple docstring''' snake_case: Any = np.zeros(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = world_size[0] snake_case: List[str] = world_size[1] def _UpperCamelCase ( self ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] snake_case: Dict = cell.position[0] snake_case: Any = cell.position[1] snake_case: List[str] = [] for n in neughbour_cord: snake_case: Union[str, Any] = current_x + n[0] snake_case: str = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: snake_case: Optional[Any] = Cell() snake_case: Optional[Any] = (x, y) snake_case: int = cell neighbours.append(SCREAMING_SNAKE_CASE__ ) return neighbours def lowerCAmelCase_ ( __A : Dict , __A : Union[str, Any] , __A : Optional[int] ): '''simple docstring''' snake_case: str = [] snake_case: List[str] = [] _open.append(lowerCamelCase__ ) while _open: snake_case: List[str] = np.argmin([n.f for n in _open] ) snake_case: int = _open[min_f] _closed.append(_open.pop(lowerCamelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCamelCase__ ): for c in _closed: if c == n: continue snake_case: Dict = current.g + 1 snake_case , snake_case: List[Any] = n.position snake_case , snake_case: Optional[Any] = goal.position snake_case: List[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 snake_case: int = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCamelCase__ ) snake_case: str = [] while current.parent is not None: path.append(current.position ) snake_case: Optional[Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __UpperCAmelCase = Gridworld() # Start position and goal __UpperCAmelCase = Cell() __UpperCAmelCase = (0, 0) __UpperCAmelCase = Cell() __UpperCAmelCase = (4, 4) print(F'path from {start.position} to {goal.position}') __UpperCAmelCase = astar(world, start, goal) # Just for visual reasons. for i in s: __UpperCAmelCase = 1 print(world.w)
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) set_seed(770) __UpperCAmelCase = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } __UpperCAmelCase = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } __UpperCAmelCase = os.path.dirname(os.path.abspath(__file__)) __UpperCAmelCase = os.path.join(os.path.expanduser("~"), ".cache") __UpperCAmelCase = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def lowerCAmelCase_ ( __A : List[str] , __A : Tuple=False ): '''simple docstring''' snake_case: str = model_type if use_small: key += "_small" return os.path.join(__A , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCAmelCase_ ( __A : Dict , __A : str ): '''simple docstring''' os.makedirs(__A , exist_ok=__A ) hf_hub_download(repo_id=__A , filename=__A , local_dir=__A ) def lowerCAmelCase_ ( __A : str , __A : Optional[Any] , __A : Union[str, Any]=False , __A : Union[str, Any]="text" ): '''simple docstring''' if model_type == "text": snake_case: Union[str, Any] = BarkSemanticModel snake_case: str = BarkSemanticConfig snake_case: Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": snake_case: Any = BarkCoarseModel snake_case: Tuple = BarkCoarseConfig snake_case: List[Any] = BarkCoarseGenerationConfig elif model_type == "fine": snake_case: Union[str, Any] = BarkFineModel snake_case: Union[str, Any] = BarkFineConfig snake_case: str = BarkFineGenerationConfig else: raise NotImplementedError() snake_case: int = f"""{model_type}_small""" if use_small else model_type snake_case: List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__A ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) snake_case: Dict = torch.load(__A , map_location=__A ) # this is a hack snake_case: Tuple = checkpoint['model_args'] if "input_vocab_size" not in model_args: snake_case: List[Any] = model_args['vocab_size'] snake_case: int = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments snake_case: Dict = model_args.pop('n_head' ) snake_case: Tuple = model_args.pop('n_embd' ) snake_case: List[Any] = model_args.pop('n_layer' ) snake_case: Any = ConfigClass(**checkpoint['model_args'] ) snake_case: Tuple = ModelClass(config=__A ) snake_case: int = GenerationConfigClass() snake_case: List[str] = model_generation_config snake_case: Optional[Any] = checkpoint['model'] # fixup checkpoint snake_case: List[Any] = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(__A ): # replace part of the key with corresponding layer name in HF implementation snake_case: Union[str, Any] = k[len(__A ) :] for old_layer_name in new_layer_name_dict: snake_case: Optional[int] = new_k.replace(__A , new_layer_name_dict[old_layer_name] ) snake_case: Optional[int] = state_dict.pop(__A ) snake_case: Union[str, Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) snake_case: List[Any] = {k for k in extra_keys if not k.endswith('.attn.bias' )} snake_case: Dict = set(model.state_dict().keys() ) - set(state_dict.keys() ) snake_case: Tuple = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(__A ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(__A ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(__A , strict=__A ) snake_case: int = model.num_parameters(exclude_embeddings=__A ) snake_case: int = checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(__A , 3 )} loss""" ) model.eval() model.to(__A ) del checkpoint, state_dict return model def lowerCAmelCase_ ( __A : str , __A : int=False , __A : Union[str, Any]="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() snake_case: Dict = 'cpu' # do conversion on cpu snake_case: List[Any] = _get_ckpt_path(__A , use_small=__A ) snake_case: Tuple = _load_model(__A , __A , model_type=__A , use_small=__A ) # load bark initial model snake_case: List[str] = _bark_load_model(__A , 'cpu' , model_type=__A , use_small=__A ) if model_type == "text": snake_case: str = bark_model['model'] if model.num_parameters(exclude_embeddings=__A ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model snake_case: List[Any] = 5 snake_case: str = 10 if model_type in ["text", "coarse"]: snake_case: List[Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) snake_case: List[Any] = bark_model(__A )[0] snake_case: Optional[Any] = model(__A ) # take last logits snake_case: Optional[Any] = output_new_model_total.logits[:, [-1], :] else: snake_case: Optional[int] = 3 snake_case: str = 8 snake_case: Optional[Any] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) snake_case: Optional[int] = model(__A , __A ) snake_case: Dict = bark_model(__A , __A ) snake_case: Any = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : str , __A : int , __A : str , __A : Tuple , __A : Dict , ): '''simple docstring''' snake_case: List[Any] = os.path.join(__A , __A ) snake_case: List[Any] = BarkSemanticConfig.from_pretrained(os.path.join(__A , 'config.json' ) ) snake_case: Dict = BarkCoarseConfig.from_pretrained(os.path.join(__A , 'config.json' ) ) snake_case: Tuple = BarkFineConfig.from_pretrained(os.path.join(__A , 'config.json' ) ) snake_case: Tuple = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) snake_case: Tuple = BarkSemanticModel.from_pretrained(__A ) snake_case: int = BarkCoarseModel.from_pretrained(__A ) snake_case: str = BarkFineModel.from_pretrained(__A ) snake_case: Tuple = EncodecModel.from_pretrained('facebook/encodec_24khz' ) snake_case: Optional[Any] = BarkConfig.from_sub_model_configs( __A , __A , __A , __A ) snake_case: Optional[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) snake_case: List[Any] = BarkModel(__A ) snake_case: Any = semantic snake_case: Union[str, Any] = coarseAcoustic snake_case: Tuple = fineAcoustic snake_case: Any = codec snake_case: str = bark_generation_config Path(__A ).mkdir(exist_ok=__A ) bark.save_pretrained(__A , repo_id=__A , push_to_hub=__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") __UpperCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
700
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __UpperCamelCase = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __UpperCamelCase = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the training data."} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) __UpperCamelCase = field(default=snake_case , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCamelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: snake_case: str = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." snake_case: Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' __UpperCamelCase = field( default=snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=snake_case , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case: Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case: str = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case: Tuple = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case: List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. snake_case: Optional[int] = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: snake_case: Tuple = data_args.train_file.split('.' )[-1] snake_case: Union[str, Any] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." snake_case: Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files snake_case: List[Any] = load_dataset('csv' , data_files=__A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files snake_case: Optional[Any] = load_dataset('json' , data_files=__A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels snake_case: Tuple = raw_datasets['train'].features['label'].names snake_case: List[str] = len(__A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer snake_case: List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__A , ) snake_case: Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: snake_case: int = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case: Union[str, Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. snake_case: Optional[Any] = {'Refused': 0, 'Entailed': 1} snake_case: List[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case: List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__A : Any ): # Tokenize the texts def _convert_table_text_to_pandas(__A : Dict ): snake_case: str = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] snake_case: List[str] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd snake_case: str = examples['statement'] snake_case: int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) snake_case: List[Any] = tokenizer(__A , __A , padding=__A , max_length=__A , truncation=__A ) snake_case: List[Any] = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): snake_case: int = raw_datasets.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case: List[str] = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case: Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case: Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case: Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) snake_case: str = raw_datasets['test'] if data_args.max_predict_samples is not None: snake_case: List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): snake_case: int = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions snake_case: List[str] = np.argmax(__A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case: str = default_data_collator elif training_args.fpaa: snake_case: List[str] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: snake_case: List[Any] = None # Initialize our Trainer snake_case: List[str] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: snake_case: Optional[int] = None if training_args.resume_from_checkpoint is not None: snake_case: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case: Optional[Any] = last_checkpoint snake_case: Union[str, Any] = trainer.train(resume_from_checkpoint=__A ) snake_case: List[Any] = train_result.metrics snake_case: List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) snake_case: Optional[Any] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __A ) trainer.save_metrics('train' , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case: Dict = trainer.evaluate(eval_dataset=__A ) snake_case: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) snake_case: Dict = min(__A , len(__A ) ) trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. snake_case: Optional[int] = predict_dataset.remove_columns('label' ) snake_case: str = trainer.predict(__A , metric_key_prefix='predict' ).predictions snake_case: Any = np.argmax(__A , axis=1 ) snake_case: int = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__A ): snake_case: int = label_list[item] writer.write(f"""{index}\t{item}\n""" ) snake_case: Optional[int] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
692
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): '''simple docstring''' __UpperCamelCase = "focalnet" def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=[1_92, 3_84, 7_68, 7_68] , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE__=[3, 3, 3, 3] , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1E-4 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = image_size snake_case: Tuple = patch_size snake_case: str = num_channels snake_case: Dict = embed_dim snake_case: str = use_conv_embed snake_case: Tuple = hidden_sizes snake_case: int = depths snake_case: List[str] = focal_levels snake_case: Any = focal_windows snake_case: Any = hidden_act snake_case: Optional[int] = mlp_ratio snake_case: List[str] = hidden_dropout_prob snake_case: Optional[Any] = drop_path_rate snake_case: Dict = use_layerscale snake_case: Union[str, Any] = layerscale_value snake_case: List[Any] = use_post_layernorm snake_case: int = use_post_layernorm_in_modulation snake_case: Optional[Any] = normalize_modulator snake_case: int = initializer_range snake_case: Union[str, Any] = layer_norm_eps snake_case: Optional[int] = encoder_stride snake_case: Any = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] snake_case: List[str] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names )
701
'''simple docstring''' import math def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( __A : float = 0.1 ): '''simple docstring''' snake_case: Optional[int] = 3 snake_case: int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCAmelCase_ ( __A : int , __A : List[str] , __A : Dict , __A : Optional[Any] , __A : Optional[int] , __A : int , __A : Any , __A : List[str] , __A : Union[str, Any] , __A : List[Any] , __A : Union[str, Any] , __A : List[Any] , ): '''simple docstring''' snake_case: Optional[Any] = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } snake_case: List[str] = input_paths_and_base_extractors[compression_format] if input_path is None: snake_case: str = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) snake_case: str = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(__A , __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case: Optional[int] = file_path.read_text(encoding='utf-8' ) else: snake_case: Union[str, Any] = output_path.read_text(encoding='utf-8' ) snake_case: Optional[Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def lowerCAmelCase_ ( __A : List[str] , __A : Optional[Any] , __A : int , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : str , __A : Tuple , __A : str , __A : Union[str, Any] , __A : str , __A : Optional[int] , ): '''simple docstring''' snake_case: List[Any] = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } snake_case: Dict = input_paths[compression_format] if input_path is None: snake_case: Any = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[Any] = Extractor.infer_extractor_format(__A ) assert extractor_format is not None snake_case: Tuple = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(__A , __A , __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case: str = file_path.read_text(encoding='utf-8' ) else: snake_case: Any = output_path.read_text(encoding='utf-8' ) snake_case: Optional[Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __A : List[str] , __A : Dict ): '''simple docstring''' import tarfile snake_case: List[str] = tmp_path / 'data_dot_dot' directory.mkdir() snake_case: Optional[int] = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(__A , 'w' ) as f: f.add(__A , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __A : Optional[int] ): '''simple docstring''' import tarfile snake_case: List[str] = tmp_path / 'data_sym_link' directory.mkdir() snake_case: Optional[int] = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=__A ) with tarfile.TarFile(__A , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def lowerCAmelCase_ ( __A : str , __A : List[Any] , __A : Optional[Any] , __A : int , __A : Dict , __A : Any ): '''simple docstring''' snake_case: Tuple = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } snake_case: str = insecure_tar_files[insecure_tar_file] snake_case: str = tmp_path / 'extracted' TarExtractor.extract(__A , __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' snake_case: Optional[int] = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 snake_case: Dict = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
702
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
0