code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''BlipImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = False super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.image_processor def __call__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCamelCase = self.tokenizer __lowerCamelCase = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) return text_encoding # add pixel_values __lowerCamelCase = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) if text is not None: __lowerCamelCase = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) else: __lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase__ ) return encoding_image_processor def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = [] for part_id in partition_order: __lowerCamelCase = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(UpperCamelCase__ ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(UpperCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(2 ) __lowerCamelCase = [1, 0] __lowerCamelCase = _generate_iterable_examples(UpperCamelCase__ , UpperCamelCase__ ) # Reverse the partitions. __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , UpperCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(10 ).repartition(1 ) __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> int: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: __lowerCamelCase = lambda UpperCamelCase__ : x.reverse() __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [2, 1, 0] ) __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ).shuffle_data_sources(UpperCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowerCamelCase = SparkExamplesIterable(UpperCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() __lowerCamelCase = spark.range(100 ).repartition(1 ) __lowerCamelCase = Spark(UpperCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any]=None ) -> Dict: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" __lowerCamelCase = nn.Parameter(UpperCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" __lowerCamelCase = nn.Parameter(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = np.asarray(weights[0] ) __lowerCamelCase = np.asarray(weights[1] ) __lowerCamelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCamelCase = np.asarray(weights[0] ) __lowerCamelCase = np.asarray(weights[1] ) __lowerCamelCase = np.asarray(weights[2] ) __lowerCamelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> str: """simple docstring""" __lowerCamelCase = weights[0][0][0] __lowerCamelCase = np.asarray(layer_norm_a[0] ) __lowerCamelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # lsh weights + output __lowerCamelCase = weights[0][1] if len(UpperCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) else: set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) # intermediate weighs __lowerCamelCase = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase__ ) == 4: __lowerCamelCase = intermediate_weights[2] # layernorm 2 __lowerCamelCase = np.asarray(intermediate_weights[0][0] ) __lowerCamelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # intermediate dense __lowerCamelCase = np.asarray(intermediate_weights[1][0] ) __lowerCamelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) # intermediate out __lowerCamelCase = np.asarray(intermediate_weights[4][0] ) __lowerCamelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __lowerCamelCase = torch_model.reformer # word embeds __lowerCamelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , ) if isinstance(weights[3] , UpperCamelCase__ ): __lowerCamelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __lowerCamelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" __lowerCamelCase = nn.Parameter(torch.tensor(UpperCamelCase__ ) ) __lowerCamelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __lowerCamelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # output layer norm __lowerCamelCase = np.asarray(weights[7][0] ) __lowerCamelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # output embeddings __lowerCamelCase = np.asarray(weights[9][0] ) __lowerCamelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = ReformerConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = ReformerModelWithLMHead(UpperCamelCase__ ) with open(UpperCamelCase__ , 'rb' ) as f: __lowerCamelCase = pickle.load(UpperCamelCase__ )['weights'] set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="resnet50" , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , ) -> str: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = out_indices if out_indices is not None else [4] __lowerCamelCase = stage_names __lowerCamelCase = out_features __lowerCamelCase = backbone __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = use_pretrained_backbone __lowerCamelCase = is_training def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = self.get_config() return config, pixel_values def lowercase_ ( self ) -> Any: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = TimmBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TimmBackbone,) if is_torch_available() else () snake_case_ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = TimmBackboneModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'resnet18' __lowerCamelCase = 'microsoft/resnet-18' __lowerCamelCase = AutoBackbone.from_pretrained(lowerCamelCase__ , use_timm_backbone=lowerCamelCase__ ) __lowerCamelCase = AutoBackbone.from_pretrained(lowerCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCamelCase = AutoBackbone.from_pretrained(lowerCamelCase__ , use_timm_backbone=lowerCamelCase__ , out_indices=[1, 2, 3] ) __lowerCamelCase = AutoBackbone.from_pretrained(lowerCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True __lowerCamelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCamelCase = self.all_model_classes[0] __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCamelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(**lowerCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCamelCase = copy.deepcopy(lowerCamelCase__ ) __lowerCamelCase = None __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(**lowerCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCamelCase = copy.deepcopy(lowerCamelCase__ ) __lowerCamelCase = False __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(**lowerCamelCase__ )
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
__A = [0, 2, 4, 6, 8] __A = [1, 3, 5, 7, 9] def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __lowerCamelCase = 0 for digit in range(10 ): __lowerCamelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , UpperCamelCase__ , UpperCamelCase__ ) return result __lowerCamelCase = 0 for digita in range(10 ): __lowerCamelCase = digita if (remainder + digita) % 2 == 0: __lowerCamelCase = ODD_DIGITS else: __lowerCamelCase = EVEN_DIGITS for digita in other_parity_digits: __lowerCamelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCamelCase__ , UpperCamelCase__ , ) return result def lowerCamelCase_ ( UpperCamelCase__ : int = 9 ) -> int: """simple docstring""" __lowerCamelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase__ , 0 , [0] * length , UpperCamelCase__ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : dict , UpperCamelCase__ : str ) -> set[str]: """simple docstring""" __lowerCamelCase , __lowerCamelCase = set(UpperCamelCase__ ), [start] while stack: __lowerCamelCase = stack.pop() explored.add(UpperCamelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCamelCase__ ) return explored __A = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=12 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , lowerCamelCase__=0 , lowerCamelCase__=None , ) -> str: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = projection_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = bos_token_id def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __lowerCamelCase = input_mask.numpy() __lowerCamelCase , __lowerCamelCase = input_mask.shape __lowerCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TFBlipTextModel(config=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , training=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TFBlipTextModel,) if is_tf_available() else () snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = BlipTextModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TFBlipTextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__=True ) -> List[Any]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase__ )
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , 'rb' ) as fp: __lowerCamelCase = pickle.load(UpperCamelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __lowerCamelCase = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCamelCase__ ) __lowerCamelCase = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) __lowerCamelCase = os.path.abspath(UpperCamelCase__ ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase = TransfoXLConfig() else: __lowerCamelCase = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = TransfoXLLMHeadModel(UpperCamelCase__ ) __lowerCamelCase = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F"""Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F"""Save configuration file to {os.path.abspath(UpperCamelCase__ )}""" ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowerCamelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , UpperCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" assert _test_patching.open is open __lowerCamelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , UpperCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase_ ( ) -> Dict: """simple docstring""" __lowerCamelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , UpperCamelCase__ ): pass def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , UpperCamelCase__ ) is None with patch_submodule(_test_patching , 'len' , UpperCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = '__test_patch_submodule_start_and_stop_mock__' __lowerCamelCase = patch_submodule(_test_patching , 'open' , UpperCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowerCamelCase = '__test_patch_submodule_successive_join__' __lowerCamelCase = '__test_patch_submodule_successive_dirname__' __lowerCamelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , UpperCamelCase__ ): with patch_submodule(_test_patching , 'os.rename' , UpperCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , UpperCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , UpperCamelCase__ ): with patch_submodule(_test_patching , 'os.path.join' , UpperCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , UpperCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , UpperCamelCase__ ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , UpperCamelCase__ ): pass
348
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = size if size is not None else {'shortest_edge': 224} __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='size' , default_to_square=lowerCamelCase__ ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' , default_to_square=lowerCamelCase__ ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(lowerCamelCase__ ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __lowerCamelCase = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
348
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A = True except ImportError: __A = False __A = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( UpperCamelCase__ : Namespace ) -> List[str]: """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @staticmethod def lowercase_ ( lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=lowerCamelCase__ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=lowerCamelCase__ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , *lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = testing __lowerCamelCase = testing_file __lowerCamelCase = path def lowercase_ ( self ) -> List[Any]: '''simple docstring''' warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __lowerCamelCase = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowerCamelCase__ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) __lowerCamelCase = ( Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __lowerCamelCase = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase__ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: __lowerCamelCase = json.load(lowerCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , ) __lowerCamelCase = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: __lowerCamelCase = json.load(lowerCamelCase__ ) __lowerCamelCase = configuration['lowercase_modelname'] __lowerCamelCase = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"""{directory}/configuration.json""" ) __lowerCamelCase = 'PyTorch' in generate_tensorflow_pytorch_and_flax __lowerCamelCase = 'TensorFlow' in generate_tensorflow_pytorch_and_flax __lowerCamelCase = 'Flax' in generate_tensorflow_pytorch_and_flax __lowerCamelCase = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowerCamelCase__ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(lowerCamelCase__ ): with open(lowerCamelCase__ , 'r' ) as f: __lowerCamelCase = f.readlines() with open(lowerCamelCase__ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Create temp file __lowerCamelCase , __lowerCamelCase = mkstemp() __lowerCamelCase = False with fdopen(lowerCamelCase__ , 'w' ) as new_file: with open(lowerCamelCase__ ) as old_file: for line in old_file: new_file.write(lowerCamelCase__ ) if line_to_copy_below in line: __lowerCamelCase = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase__ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase__ , lowerCamelCase__ ) # Remove original file remove(lowerCamelCase__ ) # Move new file move(lowerCamelCase__ , lowerCamelCase__ ) def skip_units(lowerCamelCase__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase__ ): with open(lowerCamelCase__ ) as datafile: __lowerCamelCase = [] __lowerCamelCase = False __lowerCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: __lowerCamelCase = line.split('"' )[1] __lowerCamelCase = skip_units(lowerCamelCase__ ) elif "# Below: " in line and "##" not in line: __lowerCamelCase = line.split('"' )[1] __lowerCamelCase = skip_units(lowerCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = [] elif "# Replace with" in line and "##" not in line: __lowerCamelCase = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase__ ) remove(lowerCamelCase__ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowerCamelCase__ )
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
1
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] ) -> str: """simple docstring""" __lowerCamelCase = '' for word_or_phrase in separated: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
348
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
1
import numpy as np from PIL import Image def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: """simple docstring""" __lowerCamelCase = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # compute the shape of the output matrix __lowerCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCamelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCamelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase = 0 __lowerCamelCase = 0 return updated_arr def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: """simple docstring""" __lowerCamelCase = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # compute the shape of the output matrix __lowerCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCamelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCamelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCamelCase = 0 __lowerCamelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __A = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
348
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = GPTaTokenizer snake_case_ = GPTaTokenizerFast snake_case_ = True snake_case_ = {'''add_prefix_space''': True} snake_case_ = False def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCamelCase = {'unk_token': '<unk>'} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def lowercase_ ( self , **lowerCamelCase__ ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'lower newer' __lowerCamelCase = 'lower newer' return input_text, output_text def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = 'lower newer' __lowerCamelCase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase__ ) __lowerCamelCase = 'lower newer' # Testing tokenization __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids without special tokens __lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids with special tokens __lowerCamelCase = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing the unknown token __lowerCamelCase = tokens + [rust_tokenizer.unk_token] __lowerCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowercase_ ( self , lowerCamelCase__=15 ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) # Simple input __lowerCamelCase = 'This is a simple input' __lowerCamelCase = ['This is a simple input 1', 'This is a simple input 2'] __lowerCamelCase = ('This is a simple input', 'This is a pair') __lowerCamelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Simple input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Simple input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' , ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' ) # Pair input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='max_length' , ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __lowerCamelCase = 'This is a simple input' __lowerCamelCase = ['This is a simple input looooooooong', 'This is a simple input'] __lowerCamelCase = ('This is a simple input', 'This is a pair') __lowerCamelCase = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __lowerCamelCase = tokenizer.pad_token_id __lowerCamelCase = tokenizer(lowerCamelCase__ , padding='max_length' , max_length=30 , return_tensors='np' ) __lowerCamelCase = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncate=lowerCamelCase__ , return_tensors='np' ) __lowerCamelCase = tokenizer(*lowerCamelCase__ , padding='max_length' , max_length=60 , return_tensors='np' ) __lowerCamelCase = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncate=lowerCamelCase__ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = '$$$' __lowerCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCamelCase__ , add_bos_token=lowerCamelCase__ ) __lowerCamelCase = 'This is a simple input' __lowerCamelCase = ['This is a simple input 1', 'This is a simple input 2'] __lowerCamelCase = tokenizer.bos_token_id __lowerCamelCase = tokenizer(lowerCamelCase__ ) __lowerCamelCase = tokenizer(lowerCamelCase__ ) self.assertEqual(out_s.input_ids[0] , lowerCamelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCamelCase = tokenizer.decode(out_s.input_ids ) __lowerCamelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCamelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowercase_ ( self ) -> int: '''simple docstring''' pass def lowercase_ ( self ) -> Any: '''simple docstring''' # TODO: change to self.get_tokenizers() when the fast version is implemented __lowerCamelCase = [self.get_tokenizer(do_lower_case=lowerCamelCase__ , add_bos_token=lowerCamelCase__ )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase = 'Encode this.' __lowerCamelCase = 'This one too please.' __lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) encoded_sequence += tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode_plus( lowerCamelCase__ , lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , ) __lowerCamelCase = encoded_sequence_dict['input_ids'] __lowerCamelCase = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) __lowerCamelCase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCamelCase__ ) ] __lowerCamelCase = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 __lowerCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=lowerCamelCase__ ) __lowerCamelCase = 'A photo of a cat' __lowerCamelCase = tokenizer.encode( lowerCamelCase__ , ) self.assertEqual(lowerCamelCase__ , [2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained('test_opt' ) __lowerCamelCase = AutoTokenizer.from_pretrained('./test_opt' ) __lowerCamelCase = tokenizer.encode( lowerCamelCase__ , ) self.assertEqual(lowerCamelCase__ , [2, 250, 1_345, 9, 10, 4_758] ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=lowerCamelCase__ ) __lowerCamelCase = 'A photo of a cat' __lowerCamelCase = tokenizer.encode( lowerCamelCase__ , ) # Same as above self.assertEqual(lowerCamelCase__ , [2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=lowerCamelCase__ ) __lowerCamelCase = 'bos' __lowerCamelCase = tokenizer.get_vocab()['bos'] __lowerCamelCase = 'A photo of a cat' __lowerCamelCase = tokenizer.encode( lowerCamelCase__ , ) # We changed the bos token self.assertEqual(lowerCamelCase__ , [31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained('./tok' ) __lowerCamelCase = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) __lowerCamelCase = tokenizer.encode( lowerCamelCase__ , ) self.assertEqual(lowerCamelCase__ , [31_957, 250, 1_345, 9, 10, 4_758] )
348
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
1
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = abs(UpperCamelCase__ ) __lowerCamelCase = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = abs(UpperCamelCase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" return sum(int(UpperCamelCase__ ) for c in str(abs(UpperCamelCase__ ) ) ) def lowerCamelCase_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase__ : Callable , UpperCamelCase__ : int ) -> None: __lowerCamelCase = F"""{func.__name__}({value})""" __lowerCamelCase = timeit(F"""__main__.{call}""" , setup='import __main__' ) print(F"""{call:56} = {func(UpperCamelCase__ )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase__ , UpperCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
348
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
1
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None __lowerCamelCase = sorted_collection[point] if current_item == item: return point else: if point < left: __lowerCamelCase = left __lowerCamelCase = point elif point > right: __lowerCamelCase = right __lowerCamelCase = point else: if item < current_item: __lowerCamelCase = point - 1 else: __lowerCamelCase = point + 1 return None def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCamelCase = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , point + 1 , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> str: """simple docstring""" if collection != sorted(UpperCamelCase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys __A = 0 if debug == 1: __A = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") __A = 67 __A = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("Not found")
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = "The Nymphenburg Palace is a beautiful palace in Munich!" def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } __lowerCamelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __lowerCamelCase = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=UpperCamelCase__ , output_all_encodings=UpperCamelCase__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , UpperCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __lowerCamelCase = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __lowerCamelCase = os.path.join(get_home_dir() , 'models' ) __lowerCamelCase = _load_vocab(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls=UpperCamelCase__ ) __lowerCamelCase = nlp.model.BERTModel( UpperCamelCase__ , len(UpperCamelCase__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=UpperCamelCase__ , use_token_type_embed=UpperCamelCase__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=UpperCamelCase__ , use_decoder=UpperCamelCase__ , ) original_bort.load_parameters(UpperCamelCase__ , cast_dtype=UpperCamelCase__ , ignore_extra=UpperCamelCase__ ) __lowerCamelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 __lowerCamelCase = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(UpperCamelCase__ ), } __lowerCamelCase = BertConfig.from_dict(UpperCamelCase__ ) __lowerCamelCase = BertForMaskedLM(UpperCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCamelCase__ : Dict ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ): __lowerCamelCase = hf_param.shape __lowerCamelCase = to_torch(params[gluon_param] ) __lowerCamelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __lowerCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __lowerCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __lowerCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __lowerCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __lowerCamelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __lowerCamelCase = hf_bort_model.bert.encoder.layer[i] # self attention __lowerCamelCase = layer.attention.self __lowerCamelCase = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __lowerCamelCase = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __lowerCamelCase = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __lowerCamelCase = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __lowerCamelCase = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __lowerCamelCase = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __lowerCamelCase = layer.attention.output __lowerCamelCase = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) __lowerCamelCase = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) __lowerCamelCase = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __lowerCamelCase = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __lowerCamelCase = layer.intermediate __lowerCamelCase = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __lowerCamelCase = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __lowerCamelCase = layer.output __lowerCamelCase = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __lowerCamelCase = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __lowerCamelCase = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __lowerCamelCase = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __lowerCamelCase = RobertaTokenizer.from_pretrained('roberta-base' ) __lowerCamelCase = tokenizer.encode_plus(UpperCamelCase__ )['input_ids'] # Get gluon output __lowerCamelCase = mx.nd.array([input_ids] ) __lowerCamelCase = original_bort(inputs=UpperCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = BertModel.from_pretrained(UpperCamelCase__ ) hf_bort_model.eval() __lowerCamelCase = tokenizer.encode_plus(UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = hf_bort_model(**UpperCamelCase__ )[0] __lowerCamelCase = output_gluon[0].asnumpy() __lowerCamelCase = output_hf[0].detach().numpy() __lowerCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() __lowerCamelCase = np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
348
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" snake_case_ = '''pixel_values''' snake_case_ = False snake_case_ = TimmBackboneConfig def __init__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , 'timm' ) super().__init__(lowerCamelCase__ ) __lowerCamelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase__ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCamelCase = getattr(lowerCamelCase__ , 'use_pretrained_backbone' , lowerCamelCase__ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCamelCase = config.out_indices if getattr(lowerCamelCase__ , 'out_indices' , lowerCamelCase__ ) is not None else (-1,) __lowerCamelCase = timm.create_model( config.backbone , pretrained=lowerCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCamelCase__ , **lowerCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCamelCase = self._backbone.return_layers __lowerCamelCase = {layer['module']: str(lowerCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCamelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCamelCase = kwargs.pop('use_timm_backbone' , lowerCamelCase__ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCamelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCamelCase = kwargs.pop('features_only' , config.features_only ) __lowerCamelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCamelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCamelCase = TimmBackboneConfig( backbone=lowerCamelCase__ , num_channels=lowerCamelCase__ , features_only=lowerCamelCase__ , use_pretrained_backbone=lowerCamelCase__ , out_indices=lowerCamelCase__ , ) return super()._from_config(lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' pass def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCamelCase = self._all_layers __lowerCamelCase = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = self._return_layers __lowerCamelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCamelCase = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = None __lowerCamelCase = tuple(lowerCamelCase__ ) __lowerCamelCase = tuple(lowerCamelCase__ ) if hidden_states is not None else None if not return_dict: __lowerCamelCase = (feature_maps,) if output_hidden_states: __lowerCamelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase__ , hidden_states=lowerCamelCase__ , attentions=lowerCamelCase__ )
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> list: """simple docstring""" __lowerCamelCase = int(UpperCamelCase__ ) if n_element < 1: __lowerCamelCase = ValueError('a should be a positive number' ) raise my_error __lowerCamelCase = [1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = (0, 0, 0) __lowerCamelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __A = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") __A = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''char''' snake_case_ = '''bpe''' snake_case_ = '''wp''' __A = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''image_processor''', '''char_tokenizer'''] snake_case_ = '''ViTImageProcessor''' snake_case_ = '''MgpstrTokenizer''' def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCamelCase__ , ) __lowerCamelCase = kwargs.pop('feature_extractor' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) __lowerCamelCase = tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained('gpt2' ) __lowerCamelCase = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __lowerCamelCase = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: __lowerCamelCase = self.char_tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase = encodings['input_ids'] return inputs def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = sequences __lowerCamelCase = char_preds.size(0 ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(lowerCamelCase__ , 'char' ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(lowerCamelCase__ , 'bpe' ) __lowerCamelCase , __lowerCamelCase = self._decode_helper(lowerCamelCase__ , 'wp' ) __lowerCamelCase = [] __lowerCamelCase = [] for i in range(lowerCamelCase__ ): __lowerCamelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] __lowerCamelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] __lowerCamelCase = scores.index(max(lowerCamelCase__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __lowerCamelCase = {} __lowerCamelCase = final_strs __lowerCamelCase = final_scores __lowerCamelCase = char_strs __lowerCamelCase = bpe_strs __lowerCamelCase = wp_strs return out def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' if format == DecodeType.CHARACTER: __lowerCamelCase = self.char_decode __lowerCamelCase = 1 __lowerCamelCase = '[s]' elif format == DecodeType.BPE: __lowerCamelCase = self.bpe_decode __lowerCamelCase = 2 __lowerCamelCase = '#' elif format == DecodeType.WORDPIECE: __lowerCamelCase = self.wp_decode __lowerCamelCase = 102 __lowerCamelCase = '[SEP]' else: raise ValueError(f"""Format {format} is not supported.""" ) __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = pred_logits.size(0 ) __lowerCamelCase = pred_logits.size(1 ) __lowerCamelCase , __lowerCamelCase = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase__ , sorted=lowerCamelCase__ ) __lowerCamelCase = preds_index.view(-1 , lowerCamelCase__ )[:, 1:] __lowerCamelCase = decoder(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = torch.nn.functional.softmax(lowerCamelCase__ , dim=2 ).max(dim=2 ) __lowerCamelCase = preds_max_prob[:, 1:] for index in range(lowerCamelCase__ ): __lowerCamelCase = preds_str[index].find(lowerCamelCase__ ) __lowerCamelCase = preds_str[index][:pred_eos] __lowerCamelCase = preds_index[index].cpu().tolist() __lowerCamelCase = pred_index.index(lowerCamelCase__ ) if eos_token in pred_index else -1 __lowerCamelCase = preds_max_prob[index][: pred_eos_index + 1] __lowerCamelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase__ ) conf_scores.append(lowerCamelCase__ ) return dec_strs, conf_scores def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase__ )] return decode_strs def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' return self.bpe_tokenizer.batch_decode(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase__ )] return decode_strs
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = 1 __lowerCamelCase = 3 __lowerCamelCase = (32, 32) __lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase__ ) return image @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowercase_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> Any: '''simple docstring''' def extract(*lowerCamelCase__ , **lowerCamelCase__ ): class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = torch.ones([0] ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' self.pixel_values.to(lowerCamelCase__ ) return self return Out() return extract def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.dummy_cond_unet __lowerCamelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) __lowerCamelCase = self.dummy_vae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __lowerCamelCase = StableDiffusionPipeline( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A painting of a squirrel eating a burger' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = sd_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase__ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.dummy_cond_unet __lowerCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) __lowerCamelCase = self.dummy_vae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __lowerCamelCase = StableDiffusionPipeline( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A painting of a squirrel eating a burger' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = sd_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowerCamelCase__ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert isinstance(pipe.scheduler , lowerCamelCase__ ) assert pipe.safety_checker is None __lowerCamelCase = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCamelCase = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.dummy_cond_unet __lowerCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) __lowerCamelCase = self.dummy_vae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __lowerCamelCase = unet.half() __lowerCamelCase = vae.half() __lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk __lowerCamelCase = StableDiffusionPipeline( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A painting of a squirrel eating a burger' __lowerCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase__ ) __lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __lowerCamelCase = 4_003_660_346 __lowerCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase__ ) __lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'padme amidala taking a bath artwork, safe for work, no nudity' __lowerCamelCase = 2_734_971_755 __lowerCamelCase = 7 __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __lowerCamelCase = 1_044_355_234 __lowerCamelCase = 12 __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=99 , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=9 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__=8 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0_02 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0 , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def lowercase_ ( self ) -> str: '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Dict: '''simple docstring''' if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowerCamelCase__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowerCamelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, input_dict def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> List[str]: '''simple docstring''' __lowerCamelCase = UMTaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , ) __lowerCamelCase = model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowerCamelCase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' __lowerCamelCase = UMTaModel(config=lowerCamelCase__ ).get_decoder().to(lowerCamelCase__ ).eval() # first forward pass __lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , use_cache=lowerCamelCase__ ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) ) self.parent.assertTrue(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(lowerCamelCase__ )['last_hidden_state'] __lowerCamelCase = model(lowerCamelCase__ , past_key_values=lowerCamelCase__ )['last_hidden_state'] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , ) -> List[str]: '''simple docstring''' __lowerCamelCase = UMTaModel(config=lowerCamelCase__ ).to(lowerCamelCase__ ).half().eval() __lowerCamelCase = model(**lowerCamelCase__ )['last_hidden_state'] self.parent.assertFalse(torch.isnan(lowerCamelCase__ ).any().item() ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case_ = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case_ = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = True snake_case_ = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case_ = [0.8, 0.9] def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowerCamelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=lowerCamelCase__ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(lowerCamelCase__ ).eval() model.to(lowerCamelCase__ ) __lowerCamelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=lowerCamelCase__ ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase__ ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowerCamelCase__ ), } for attn_name, (name, mask) in zip(lowerCamelCase__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=lowerCamelCase__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=lowerCamelCase__ , return_dict_in_generate=lowerCamelCase__ , **lowerCamelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def lowercase_ ( self ) -> str: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=lowerCamelCase__ , legacy=lowerCamelCase__ ) __lowerCamelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] __lowerCamelCase = tokenizer(lowerCamelCase__ , return_tensors='pt' , padding=lowerCamelCase__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model.generate(input_ids.to(lowerCamelCase__ ) ) __lowerCamelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __lowerCamelCase = number_of_bytes // partitions __lowerCamelCase = [] for i in range(UpperCamelCase__ ): __lowerCamelCase = i * bytes_per_partition + 1 __lowerCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
348
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __lowerCamelCase = deepcopy(lowerCamelCase__ ) elif os.path.exists(lowerCamelCase__ ): with io.open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase = json.load(lowerCamelCase__ ) else: try: __lowerCamelCase = baseaa.urlsafe_baadecode(lowerCamelCase__ ).decode('utf-8' ) __lowerCamelCase = json.loads(lowerCamelCase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) __lowerCamelCase = config self.set_stage_and_offload() def lowercase_ ( self ) -> Dict: '''simple docstring''' # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. __lowerCamelCase = self.get_value('zero_optimization.stage' , -1 ) # offload __lowerCamelCase = False if self.is_zeroa() or self.is_zeroa(): __lowerCamelCase = set(['cpu', 'nvme'] ) __lowerCamelCase = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __lowerCamelCase = True def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.config # find the config node of interest if it exists __lowerCamelCase = ds_key_long.split('.' ) __lowerCamelCase = nodes.pop() for node in nodes: __lowerCamelCase = config.get(lowerCamelCase__ ) if config is None: return None, ds_key return config, ds_key def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.find_config_node(lowerCamelCase__ ) if config is None: return default return config.get(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> Any: '''simple docstring''' __lowerCamelCase = self.config # find the config node of interest if it exists __lowerCamelCase = ds_key_long.split('.' ) for node in nodes: __lowerCamelCase = config __lowerCamelCase = config.get(lowerCamelCase__ ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.get_value(lowerCamelCase__ ) return False if value is None else bool(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.get_value(lowerCamelCase__ ) return False if value is None else not bool(lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' return self._stage == 2 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return self._stage == 3 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return self._offload class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = engine def lowercase_ ( self , lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' # runs backpropagation and handles mixed precision self.engine.backward(lowerCamelCase__ , **lowerCamelCase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , device_placement=lowerCamelCase__ , scaler=lowerCamelCase__ ) __lowerCamelCase = hasattr(self.optimizer , 'overflow' ) def lowercase_ ( self , lowerCamelCase__=None ) -> Tuple: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowercase_ ( self ) -> str: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowercase_ ( self ) -> Any: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=0.0_01 , lowerCamelCase__=0 , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = params __lowerCamelCase = lr __lowerCamelCase = weight_decay __lowerCamelCase = kwargs class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=0 , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = optimizer __lowerCamelCase = total_num_steps __lowerCamelCase = warmup_num_steps __lowerCamelCase = kwargs
348
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int]=10 ) -> int: """simple docstring""" __lowerCamelCase = [] for _ in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any]=10 ) -> str: """simple docstring""" __lowerCamelCase = [] for step in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(UpperCamelCase__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) scheduler.load_state_dict(UpperCamelCase__ ) return lrs @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): __lowerCamelCase = criterion(lowerCamelCase__ , lowerCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCamelCase__ , weight_decay=0.0 , relative_step=lowerCamelCase__ , scale_parameter=lowerCamelCase__ , warmup_init=lowerCamelCase__ , ) for _ in range(1_000 ): __lowerCamelCase = criterion(lowerCamelCase__ , lowerCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = nn.Linear(50 , 50 ) if is_torch_available() else None snake_case_ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None snake_case_ = 10 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ , msg=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCamelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): __lowerCamelCase , __lowerCamelCase = data __lowerCamelCase = scheduler_func(self.optimizer , **lowerCamelCase__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCamelCase = unwrap_schedule(lowerCamelCase__ , self.num_steps ) self.assertListAlmostEqual( lowerCamelCase__ , lowerCamelCase__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) __lowerCamelCase = scheduler_func(self.optimizer , **lowerCamelCase__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCamelCase__ ) # wrap to test picklability of the schedule __lowerCamelCase = unwrap_and_save_reload_schedule(lowerCamelCase__ , self.num_steps ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ , msg=f"""failed for {scheduler_func} in save and reload""" ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = fn def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' return self.fn(*lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = list(map(self , scheduler.lr_lambdas ) )
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["CLIPFeatureExtractor"] __A = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
348
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __A = { '''camembert-base''': 5_12, } __A = '''▁''' class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = CamembertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' __lowerCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
350
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
0
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : bool = False ) -> str: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): __lowerCamelCase = F"""Expected string as input, found {type(lowercase__ )}""" raise ValueError(lowercase__ ) if not isinstance(lowercase__ , lowercase__ ): __lowerCamelCase = F"""Expected boolean as use_pascal parameter, found {type(lowercase__ )}""" raise ValueError(lowercase__ ) __lowerCamelCase = input_str.split('_' ) __lowerCamelCase = 0 if use_pascal else 1 __lowerCamelCase = words[start_index:] __lowerCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCamelCase = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
351
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off __lowerCamelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCamelCase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) def lowercase_ ( self , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = '''tester''' __lowerCamelCase = '''tester''' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'cls_token': special_token} ) __lowerCamelCase = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase = self.get_input_output_texts(_UpperCAmelCase ) __lowerCamelCase = tokenizer.tokenize(_UpperCAmelCase ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __lowerCamelCase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) __lowerCamelCase = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(' ' , '' ) , _UpperCAmelCase ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __A = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self , lowerCamelCase__ = 1 , lowerCamelCase__ = 100 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: __lowerCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCamelCase = audio_length_in_s * self.unet.config.sample_rate __lowerCamelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it\'s bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) __lowerCamelCase = int(__snake_case ) if sample_size % down_scale_factor != 0: __lowerCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) __lowerCamelCase = int(__snake_case ) __lowerCamelCase = next(iter(self.unet.parameters() ) ).dtype __lowerCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCamelCase = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) # set step values self.scheduler.set_timesteps(__snake_case , device=audio.device ) __lowerCamelCase = self.scheduler.timesteps.to(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase = self.unet(__snake_case , __snake_case ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCamelCase = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample __lowerCamelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__snake_case )
353
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __A = logging.get_logger(__name__) __A = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class __lowerCAmelCase ( a__ ): """simple docstring""" snake_case_ = '''van''' def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=3 , lowerCamelCase__=[7, 3, 3, 3] , lowerCamelCase__=[4, 2, 2, 2] , lowerCamelCase__=[64, 128, 320, 512] , lowerCamelCase__=[3, 3, 12, 3] , lowerCamelCase__=[8, 8, 4, 4] , lowerCamelCase__="gelu" , lowerCamelCase__=0.02 , lowerCamelCase__=1e-6 , lowerCamelCase__=1e-2 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = mlp_ratios __lowerCamelCase = hidden_act __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = layer_scale_init_value __lowerCamelCase = drop_path_rate __lowerCamelCase = dropout_rate
354
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowerCamelCase ( lowercase__ ): """simple docstring""" snake_case_ = 42 class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=3 , lowerCamelCase__=("DownEncoderBlock2D",) , lowerCamelCase__=(64,) , lowerCamelCase__=2 , lowerCamelCase__=32 , lowerCamelCase__="silu" , lowerCamelCase__=True , ) -> List[str]: '''simple docstring''' super().__init__() __lowerCamelCase = layers_per_block __lowerCamelCase = torch.nn.Convad( _a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCamelCase = None __lowerCamelCase = nn.ModuleList([] ) # down __lowerCamelCase = block_out_channels[0] for i, down_block_type in enumerate(_a ): __lowerCamelCase = output_channel __lowerCamelCase = block_out_channels[i] __lowerCamelCase = i == len(_a ) - 1 __lowerCamelCase = get_down_block( _a , num_layers=self.layers_per_block , in_channels=_a , out_channels=_a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , ) self.down_blocks.append(_a ) # mid __lowerCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # out __lowerCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_a , eps=1e-6 ) __lowerCamelCase = nn.SiLU() __lowerCamelCase = 2 * out_channels if double_z else out_channels __lowerCamelCase = nn.Convad(block_out_channels[-1] , _a , 3 , padding=1 ) __lowerCamelCase = False def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = x __lowerCamelCase = self.conv_in(_a ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase__ ): def custom_forward(*lowerCamelCase__ ): return module(*_a ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: __lowerCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , use_reentrant=_a ) # middle __lowerCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , use_reentrant=_a ) else: for down_block in self.down_blocks: __lowerCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a ) # middle __lowerCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _a ) else: # down for down_block in self.down_blocks: __lowerCamelCase = down_block(_a ) # middle __lowerCamelCase = self.mid_block(_a ) # post-process __lowerCamelCase = self.conv_norm_out(_a ) __lowerCamelCase = self.conv_act(_a ) __lowerCamelCase = self.conv_out(_a ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=3 , lowerCamelCase__=("UpDecoderBlock2D",) , lowerCamelCase__=(64,) , lowerCamelCase__=2 , lowerCamelCase__=32 , lowerCamelCase__="silu" , lowerCamelCase__="group" , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = layers_per_block __lowerCamelCase = nn.Convad( _a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCamelCase = None __lowerCamelCase = nn.ModuleList([] ) __lowerCamelCase = in_channels if norm_type == 'spatial' else None # mid __lowerCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # up __lowerCamelCase = list(reversed(_a ) ) __lowerCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(_a ): __lowerCamelCase = output_channel __lowerCamelCase = reversed_block_out_channels[i] __lowerCamelCase = i == len(_a ) - 1 __lowerCamelCase = get_up_block( _a , num_layers=self.layers_per_block + 1 , in_channels=_a , out_channels=_a , prev_output_channel=_a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , resnet_time_scale_shift=_a , ) self.up_blocks.append(_a ) __lowerCamelCase = output_channel # out if norm_type == "spatial": __lowerCamelCase = SpatialNorm(block_out_channels[0] , _a ) else: __lowerCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_a , eps=1e-6 ) __lowerCamelCase = nn.SiLU() __lowerCamelCase = nn.Convad(block_out_channels[0] , _a , 3 , padding=1 ) __lowerCamelCase = False def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: '''simple docstring''' __lowerCamelCase = z __lowerCamelCase = self.conv_in(_a ) __lowerCamelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase__ ): def custom_forward(*lowerCamelCase__ ): return module(*_a ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle __lowerCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a , use_reentrant=_a ) __lowerCamelCase = sample.to(_a ) # up for up_block in self.up_blocks: __lowerCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , _a , use_reentrant=_a ) else: # middle __lowerCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a ) __lowerCamelCase = sample.to(_a ) # up for up_block in self.up_blocks: __lowerCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a , _a ) else: # middle __lowerCamelCase = self.mid_block(_a , _a ) __lowerCamelCase = sample.to(_a ) # up for up_block in self.up_blocks: __lowerCamelCase = up_block(_a , _a ) # post-process if latent_embeds is None: __lowerCamelCase = self.conv_norm_out(_a ) else: __lowerCamelCase = self.conv_norm_out(_a , _a ) __lowerCamelCase = self.conv_act(_a ) __lowerCamelCase = self.conv_out(_a ) return sample class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__="random" , lowerCamelCase__=False , lowerCamelCase__=True ) -> str: '''simple docstring''' super().__init__() __lowerCamelCase = n_e __lowerCamelCase = vq_embed_dim __lowerCamelCase = beta __lowerCamelCase = legacy __lowerCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __lowerCamelCase = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) __lowerCamelCase = self.used.shape[0] __lowerCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCamelCase = self.re_embed __lowerCamelCase = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: __lowerCamelCase = n_e __lowerCamelCase = sane_index_shape def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = inds.shape assert len(_a ) > 1 __lowerCamelCase = inds.reshape(ishape[0] , -1 ) __lowerCamelCase = self.used.to(_a ) __lowerCamelCase = (inds[:, :, None] == used[None, None, ...]).long() __lowerCamelCase = match.argmax(-1 ) __lowerCamelCase = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __lowerCamelCase = self.unknown_index return new.reshape(_a ) def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = inds.shape assert len(_a ) > 1 __lowerCamelCase = inds.reshape(ishape[0] , -1 ) __lowerCamelCase = self.used.to(_a ) if self.re_embed > self.used.shape[0]: # extra token __lowerCamelCase = 0 # simply set to zero __lowerCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _a ) return back.reshape(_a ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() __lowerCamelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCamelCase = torch.argmin(torch.cdist(_a , self.embedding.weight ) , dim=1 ) __lowerCamelCase = self.embedding(_a ).view(z.shape ) __lowerCamelCase = None __lowerCamelCase = None # compute loss for embedding if not self.legacy: __lowerCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCamelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCamelCase = z + (z_q - z).detach() # reshape back to match original input shape __lowerCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __lowerCamelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __lowerCamelCase = self.remap_to_used(_a ) __lowerCamelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __lowerCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' if self.remap is not None: __lowerCamelCase = indices.reshape(shape[0] , -1 ) # add batch axis __lowerCamelCase = self.unmap_to_all(_a ) __lowerCamelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCamelCase = self.embedding(_a ) if shape is not None: __lowerCamelCase = z_q.view(_a ) # reshape back to match original input shape __lowerCamelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowerCamelCase ( lowercase__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=False ) -> List[str]: '''simple docstring''' __lowerCamelCase = parameters __lowerCamelCase = torch.chunk(_a , 2 , dim=1 ) __lowerCamelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) __lowerCamelCase = deterministic __lowerCamelCase = torch.exp(0.5 * self.logvar ) __lowerCamelCase = torch.exp(self.logvar ) if self.deterministic: __lowerCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ ( self , lowerCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = randn_tensor( self.mean.shape , generator=_a , device=self.parameters.device , dtype=self.parameters.dtype ) __lowerCamelCase = self.mean + self.std * sample return x def lowercase_ ( self , lowerCamelCase__=None ) -> Optional[int]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=[1, 2, 3] ) -> List[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __lowerCamelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_a ) def lowercase_ ( self ) -> Dict: '''simple docstring''' return self.mean
355
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
0
"""simple docstring""" from scipy.stats import pearsonr import datasets __A = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ __A = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ __A = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Any: '''simple docstring''' if return_pvalue: __lowerCamelCase = pearsonr(lowerCamelCase__ , lowerCamelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase__ , lowerCamelCase__ )[0] )}
356
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
0
import pytest import datasets # Import fixture modules as plugins __A = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Any: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=lowerCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ) -> Optional[int]: """simple docstring""" __lowerCamelCase = tmp_path_factory.getbasetemp() / """cache""" __lowerCamelCase = test_hf_cache_home / """datasets""" __lowerCamelCase = test_hf_cache_home / """metrics""" __lowerCamelCase = test_hf_cache_home / """modules""" monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(lowerCamelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(lowerCamelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(lowerCamelCase_ ) ) __lowerCamelCase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(lowerCamelCase_ ) ) __lowerCamelCase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(lowerCamelCase_ ) ) @pytest.fixture(autouse=lowerCamelCase_ , scope='session' ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , lowerCamelCase_ ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , lowerCamelCase_ )
358
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase_ ( ): """simple docstring""" __lowerCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('RGB' ) return image def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): """simple docstring""" __lowerCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): """simple docstring""" __lowerCamelCase = dct.pop(UpperCamelCase__ ) __lowerCamelCase = val def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCamelCase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) __lowerCamelCase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __lowerCamelCase = torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) ) __lowerCamelCase = qkv_bias def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" __lowerCamelCase = 364 if 'coco' in model_name else 224 __lowerCamelCase = BlipaVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __lowerCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCamelCase__ ).to_dict() elif "opt-6.7b" in model_name: __lowerCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCamelCase__ ).to_dict() elif "t5-xl" in model_name: __lowerCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __lowerCamelCase = BlipaConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=False ): """simple docstring""" __lowerCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __lowerCamelCase = tokenizer('\n' , add_special_tokens=UpperCamelCase__ ).input_ids[0] __lowerCamelCase , __lowerCamelCase = get_blipa_config(UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) __lowerCamelCase = BlipaForConditionalGeneration(UpperCamelCase__ ).eval() __lowerCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __lowerCamelCase , __lowerCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) __lowerCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = load_model_and_preprocess( name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ ) original_model.eval() print('Done!' ) # update state dict keys __lowerCamelCase = original_model.state_dict() __lowerCamelCase = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('Qformer.bert' ): __lowerCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __lowerCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: __lowerCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __lowerCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __lowerCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): __lowerCamelCase = key.replace('t5' , 'language' ) __lowerCamelCase = val # read in qv biases read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __lowerCamelCase = load_demo_image() __lowerCamelCase = vis_processors['eval'](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) __lowerCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCamelCase__ ) # create processor __lowerCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) __lowerCamelCase = BlipaProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values.to(UpperCamelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "opt" in model_name: __lowerCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __lowerCamelCase = hf_model(UpperCamelCase__ , UpperCamelCase__ ).logits else: __lowerCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __lowerCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __lowerCamelCase = hf_model(UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __lowerCamelCase = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=UpperCamelCase__ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __lowerCamelCase = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=UpperCamelCase__ ) else: # cast to same type __lowerCamelCase = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase__ ) , UpperCamelCase__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) __lowerCamelCase = '' __lowerCamelCase = tokenizer(UpperCamelCase__ , return_tensors='pt' ).input_ids.to(UpperCamelCase__ ) __lowerCamelCase = original_model.generate({'image': original_pixel_values} ) __lowerCamelCase = hf_model.generate( UpperCamelCase__ , UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , UpperCamelCase__ ) __lowerCamelCase = input_ids.shape[1] __lowerCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase__ ) __lowerCamelCase = [text.strip() for text in output_text] print('HF generation:' , UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() __A = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __A = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
359
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( A_ , unittest.TestCase ): """simple docstring""" snake_case_ = ShapEImgaImgPipeline snake_case_ = ["image"] snake_case_ = ["image"] snake_case_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case_ = False @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 8 @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(snake_case__ ) return model @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowercase_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __lowerCamelCase = PriorTransformer(**snake_case__ ) return model @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**snake_case__ ) return model def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) __lowerCamelCase = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(snake_case__ ) else: __lowerCamelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) __lowerCamelCase = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = "cpu" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**snake_case__ ) __lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(snake_case__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = torch_device == "cpu" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**snake_case__ ) __lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __lowerCamelCase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) __lowerCamelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) __lowerCamelCase = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
360
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ) -> np.ndarray: """simple docstring""" __lowerCamelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __lowerCamelCase = xgb.predict(lowerCAmelCase__ ) __lowerCamelCase = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = fetch_california_housing() __lowerCamelCase , __lowerCamelCase = data_handling(lowerCAmelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __lowerCamelCase = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}""" ) print(F"""Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
361
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
0
import requests def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> List[str]: """simple docstring""" __lowerCamelCase = {'Content-Type': 'application/json'} __lowerCamelCase = requests.post(lowercase__ , json={'text': message_body} , headers=lowercase__ ) if response.status_code != 200: __lowerCamelCase = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
362
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = FlaxAutoencoderKL @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = 4 __lowerCamelCase = 3 __lowerCamelCase = (32, 32) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.uniform(lowerCamelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __lowerCamelCase = self.dummy_input return init_dict, inputs_dict
363
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __lowerCAmelCase ( a_ ): """simple docstring""" snake_case_ = '''luke''' def __init__( self , lowerCamelCase__=50_267 , lowerCamelCase__=500_000 , lowerCamelCase__=768 , lowerCamelCase__=256 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = entity_vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = entity_emb_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = use_entity_aware_attention __lowerCamelCase = classifier_dropout
364
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def lowerCamelCase_ ( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 16 , UpperCamelCase__ : str = "bert-base-cased" ) -> int: """simple docstring""" __lowerCamelCase = AutoTokenizer.from_pretrained(__a ) __lowerCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( __a , batched=__a , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(__a , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=__a , collate_fn=__a , batch_size=__a ) __lowerCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple ) -> List[str]: """simple docstring""" __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['num_epochs'] ) __lowerCamelCase = int(config['seed'] ) __lowerCamelCase = int(config['batch_size'] ) __lowerCamelCase = args.model_name_or_path set_seed(__a ) __lowerCamelCase = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: __lowerCamelCase = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 # Now we train the model __lowerCamelCase = evaluate.load('glue' , 'mrpc' ) __lowerCamelCase = 0 __lowerCamelCase = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): __lowerCamelCase = model(**__a ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __lowerCamelCase = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**__a ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __a ) __lowerCamelCase = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __lowerCamelCase = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(__a , __a ) def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=__a , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=__a , ) parser.add_argument( '--output_dir' , type=__a , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=__a , default=__a , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=__a , default=3 , help='Number of train epochs.' , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
365
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
0
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
366
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
0
"""simple docstring""" from __future__ import annotations __A = "Muhammad Umer Farooq" __A = "MIT" __A = "1.0.0" __A = "Muhammad Umer Farooq" __A = "[email protected]" __A = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> None: '''simple docstring''' super().__init__() __lowerCamelCase = [] __lowerCamelCase = domain def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowerCamelCase = parse.urljoin(self.domain , lowerCAmelCase__ ) self.urls.append(lowerCAmelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Dict: """simple docstring""" return ".".join(get_sub_domain_name(a_ ).split('.' )[-2:] ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" return parse.urlparse(a_ ).netloc def lowerCamelCase_ ( UpperCamelCase__ : str = "https://github.com" ) -> Any: """simple docstring""" __lowerCamelCase = get_domain_name(a_ ) # Initialize the parser __lowerCamelCase = Parser(a_ ) try: # Open URL __lowerCamelCase = requests.get(a_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowerCamelCase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowerCamelCase = requests.get(a_ ) # Get the valid email. __lowerCamelCase = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a_ ) if __name__ == "__main__": __A = emails_from_url("https://github.com") print(f'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
367
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
0
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase_ ( ) -> Dict: """simple docstring""" __lowerCamelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=_UpperCamelCase ) __lowerCamelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go __lowerCamelCase = parser.parse_args() if not hasattr(_UpperCamelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
368
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } __A = { "facebook/xglm-564M": 20_48, } class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowerCamelCase = 7 __lowerCamelCase = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] __lowerCamelCase = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) __lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCamelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowerCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCamelCase = len(self.sp_model ) __lowerCamelCase = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCAmelCase ) __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None __lowerCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowerCamelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> Optional[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , ' ' ).strip() return out_string def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> str: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , 'wb' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
370
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=True , lowerCamelCase__=1 / 255 , lowerCamelCase__=True , ) -> int: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowerCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' if not batched: __lowerCamelCase = image_inputs[0] if isinstance(lowercase_ , Image.Image ): __lowerCamelCase = image.size else: __lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size['shortest_edge'] * h / w ) __lowerCamelCase = self.size["""shortest_edge"""] elif w > h: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = int(self.size['shortest_edge'] * w / h ) else: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = self.size["""shortest_edge"""] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(lowercase_ , key=lambda lowerCamelCase__ : item[0] )[0] __lowerCamelCase = max(lowercase_ , key=lambda lowerCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): snake_case_ = DeformableDetrImageProcessor if is_vision_available() else None def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = DeformableDetrImageProcessingTester(self ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase_ , 'do_pad' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) __lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Tuple: '''simple docstring''' # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCamelCase = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) __lowerCamelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCamelCase = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values __lowerCamelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCamelCase = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values __lowerCamelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # prepare image and target __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""image_id""": 39_769, """annotations""": target} # encode them __lowerCamelCase = DeformableDetrImageProcessor() __lowerCamelCase = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) __lowerCamelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area __lowerCamelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) __lowerCamelCase = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify orig_size __lowerCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size __lowerCamelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' # prepare image, target and masks_path __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} __lowerCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __lowerCamelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) __lowerCamelCase = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) __lowerCamelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4 ) ) # verify area __lowerCamelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) __lowerCamelCase = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify masks __lowerCamelCase = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ ) # verify orig_size __lowerCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size __lowerCamelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
371
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = DownBlockaD # noqa F405 snake_case_ = '''down''' def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = ResnetDownsampleBlockaD # noqa F405 snake_case_ = '''down''' def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = AttnDownBlockaD # noqa F405 snake_case_ = '''down''' def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = CrossAttnDownBlockaD # noqa F405 snake_case_ = '''down''' def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase = 32 return init_dict, inputs_dict def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = SimpleCrossAttnDownBlockaD # noqa F405 snake_case_ = '''down''' @property def lowercase_ ( self ) -> Any: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_a ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = SkipDownBlockaD # noqa F405 snake_case_ = '''down''' @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_skip_sample=_a ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = AttnSkipDownBlockaD # noqa F405 snake_case_ = '''down''' @property def lowercase_ ( self ) -> Any: '''simple docstring''' return super().get_dummy_input(include_skip_sample=_a ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = DownEncoderBlockaD # noqa F405 snake_case_ = '''down''' @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return super().get_dummy_input(include_temb=_a ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = { 'in_channels': 32, 'out_channels': 32, } __lowerCamelCase = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = AttnDownEncoderBlockaD # noqa F405 snake_case_ = '''down''' @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=_a ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = { 'in_channels': 32, 'out_channels': 32, } __lowerCamelCase = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = UNetMidBlockaD # noqa F405 snake_case_ = '''mid''' def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = { 'in_channels': 32, 'temb_channels': 128, } __lowerCamelCase = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = UNetMidBlockaDCrossAttn # noqa F405 snake_case_ = '''mid''' def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase = 32 return init_dict, inputs_dict def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = UNetMidBlockaDSimpleCrossAttn # noqa F405 snake_case_ = '''mid''' @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_a ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase = 32 return init_dict, inputs_dict def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = UpBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> str: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = ResnetUpsampleBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> str: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = CrossAttnUpBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> str: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase = 32 return init_dict, inputs_dict def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = SimpleCrossAttnUpBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = super().prepare_init_args_and_inputs_for_common() __lowerCamelCase = 32 return init_dict, inputs_dict def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = AttnUpBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> Any: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = SkipUpBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = AttnSkipUpBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> str: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = UpDecoderBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> int: '''simple docstring''' return super().get_dummy_input(include_temb=_a ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = {'in_channels': 32, 'out_channels': 32} __lowerCamelCase = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(_a ) class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" snake_case_ = AttnUpDecoderBlockaD # noqa F405 snake_case_ = '''up''' @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return super().get_dummy_input(include_temb=_a ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = {'in_channels': 32, 'out_channels': 32} __lowerCamelCase = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(_a )
350
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" def wrapper(*UpperCamelCase__ : int , **UpperCamelCase__ : Union[str, Any] ): __lowerCamelCase = timeit.default_timer() __lowerCamelCase = func(*__lowerCamelCase , **__lowerCamelCase ) __lowerCamelCase = timeit.default_timer() - starttime return delta __lowerCamelCase = func.__name__ return wrapper def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=100 , UpperCamelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = seq_shapes or {} for i in range(__lowerCamelCase ): __lowerCamelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCamelCase , _ArrayXD ): __lowerCamelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCamelCase , datasets.Value ): if v.dtype == "string": __lowerCamelCase = "The small grey turtle was surprisingly fast when challenged." else: __lowerCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCamelCase , datasets.Sequence ): while isinstance(__lowerCamelCase , datasets.Sequence ): __lowerCamelCase = v.feature __lowerCamelCase = seq_shapes[k] __lowerCamelCase = np.random.rand(*__lowerCamelCase ).astype(v.dtype ) __lowerCamelCase = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=100 , UpperCamelCase__ : str=None ) -> List[str]: """simple docstring""" __lowerCamelCase = generate_examples(__lowerCamelCase , num_examples=__lowerCamelCase , seq_shapes=__lowerCamelCase ) with ArrowWriter(features=__lowerCamelCase , path=__lowerCamelCase ) as writer: for key, record in dummy_data: __lowerCamelCase = features.encode_example(__lowerCamelCase ) writer.write(__lowerCamelCase ) __lowerCamelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __lowerCamelCase = datasets.Dataset.from_file(filename=__lowerCamelCase , info=datasets.DatasetInfo(features=__lowerCamelCase ) ) return dataset
351
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
0
from math import factorial def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(_snake_case ) // (factorial(_snake_case ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
0
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ) -> Dict: """simple docstring""" while second != 0: __lowerCamelCase = first & second first ^= second __lowerCamelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Enter the first number: ").strip()) __A = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
353
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
0
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
354
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __A = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __A = TaTokenizerFast __A = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __A = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
355
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
0
"""simple docstring""" def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str: """simple docstring""" return "".join([hex(lowercase__ )[2:].zfill(2 ).upper() for byte in list(lowercase__ )] ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes: """simple docstring""" if (len(lowercase__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
356
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
0
import heapq def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> List[str]: """simple docstring""" __lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowerCamelCase = heapq.heappop(A__ )[1][0] chosen_vertices.add(A__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowerCamelCase = elem[1][1].index(A__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __A = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
357
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
0
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ) -> Dict: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __lowerCamelCase , __lowerCamelCase = array[indexa], array[indexa] def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" if length > 1: __lowerCamelCase = int(length / 2 ) for i in range(UpperCamelCase__ , low + middle ): comp_and_swap(UpperCamelCase__ , UpperCamelCase__ , i + middle , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) bitonic_merge(UpperCamelCase__ , low + middle , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" if length > 1: __lowerCamelCase = int(length / 2 ) bitonic_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 1 ) bitonic_sort(UpperCamelCase__ , low + middle , UpperCamelCase__ , 0 ) bitonic_merge(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
358
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __A = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["BeitFeatureExtractor"] __A = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
0
import random def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" __lowerCamelCase = a[left_index] __lowerCamelCase = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase__ ): if a[j] < pivot: __lowerCamelCase , __lowerCamelCase = a[i], a[j] i += 1 __lowerCamelCase , __lowerCamelCase = a[i - 1], a[left_index] return i - 1 def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" if left < right: __lowerCamelCase = random.randint(lowerCAmelCase__ , right - 1 ) __lowerCamelCase , __lowerCamelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowerCamelCase = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) quick_sort_random( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase__ , pivot_index + 1 , lowerCAmelCase__ ) # recursive quicksort to the right of the pivot point def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" __lowerCamelCase = input('Enter numbers separated by a comma:\n' ).strip() __lowerCamelCase = [int(lowerCAmelCase__ ) for item in user_input.split(',' )] quick_sort_random(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
360
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
0
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets __A = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' __A = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' __A = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = False , ) -> Dict: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): __lowerCamelCase = new_id # turn into Numpy arrays __lowerCamelCase = np.array(a__ ) __lowerCamelCase = np.array(a__ ) if reduce_labels: __lowerCamelCase = 255 __lowerCamelCase = label - 1 __lowerCamelCase = 255 __lowerCamelCase = label != ignore_index __lowerCamelCase = np.not_equal(a__ , a__ ) __lowerCamelCase = pred_label[mask] __lowerCamelCase = np.array(a__ )[mask] __lowerCamelCase = pred_label[pred_label == label] __lowerCamelCase = np.histogram(a__ , bins=a__ , range=(0, num_labels - 1) )[0] __lowerCamelCase = np.histogram(a__ , bins=a__ , range=(0, num_labels - 1) )[0] __lowerCamelCase = np.histogram(a__ , bins=a__ , range=(0, num_labels - 1) )[0] __lowerCamelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = None , UpperCamelCase__ : Tuple = False , ) -> List[Any]: """simple docstring""" __lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) __lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) __lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) __lowerCamelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a__ , a__ ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = intersect_and_union( a__ , a__ , a__ , a__ , a__ , a__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict = None , UpperCamelCase__ : str = None , UpperCamelCase__ : Optional[int] = False , ) -> str: """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = total_intersect_and_union( a__ , a__ , a__ , a__ , a__ , a__ ) # compute metrics __lowerCamelCase = {} __lowerCamelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCamelCase = total_area_intersect / total_area_union __lowerCamelCase = total_area_intersect / total_area_label __lowerCamelCase = np.nanmean(a__ ) __lowerCamelCase = np.nanmean(a__ ) __lowerCamelCase = all_acc __lowerCamelCase = iou __lowerCamelCase = acc if nan_to_num is not None: __lowerCamelCase = {metric: np.nan_to_num(a__ , nan=a__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = mean_iou( results=_snake_case , gt_seg_maps=_snake_case , num_labels=_snake_case , ignore_index=_snake_case , nan_to_num=_snake_case , label_map=_snake_case , reduce_labels=_snake_case , ) return iou_result
361
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __A = ["bert-base-uncased", "bert-base-cased"] __A = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class __lowerCAmelCase ( tf.keras.Model ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' super().__init__() __lowerCamelCase = tokenizer __lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) __lowerCamelCase = TFAutoModel.from_config(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.tokenizer(lowerCamelCase__ ) __lowerCamelCase = self.bert(**lowerCamelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() __lowerCamelCase = [ BertTokenizer.from_pretrained(lowerCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __lowerCamelCase = [TFBertTokenizer.from_pretrained(lowerCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCamelCase__ , use_fast_bert_tokenizer=lowerCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __lowerCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCamelCase = tokenizer(lowerCamelCase__ , return_tensors='tf' , padding='longest' ) __lowerCamelCase = tf_tokenizer(lowerCamelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf_tokenizer(self.paired_sentences ) __lowerCamelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase_ ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.function(lowerCamelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCamelCase = tf.constant(lowerCamelCase__ ) __lowerCamelCase = compiled_tokenizer(lowerCamelCase__ ) __lowerCamelCase = tf_tokenizer(lowerCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = ModelToSave(tokenizer=lowerCamelCase__ ) __lowerCamelCase = tf.convert_to_tensor(self.test_sentences ) __lowerCamelCase = model(lowerCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase = Path(lowerCamelCase__ ) / 'saved.model' model.save(lowerCamelCase__ ) __lowerCamelCase = tf.keras.models.load_model(lowerCamelCase__ ) __lowerCamelCase = loaded_model(lowerCamelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
362
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __lowerCamelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __lowerCamelCase = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above __lowerCamelCase = tf_top_k_top_p_filtering(_a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __lowerCamelCase = output[output != -float('inf' )] __lowerCamelCase = tf.cast( tf.where(tf.not_equal(_a , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_a , _a , rtol=1e-12 ) tf.debugging.assert_equal(_a , _a ) @require_tf class __lowerCAmelCase ( unittest.TestCase , __magic_name__ ): """simple docstring""" if is_tf_available(): snake_case_ = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase_ ( self ) -> str: '''simple docstring''' # TF-only test: tf.saved_model export __lowerCamelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase = 2 __lowerCamelCase = 2 class __lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' super(_a , self ).__init__() __lowerCamelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=_a , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self.model.generate( input_ids=_a , attention_mask=_a , max_new_tokens=_a , return_dict_in_generate=_a , ) return {"sequences": outputs["sequences"]} __lowerCamelCase = [[2, 0], [102, 103]] __lowerCamelCase = [[1, 0], [1, 1]] __lowerCamelCase = DummyModel(model=_a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_a , _a , signatures={'serving_default': dummy_model.serving} ) __lowerCamelCase = tf.saved_model.load(_a ).signatures['serving_default'] for batch_size in range(1 , len(_a ) + 1 ): __lowerCamelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } __lowerCamelCase = serving_func(**_a )['sequences'] __lowerCamelCase = test_model.generate(**_a , max_new_tokens=_a ) tf.debugging.assert_equal(_a , _a ) @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # TF-only test: tf.saved_model export __lowerCamelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase = 1 __lowerCamelCase = 2 class __lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> int: '''simple docstring''' super(_a , self ).__init__() __lowerCamelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=_a , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model.generate( input_ids=_a , attention_mask=_a , max_new_tokens=_a , return_dict_in_generate=_a , ) return {"sequences": outputs["sequences"]} __lowerCamelCase = [[2], [102, 103]] __lowerCamelCase = [[1], [1, 1]] __lowerCamelCase = DummyModel(model=_a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_a , _a , signatures={'serving_default': dummy_model.serving} ) __lowerCamelCase = tf.saved_model.load(_a ).signatures['serving_default'] for input_row in range(len(_a ) ): __lowerCamelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } __lowerCamelCase = serving_func(**_a )['sequences'] __lowerCamelCase = test_model.generate(**_a , max_new_tokens=_a ) tf.debugging.assert_equal(_a , _a ) @slow @require_tensorflow_text def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=_a ) class __lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ) -> int: '''simple docstring''' super().__init__() __lowerCamelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_a , 'spiece.model' ) , 'rb' ).read() ) __lowerCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def lowercase_ ( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.tokenizer.tokenize(_a ) __lowerCamelCase , __lowerCamelCase = text.pad_model_inputs( _a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __lowerCamelCase = self.model.generate(input_ids=_a , attention_mask=_a ) return self.tokenizer.detokenize(_a ) __lowerCamelCase = CompleteSentenceTransformer() __lowerCamelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) __lowerCamelCase = complete_model(_a ) __lowerCamelCase = tf.keras.Model(_a , _a ) keras_model.save(_a ) def lowercase_ ( self ) -> Any: '''simple docstring''' # Has PT equivalent: this test relies on random sampling __lowerCamelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } __lowerCamelCase = 14 __lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase = 'Hello, my dog is cute and' __lowerCamelCase = tokenizer(_a , return_tensors='tf' ) __lowerCamelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowerCamelCase = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __lowerCamelCase = model.generate(**_a , eos_token_id=_a , **_a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __lowerCamelCase = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __lowerCamelCase = model.generate(**_a , eos_token_id=_a , **_a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase_ ( self ) -> int: '''simple docstring''' # Has PT equivalent: ample use of framework-specific code __lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) __lowerCamelCase = 'Hugging Face is a technology company based in New York and Paris.' __lowerCamelCase = bart_tokenizer(_a , return_tensors='tf' ).input_ids __lowerCamelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) __lowerCamelCase = bart_model.generate(_a ).numpy() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return super().call(_a , **_a ) __lowerCamelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) __lowerCamelCase = bart_model.generate(_a , foo='bar' ).numpy() self.assertTrue(np.array_equal(_a , _a ) ) class __lowerCAmelCase ( bart_model.model.encoder.__class__ ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' return super().call(_a , **_a ) __lowerCamelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) __lowerCamelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __lowerCamelCase = bart_model.generate(_a ).numpy() with self.assertRaises(_a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_a , foo='bar' )
363
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case_ = 'time_series_transformer' snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "student_t" , lowerCamelCase__ = "nll" , lowerCamelCase__ = 1 , lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ = "mean" , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 32 , lowerCamelCase__ = 32 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = True , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 64 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.02 , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' # time series specific configuration __lowerCamelCase = prediction_length __lowerCamelCase = context_length or prediction_length __lowerCamelCase = distribution_output __lowerCamelCase = loss __lowerCamelCase = input_size __lowerCamelCase = num_time_features __lowerCamelCase = lags_sequence __lowerCamelCase = scaling __lowerCamelCase = num_dynamic_real_features __lowerCamelCase = num_static_real_features __lowerCamelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase = cardinality else: __lowerCamelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase = embedding_dimension else: __lowerCamelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase = num_parallel_samples # Transformer architecture configuration __lowerCamelCase = input_size * len(_SCREAMING_SNAKE_CASE ) + self._number_of_features __lowerCamelCase = d_model __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_attention_heads __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = use_cache super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
364
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __A = re.compile(R"\s+") def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> str: """simple docstring""" return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" __lowerCamelCase = [len(_UpperCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str]=5 ) -> Optional[int]: """simple docstring""" __lowerCamelCase = ["auto-generated", "autogenerated", "automatically generated"] __lowerCamelCase = example["content"].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : int=0.05 ) -> List[str]: """simple docstring""" __lowerCamelCase = ["unit tests", "test file", "configuration file"] __lowerCamelCase = example["content"].splitlines() __lowerCamelCase = 0 __lowerCamelCase = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __lowerCamelCase = example["content"].count('\n' ) __lowerCamelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = ["def ", "class ", "for ", "while "] __lowerCamelCase = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any]=4 ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = example["content"].splitlines() __lowerCamelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_ ( UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" __lowerCamelCase = tokenizer(example['content'] , truncation=_UpperCAmelCase )["input_ids"] __lowerCamelCase = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def lowerCamelCase_ ( UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings __A = HfArgumentParser(PreprocessingArguments) __A = parser.parse_args() if args.num_workers is None: __A = multiprocessing.cpu_count() __A = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __A = time.time() __A = load_dataset(args.dataset_name, split="train") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __A = time.time() __A = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __A = set(ds.unique("hash")) __A = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __A = time.time() __A = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __A = time.time() __A = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __A = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) __A = output_dir / "data" data_dir.mkdir(exist_ok=True) __A = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __A = str(data_dir / f'''file-{file_number+1:012}.json''') __A = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
365
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> str: '''simple docstring''' __lowerCamelCase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __lowerCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCAmelCase ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = embedding_size def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = TFMobileBertModel(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(lowerCAmelCase__ ) __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = TFMobileBertForMaskedLM(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertForNextSentencePrediction(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertForPreTraining(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFMobileBertForSequenceClassification(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = TFMobileBertForMultipleChoice(config=lowerCAmelCase__ ) __lowerCamelCase = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFMobileBertForTokenClassification(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertForQuestionAnswering(config=lowerCAmelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __lowerCamelCase = TFMobileBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(lowerCAmelCase__ )[0] __lowerCamelCase = [1, 6, 30_522] self.assertEqual(output.shape , lowerCAmelCase__ ) __lowerCamelCase = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
366
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __A = logging.getLogger() __A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( UpperCamelCase__ ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __lowerCamelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCamelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCamelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowerCamelCase , f"""{split}.{field}""" ) , 'w' ) as f: f.write(__lowerCamelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = "pytorch" ) -> Dict: '''simple docstring''' __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = os.path.join(__lowerCamelCase , 'output' ) __lowerCamelCase = os.path.join(__lowerCamelCase , 'data' ) self._create_dummy_data(data_dir=__lowerCamelCase ) __lowerCamelCase = f"""\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCamelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) __lowerCamelCase = os.path.join(__lowerCamelCase , 'metrics.json' ) with open(__lowerCamelCase ) as f: __lowerCamelCase = json.load(__lowerCamelCase ) return result @require_torch_gpu def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
367
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A = logging.get_logger(__name__) # pylint: disable=invalid-name __A = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class __lowerCAmelCase ( A_ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( A_ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( prior=_lowerCamelCase , image_encoder=_lowerCamelCase , image_processor=_lowerCamelCase , scheduler=_lowerCamelCase , renderer=_lowerCamelCase , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if latents is None: __lowerCamelCase = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowerCamelCase = latents.to(_lowerCamelCase ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowercase_ ( self , lowerCamelCase__=0 ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCamelCase = torch.device(f"""cuda:{gpu_id}""" ) __lowerCamelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Dict: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , torch.Tensor ): __lowerCamelCase = torch.cat(_lowerCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCamelCase , axis=0 ) if not isinstance(_lowerCamelCase , torch.Tensor ): __lowerCamelCase = self.image_processor(_lowerCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) __lowerCamelCase = image.to(dtype=self.image_encoder.dtype , device=_lowerCamelCase ) __lowerCamelCase = self.image_encoder(_lowerCamelCase )['last_hidden_state'] __lowerCamelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __lowerCamelCase = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase = torch.zeros_like(_lowerCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = 25 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 4.0 , lowerCamelCase__ = 64 , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , ) -> Any: '''simple docstring''' if isinstance(_lowerCamelCase , PIL.Image.Image ): __lowerCamelCase = 1 elif isinstance(_lowerCamelCase , torch.Tensor ): __lowerCamelCase = image.shape[0] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __lowerCamelCase = len(_lowerCamelCase ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCamelCase )}""" ) __lowerCamelCase = self._execution_device __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_image(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # prior self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.prior.config.num_embeddings __lowerCamelCase = self.prior.config.embedding_dim __lowerCamelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __lowerCamelCase = latents.reshape(latents.shape[0] , _lowerCamelCase , _lowerCamelCase ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase = self.prior( _lowerCamelCase , timestep=_lowerCamelCase , proj_embedding=_lowerCamelCase , ).predicted_image_embedding # remove the variance __lowerCamelCase , __lowerCamelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __lowerCamelCase , __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __lowerCamelCase = self.scheduler.step( _lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCamelCase ) __lowerCamelCase = [] for i, latent in enumerate(_lowerCamelCase ): print() __lowerCamelCase = self.renderer.decode( latent[None, :] , _lowerCamelCase , size=_lowerCamelCase , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCamelCase ) __lowerCamelCase = torch.stack(_lowerCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) __lowerCamelCase = images.cpu().numpy() if output_type == "pil": __lowerCamelCase = [self.numpy_to_pil(_lowerCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCamelCase )
368
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
0
class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = {} # Mapping from char to TrieNode __lowerCamelCase = False def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' for word in words: self.insert(_a ) def lowercase_ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self for char in word: if char not in curr.nodes: __lowerCamelCase = TrieNode() __lowerCamelCase = curr.nodes[char] __lowerCamelCase = True def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self for char in word: if char not in curr.nodes: return False __lowerCamelCase = curr.nodes[char] return curr.is_leaf def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' def _delete(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False __lowerCamelCase = False return len(curr.nodes ) == 0 __lowerCamelCase = word[index] __lowerCamelCase = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __lowerCamelCase = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCamelCase_ ( UpperCamelCase__ : TrieNode , UpperCamelCase__ : str ) -> None: """simple docstring""" if node.is_leaf: print(_snake_case , end=' ' ) for key, value in node.nodes.items(): print_words(_snake_case , word + key ) def lowerCamelCase_ ( ) -> bool: """simple docstring""" __lowerCamelCase = "banana bananas bandana band apple all beast".split() __lowerCamelCase = TrieNode() root.insert_many(_snake_case ) # print_words(root, "") assert all(root.find(_snake_case ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : bool ) -> None: """simple docstring""" print(str(_snake_case ) , 'works!' if passes else 'doesn\'t work :(' ) def lowerCamelCase_ ( ) -> None: """simple docstring""" assert test_trie() def lowerCamelCase_ ( ) -> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
369
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
0
def lowerCamelCase_ ( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = set() # Replace all the whitespace in our sentence __lowerCamelCase = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase__ ) == 26 def lowerCamelCase_ ( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [False] * 26 for char in input_str: if char.islower(): __lowerCamelCase = True elif char.isupper(): __lowerCamelCase = True return all(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str = "The quick brown fox jumps over the lazy dog" , ) -> Any: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" from timeit import timeit __lowerCamelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit('is_pangram()' , setup=UpperCamelCase__ ) ) print(timeit('is_pangram_faster()' , setup=UpperCamelCase__ ) ) print(timeit('is_pangram_fastest()' , setup=UpperCamelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
370
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=snake_case_ ).to(snake_case_ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
371
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" snake_case_ = StableUnCLIPPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case_ = False def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = 32 __lowerCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=__lowercase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowerCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowercase , num_layers=1 , ) torch.manual_seed(0 ) __lowerCamelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=__lowercase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) __lowerCamelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowercase ) __lowerCamelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowercase , layers_per_block=1 , upcast_attention=__lowercase , use_linear_projection=__lowercase , ) torch.manual_seed(0 ) __lowerCamelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=__lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL() __lowerCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Tuple: '''simple docstring''' if str(__lowercase ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(__lowercase ) else: __lowerCamelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__lowercase ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowercase ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) __lowerCamelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase = pipe('anime turle' , generator=__lowercase , output_type='np' ) __lowerCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase ) def lowercase_ ( self ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) __lowerCamelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowerCamelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) __lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
350
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __A = get_logger(__name__) class __lowerCAmelCase ( enum.Enum ): """simple docstring""" snake_case_ = '''all_checks''' snake_case_ = '''basic_checks''' snake_case_ = '''no_checks''' class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=None ) -> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) __lowerCamelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowerCamelCase = ' for ' + verification_name if verification_name is not None else '' if len(_UpperCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass class __lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" pass def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) __lowerCamelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase ) ) logger.info('All the splits matched successfully.' ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Any = True ) -> dict: """simple docstring""" if record_checksum: __lowerCamelCase = shaaaa() with open(_UpperCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(_UpperCAmelCase ) __lowerCamelCase = m.hexdigest() else: __lowerCamelCase = None return {"num_bytes": os.path.getsize(_UpperCAmelCase ), "checksum": checksum} def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
351
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = TapasConfig.from_json_file(UpperCamelCase__ ) # set absolute/relative position embeddings parameter __lowerCamelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams __lowerCamelCase = 4 __lowerCamelCase = True # hparam_utils.py hparams __lowerCamelCase = 0.66_46_94 __lowerCamelCase = 0.20_79_51 __lowerCamelCase = 0.12_11_94 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = 0.0_35_25_13 __lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowerCamelCase = 4 __lowerCamelCase = False # hparam_utils.py hparams __lowerCamelCase = 36.45_19 __lowerCamelCase = 0.90_34_21 __lowerCamelCase = 222.088 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = 0.76_31_41 __lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "TABFACT": __lowerCamelCase = TapasForSequenceClassification(config=UpperCamelCase__ ) elif task == "MLM": __lowerCamelCase = TapasForMaskedLM(config=UpperCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": __lowerCamelCase = TapasModel(config=UpperCamelCase__ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase__ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowerCamelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
0
__A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> List[Any]: """simple docstring""" __lowerCamelCase = True __lowerCamelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) order.append(lowerCamelCase__ ) return order def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> str: """simple docstring""" __lowerCamelCase = True __lowerCamelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return component def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = len(lowerCamelCase__ ) * [False] __lowerCamelCase = {vert: [] for vert in range(len(lowerCamelCase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCamelCase__ ) __lowerCamelCase = [] for i, was_visited in enumerate(lowerCamelCase__ ): if not was_visited: order += topology_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = len(lowerCamelCase__ ) * [False] for i in range(len(lowerCamelCase__ ) ): __lowerCamelCase = order[len(lowerCamelCase__ ) - i - 1] if not visited[vert]: __lowerCamelCase = find_components(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) components_list.append(lowerCamelCase__ ) return components_list
353
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __A = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return 12 @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowerCamelCase__ ) @property def lowercase_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = 12 __lowerCamelCase = 12 __lowerCamelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __lowerCamelCase = TransformeraDModel(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCamelCase__ ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.dummy_vqvae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_transformer __lowerCamelCase = VQDiffusionScheduler(self.num_embed ) __lowerCamelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowerCamelCase = VQDiffusionPipeline( vqvae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , transformer=lowerCamelCase__ , scheduler=lowerCamelCase__ , learned_classifier_free_sampling_embeddings=lowerCamelCase__ , ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'teddy bear playing in the pool' __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='np' ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( [prompt] , generator=lowerCamelCase__ , output_type='np' , return_dict=lowerCamelCase__ , num_inference_steps=2 )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowerCamelCase = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __lowerCamelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
0
import argparse import os import re __A = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __A = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __A = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str] = False ) -> Union[str, Any]: """simple docstring""" with open(_lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __lowerCamelCase = f.read() __lowerCamelCase = content.split('\n' ) __lowerCamelCase = [] __lowerCamelCase = 0 while line_idx < len(_lowerCAmelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __lowerCamelCase = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 __lowerCamelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __lowerCamelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __lowerCamelCase = sorted(_lowerCAmelCase , key=lambda UpperCamelCase__ : _re_identifier.search(_lowerCAmelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_lowerCAmelCase ) ) elif "\n".join(_lowerCAmelCase ) != content: return True def lowerCamelCase_ ( UpperCamelCase__ : str = False ) -> str: """simple docstring""" __lowerCamelCase = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for f in os.listdir(_lowerCAmelCase ) if f.endswith('.py' )] __lowerCamelCase = [sort_auto_mapping(_lowerCAmelCase , overwrite=_lowerCAmelCase ) for fname in fnames] if not overwrite and any(_lowerCAmelCase ): __lowerCamelCase = [f for f, d in zip(_lowerCAmelCase , _lowerCAmelCase ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(_lowerCAmelCase )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __A = parser.parse_args() sort_all_auto_mappings(not args.check_only)
354
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = is_training __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = num_queries __lowerCamelCase = num_channels __lowerCamelCase = min_size __lowerCamelCase = max_size __lowerCamelCase = num_labels __lowerCamelCase = hidden_dim __lowerCamelCase = hidden_dim def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) __lowerCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) __lowerCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() __lowerCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() __lowerCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase = self.num_queries __lowerCamelCase = self.num_labels __lowerCamelCase = [1, 1, 1, 1] __lowerCamelCase = self.num_channels __lowerCamelCase = 64 __lowerCamelCase = 128 __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim __lowerCamelCase = self.hidden_dim return config def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = output.encoder_hidden_states __lowerCamelCase = output.pixel_decoder_hidden_states __lowerCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): __lowerCamelCase = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) __lowerCamelCase = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MaskaFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowercase_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = (self.model_tester.min_size,) * 2 __lowerCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), 'class_labels': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } __lowerCamelCase = self.model_tester.get_config() __lowerCamelCase = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() __lowerCamelCase = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) __lowerCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1e-4 def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) __lowerCamelCase = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) __lowerCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # masks_queries_logits __lowerCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] __lowerCamelCase = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits __lowerCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() __lowerCamelCase = self.default_image_processor __lowerCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __lowerCamelCase = inputs['pixel_values'].to(lowerCamelCase__ ) __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['mask_labels']] __lowerCamelCase = [el.to(lowerCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
348
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ = 16 , lowerCamelCase__ = 88 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 32 , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "geglu" , lowerCamelCase__ = None , ) -> Dict: '''simple docstring''' super().__init__() __lowerCamelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , num_layers=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , norm_num_groups=_SCREAMING_SNAKE_CASE , cross_attention_dim=_SCREAMING_SNAKE_CASE , attention_bias=_SCREAMING_SNAKE_CASE , sample_size=_SCREAMING_SNAKE_CASE , num_vector_embeds=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , num_embeds_ada_norm=_SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __lowerCamelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __lowerCamelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __lowerCamelCase = [1, 0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = True , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = hidden_states __lowerCamelCase = [] __lowerCamelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __lowerCamelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __lowerCamelCase = self.transformer_index_for_condition[i] __lowerCamelCase = self.transformers[transformer_index]( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , cross_attention_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __lowerCamelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __lowerCamelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_SCREAMING_SNAKE_CASE )
355
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __lowerCAmelCase ( snake_case_ ): """simple docstring""" snake_case_ = '''mobilenet_v2''' def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=224 , lowerCamelCase__=1.0 , lowerCamelCase__=8 , lowerCamelCase__=8 , lowerCamelCase__=6 , lowerCamelCase__=32 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu6" , lowerCamelCase__=True , lowerCamelCase__=0.8 , lowerCamelCase__=0.02 , lowerCamelCase__=0.0_01 , lowerCamelCase__=255 , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = depth_multiplier __lowerCamelCase = depth_divisible_by __lowerCamelCase = min_depth __lowerCamelCase = expand_ratio __lowerCamelCase = output_stride __lowerCamelCase = first_layer_is_expansion __lowerCamelCase = finegrained_output __lowerCamelCase = hidden_act __lowerCamelCase = tf_padding __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = semantic_loss_ignore_index class __lowerCAmelCase ( snake_case_ ): """simple docstring""" snake_case_ = version.parse('''1.11''' ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-4
356
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
0
def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" assert x is not None assert y is not None __lowerCamelCase = len(UpperCamelCase__ ) __lowerCamelCase = len(UpperCamelCase__ ) # declaring the array for storing the dp values __lowerCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase = '''''' __lowerCamelCase = m, n while i > 0 and j > 0: __lowerCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
357
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '▁' __A = {'vocab_file': 'prophetnet.tokenizer'} __A = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } __A = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } __A = { 'microsoft/xprophetnet-large-wiki100-cased': 5_12, } def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" __lowerCamelCase = collections.OrderedDict() with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as reader: __lowerCamelCase = reader.readlines() for index, token in enumerate(_UpperCAmelCase ): __lowerCamelCase = token.rstrip('\n' ) __lowerCamelCase = index return vocab class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__="[SEP]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[UNK]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) __lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __lowerCamelCase = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): __lowerCamelCase = f"""[unused{i}]""" __lowerCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __lowerCamelCase = 12 __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase__ ) def __getstate__( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(lowerCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = ''.join(lowerCamelCase__ ).replace(lowerCamelCase__ , ' ' ).strip() return out_string def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , 'wb' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
359
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __A = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" __A = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" __A = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> Optional[int]: """simple docstring""" __lowerCamelCase = simple_accuracy(a__ , a__ ) __lowerCamelCase = float(fa_score(y_true=a__ , y_pred=a__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" __lowerCamelCase = float(pearsonr(a__ , a__ )[0] ) __lowerCamelCase = float(spearmanr(a__ , a__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__UpperCamelCase , __UpperCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
360
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A = logging.get_logger(__name__) __A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[List[float]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) else: return _interleave_iterable_datasets( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , stopping_strategy=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[DatasetType] , UpperCamelCase__ : Optional[DatasetInfo] = None , UpperCamelCase__ : Optional[NamedSplit] = None , UpperCamelCase__ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(UpperCamelCase__ ): if not isinstance(UpperCamelCase__ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(UpperCamelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase__ ).__name__}.""" ) if i == 0: __lowerCamelCase , __lowerCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ ) else: return _concatenate_iterable_datasets(UpperCamelCase__ , info=UpperCamelCase__ , split=UpperCamelCase__ , axis=UpperCamelCase__ )
348
0
"""simple docstring""" def lowerCamelCase_ ( UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" __lowerCamelCase = [[0 for _ in range(UpperCamelCase__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , UpperCamelCase__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __A = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: __A = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
361
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __A = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> None: '''simple docstring''' warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , _a , ) super().__init__(*_a , **_a )
362
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''sew-d''' def __init__( self , lowerCamelCase__=32 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__=2 , lowerCamelCase__=512 , lowerCamelCase__=256 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=("p2c", "c2p") , lowerCamelCase__="layer_norm" , lowerCamelCase__="gelu_python" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-7 , lowerCamelCase__=1e-5 , lowerCamelCase__="group" , lowerCamelCase__="gelu" , lowerCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase__=False , lowerCamelCase__=128 , lowerCamelCase__=16 , lowerCamelCase__=True , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__="mean" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=0 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = squeeze_factor __lowerCamelCase = max_position_embeddings __lowerCamelCase = position_buckets __lowerCamelCase = share_att_key __lowerCamelCase = relative_attention __lowerCamelCase = norm_rel_ebd __lowerCamelCase = list(lowerCamelCase__ ) __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layer_norm_eps __lowerCamelCase = feature_layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # sequence classification __lowerCamelCase = use_weighted_layer_sum __lowerCamelCase = classifier_proj_size @property def lowercase_ ( self ) -> Any: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str=False ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=None ) -> Dict: """simple docstring""" if conf_path is None: __lowerCamelCase = './model_checkpoints/vqgan_only.yaml' __lowerCamelCase = load_config(lowercase__ , display=lowercase__ ) __lowerCamelCase = VQModel(**config.model.params ) if ckpt_path is None: __lowerCamelCase = './model_checkpoints/vqgan_only.pt' __lowerCamelCase = torch.load(lowercase__ , map_location=lowercase__ ) if ".ckpt" in ckpt_path: __lowerCamelCase = sd['state_dict'] model.load_state_dict(lowercase__ , strict=lowercase__ ) model.to(lowercase__ ) del sd return model def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] ) -> int: """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = model.encode(lowercase__ ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) __lowerCamelCase = model.decode(lowercase__ ) return xrec def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" __lowerCamelCase , __lowerCamelCase = string.rsplit('.' , 1 ) if reload: __lowerCamelCase = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Any: """simple docstring""" if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=True ) -> Optional[int]: """simple docstring""" __lowerCamelCase = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" if ckpt: __lowerCamelCase = torch.load(lowercase__ , map_location='cpu' ) __lowerCamelCase = pl_sd['global_step'] print(F"""loaded model from global step {global_step}.""" ) else: __lowerCamelCase = {'state_dict': None} __lowerCamelCase = None __lowerCamelCase = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=lowercase__ , eval_mode=lowercase__ )['model'] return model, global_step
363
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __A = logging.get_logger(__name__) __A = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if config is None: assert isinstance(self.model , _SCREAMING_SNAKE_CASE ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) __lowerCamelCase = self.model.config else: __lowerCamelCase = config __lowerCamelCase = data_args __lowerCamelCase = self.config.tgt_vocab_size if isinstance(self.config , _SCREAMING_SNAKE_CASE ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: __lowerCamelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __lowerCamelCase = label_smoothed_nll_loss def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' if self.optimizer is None: __lowerCamelCase = ["bias", "LayerNorm.weight"] __lowerCamelCase = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] __lowerCamelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __lowerCamelCase = Adafactor __lowerCamelCase = {"scale_parameter": False, "relative_step": False} else: __lowerCamelCase = AdamW __lowerCamelCase = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } __lowerCamelCase = self.args.learning_rate if self.sharded_ddp: __lowerCamelCase = OSS( params=_SCREAMING_SNAKE_CASE , optim=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: __lowerCamelCase = optimizer_cls(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.lr_scheduler is None: __lowerCamelCase = self._get_lr_scheduler(_SCREAMING_SNAKE_CASE ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __lowerCamelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __lowerCamelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __lowerCamelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_SCREAMING_SNAKE_CASE ) return scheduler def lowercase_ ( self ) -> Optional[torch.utils.data.Sampler]: '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __lowerCamelCase = model(**_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )[0] __lowerCamelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __lowerCamelCase = model(**_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )[:2] else: # compute label smoothed loss __lowerCamelCase = model(**_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )[0] __lowerCamelCase = torch.nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) __lowerCamelCase = self.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = inputs.pop('labels' ) __lowerCamelCase = self._compute_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return loss def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: '''simple docstring''' __lowerCamelCase = self._prepare_inputs(_SCREAMING_SNAKE_CASE ) __lowerCamelCase = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __lowerCamelCase = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **_SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __lowerCamelCase = self._pad_tensors_to_max_len(_SCREAMING_SNAKE_CASE , gen_kwargs['max_length'] ) __lowerCamelCase = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data __lowerCamelCase = self._compute_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __lowerCamelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __lowerCamelCase = self._pad_tensors_to_max_len(_SCREAMING_SNAKE_CASE , gen_kwargs['max_length'] ) return (loss, logits, labels) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' f""" padded to `max_length`={max_length}""" ) __lowerCamelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __lowerCamelCase = tensor return padded_tensor
364
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = [False] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : int , UpperCamelCase__ : int ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __A = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
0
import math import unittest def lowerCamelCase_ ( UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" assert isinstance(_a , _a ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
365
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
0
from __future__ import annotations import math def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> list[int]: """simple docstring""" __lowerCamelCase = str(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = [n] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" if len(str(SCREAMING_SNAKE_CASE_ ) ) > 3: if not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[:3] ) ): return False return True def lowerCamelCase_ ( UpperCamelCase__ : List[Any] = 11 ) -> list[int]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = 13 while len(SCREAMING_SNAKE_CASE_ ) != count: if validate(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase = list_truncated_nums(SCREAMING_SNAKE_CASE_ ) if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ): list_truncated_primes.append(SCREAMING_SNAKE_CASE_ ) num += 2 return list_truncated_primes def lowerCamelCase_ ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
366
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __lowerCamelCase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False __lowerCamelCase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCamelCase = [3, 3, 3, 3] __lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCamelCase = [4, 4, 4, 4] __lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCamelCase = [3, 3, 3, 3] else: __lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCamelCase = 96 elif "small" in model_name: __lowerCamelCase = 96 elif "base" in model_name: __lowerCamelCase = 128 elif "large" in model_name: __lowerCamelCase = 192 elif "xlarge" in model_name: __lowerCamelCase = 256 elif "huge" in model_name: __lowerCamelCase = 352 # set label information __lowerCamelCase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowerCamelCase = 'imagenet-22k-id2label.json' else: __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = FocalNetConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , focal_levels=UpperCamelCase__ , focal_windows=UpperCamelCase__ , use_conv_embed=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , use_post_layernorm=UpperCamelCase__ , use_layerscale=UpperCamelCase__ , ) return config def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> str: """simple docstring""" if "patch_embed.proj" in name: __lowerCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowerCamelCase = 'encoder.' + name if "encoder.layers" in name: __lowerCamelCase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowerCamelCase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowerCamelCase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCamelCase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCamelCase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCamelCase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowerCamelCase = 'layernorm.weight' if name == "norm.bias": __lowerCamelCase = 'layernorm.bias' if "head" in name: __lowerCamelCase = name.replace('head' , 'classifier' ) else: __lowerCamelCase = 'focalnet.' + name return name def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Dict: """simple docstring""" __lowerCamelCase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowerCamelCase = model_name_to_url[model_name] print('Checkpoint URL: ' , UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = val __lowerCamelCase = get_focalnet_config(UpperCamelCase__ ) __lowerCamelCase = FocalNetForImageClassification(UpperCamelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCamelCase__ ) # verify conversion __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase__ , crop_size=224 , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , ) __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = processor(images=UpperCamelCase__ , return_tensors='pt' ) __lowerCamelCase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __lowerCamelCase = image_transforms(UpperCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase__ , atol=1E-4 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": __lowerCamelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": __lowerCamelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": __lowerCamelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": __lowerCamelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": __lowerCamelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
348
0
"""simple docstring""" import fcntl import os import socket import torch import torch.distributed as dist def lowerCamelCase_ ( *UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , 'r' ) as fh: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_EX ) try: print(*SCREAMING_SNAKE_CASE__ ) finally: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_UN ) __A = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __A = torch.device("cuda", local_rank) __A = socket.gethostname() __A = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __A = dist.get_rank() __A = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
367
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class __lowerCAmelCase ( _a ): """simple docstring""" snake_case_ = """mvp""" snake_case_ = ["""past_key_values"""] snake_case_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCamelCase__=50_267 , lowerCamelCase__=1_024 , lowerCamelCase__=12 , lowerCamelCase__=4_096 , lowerCamelCase__=16 , lowerCamelCase__=12 , lowerCamelCase__=4_096 , lowerCamelCase__=16 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__="gelu" , lowerCamelCase__=1_024 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=False , lowerCamelCase__=100 , lowerCamelCase__=800 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = classifier_dropout __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = use_prompt __lowerCamelCase = prompt_length __lowerCamelCase = prompt_mid_dim super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __lowerCamelCase ): __lowerCamelCase = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
368
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A = json.load(f) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return FSMTTokenizer.from_pretrained(lowercase_ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = f"""facebook/wmt19-{pair}""" __lowerCamelCase = self.get_tokenizer(lowercase_ ) __lowerCamelCase = self.get_model(lowercase_ ) __lowerCamelCase = bleu_data[pair]['src'] __lowerCamelCase = bleu_data[pair]['tgt'] __lowerCamelCase = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) __lowerCamelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __lowerCamelCase = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) __lowerCamelCase = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
369
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''philschmid/bart-large-cnn-samsum''' snake_case_ = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) snake_case_ = '''summarizer''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ['''text'''] snake_case_ = ['''text'''] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.model.generate(**lowerCamelCase__ )[0] def lowercase_ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )
348
0
import pytest import datasets # Import fixture modules as plugins __A = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str ) -> Any: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=_lowerCamelCase ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = tmp_path_factory.getbasetemp() / "cache" __lowerCamelCase = test_hf_cache_home / "datasets" __lowerCamelCase = test_hf_cache_home / "metrics" __lowerCamelCase = test_hf_cache_home / "modules" monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(_lowerCamelCase ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(_lowerCamelCase ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(_lowerCamelCase ) ) __lowerCamelCase = test_hf_datasets_cache / "downloads" monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(_lowerCamelCase ) ) __lowerCamelCase = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_lowerCamelCase ) ) @pytest.fixture(autouse=_lowerCamelCase , scope='session' ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_lowerCamelCase ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , _lowerCamelCase ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , _lowerCamelCase )
370
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
0
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): snake_case_ = ['''torch''', '''scipy'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['torch', 'scipy'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ['torch', 'scipy'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ['torch', 'scipy'] )
371
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = MobileBertConfig.from_json_file(lowerCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = MobileBertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint __lowerCamelCase = load_tf_weights_in_mobilebert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
350
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase_ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = np.random.RandomState(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # warmup pass to apply optimizations __lowerCamelCase = pipe(**self.get_dummy_inputs() ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowerCamelCase = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((768, 512) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = np.random.RandomState(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __lowerCamelCase = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
348
0
import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCamelCase = botoa.client('iam' ) __lowerCamelCase = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_SCREAMING_SNAKE_CASE , AssumeRolePolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) __lowerCamelCase = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_SCREAMING_SNAKE_CASE , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __lowerCamelCase = botoa.client('iam' ) return iam_client.get_role(RoleName=_SCREAMING_SNAKE_CASE )["Role"]["Arn"] def lowerCamelCase_ ( ) -> int: """simple docstring""" __lowerCamelCase = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase = None if credentials_configuration == 0: __lowerCamelCase = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) __lowerCamelCase = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) __lowerCamelCase = _ask_field('AWS Access Key ID: ' ) __lowerCamelCase = aws_access_key_id __lowerCamelCase = _ask_field('AWS Secret Access Key: ' ) __lowerCamelCase = aws_secret_access_key __lowerCamelCase = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) __lowerCamelCase = aws_region __lowerCamelCase = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , _SCREAMING_SNAKE_CASE , ) if role_management == 0: __lowerCamelCase = _ask_field('Enter your IAM role name: ' ) else: __lowerCamelCase = "accelerate_sagemaker_execution_role" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(_SCREAMING_SNAKE_CASE ) __lowerCamelCase = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) __lowerCamelCase = None if is_custom_docker_image: __lowerCamelCase = _ask_field('Enter your Docker image: ' , lambda UpperCamelCase__ : str(_SCREAMING_SNAKE_CASE ).lower() ) __lowerCamelCase = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) __lowerCamelCase = None if is_sagemaker_inputs_enabled: __lowerCamelCase = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda UpperCamelCase__ : str(_SCREAMING_SNAKE_CASE ).lower() , ) __lowerCamelCase = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) __lowerCamelCase = None if is_sagemaker_metrics_enabled: __lowerCamelCase = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda UpperCamelCase__ : str(_SCREAMING_SNAKE_CASE ).lower() , ) __lowerCamelCase = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) __lowerCamelCase = {} __lowerCamelCase = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) if use_dynamo: __lowerCamelCase = "dynamo_" __lowerCamelCase = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __lowerCamelCase = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) if use_custom_options: __lowerCamelCase = _ask_options( 'Which mode do you want to use?' , _SCREAMING_SNAKE_CASE , lambda UpperCamelCase__ : TORCH_DYNAMO_MODES[int(_SCREAMING_SNAKE_CASE )] , default='default' , ) __lowerCamelCase = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) __lowerCamelCase = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='Please enter yes or no.' , ) __lowerCamelCase = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: __lowerCamelCase = _ask_options( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lambda UpperCamelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_SCREAMING_SNAKE_CASE )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __lowerCamelCase = _ask_field(_SCREAMING_SNAKE_CASE , lambda UpperCamelCase__ : str(_SCREAMING_SNAKE_CASE ).lower() , default='ml.p3.2xlarge' ) __lowerCamelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __lowerCamelCase = _ask_field( 'How many machines do you want use? [1]: ' , _SCREAMING_SNAKE_CASE , default=1 , ) __lowerCamelCase = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=_SCREAMING_SNAKE_CASE , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_SCREAMING_SNAKE_CASE , use_cpu=_SCREAMING_SNAKE_CASE , dynamo_config=_SCREAMING_SNAKE_CASE , eca_instance_type=_SCREAMING_SNAKE_CASE , profile=_SCREAMING_SNAKE_CASE , region=_SCREAMING_SNAKE_CASE , iam_role_name=_SCREAMING_SNAKE_CASE , mixed_precision=_SCREAMING_SNAKE_CASE , num_machines=_SCREAMING_SNAKE_CASE , sagemaker_inputs_file=_SCREAMING_SNAKE_CASE , sagemaker_metrics_file=_SCREAMING_SNAKE_CASE , )
351
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaImgaImgPipeline snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] snake_case_ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] snake_case_ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> int: '''simple docstring''' return 100 @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __lowerCamelCase = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.dummy_unet __lowerCamelCase = self.dummy_movq __lowerCamelCase = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __lowerCamelCase = DDIMScheduler(**lowerCamelCase__ ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> int: '''simple docstring''' __lowerCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create init_image __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ).resize((256, 256) ) if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase = output.images __lowerCamelCase = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowerCamelCase = '''A red cartoon frog, 4k''' __lowerCamelCase = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) __lowerCamelCase = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) __lowerCamelCase = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowerCamelCase = pipeline( image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __lowerCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 20 __lowerCamelCase = model_class_name(lowerCamelCase__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = FlaxGPTJModelTester(self ) def lowercase_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __lowerCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __lowerCamelCase = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = pt_model_class(lowerCamelCase__ ).eval() __lowerCamelCase = model_class(lowerCamelCase__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['input_ids'].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**lowerCamelCase__ ).to_tuple() __lowerCamelCase = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) __lowerCamelCase = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowercase_ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
348
0