url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.comp
[35, 1]
[43, 8]
rw [Injective]
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g ⊢ Injective (g ∘ f)
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g ⊢ ∀ {x₁ x₂ : X}, (g ∘ f) x₁ = (g ∘ f) x₂ → x₁ = x₂
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.comp
[35, 1]
[43, 8]
intro x₁ x₂ hgf
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g ⊢ ∀ {x₁ x₂ : X}, (g ∘ f) x₁ = (g ∘ f) x₂ → x₁ = x₂
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g x₁ x₂ : X hgf : (g ∘ f) x₁ = (g ∘ f) x₂ ⊢ x₁ = x₂
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.comp
[35, 1]
[43, 8]
have hf := hginj hgf
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g x₁ x₂ : X hgf : (g ∘ f) x₁ = (g ∘ f) x₂ ⊢ x₁ = x₂
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g x₁ x₂ : X hgf : (g ∘ f) x₁ = (g ∘ f) x₂ hf : f x₁ = f x₂ ⊢ x₁ = x₂
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.comp
[35, 1]
[43, 8]
sorry
X Y Z : Type f : X → Y g : Y → Z hfinj : Injective f hginj : Injective g x₁ x₂ : X hgf : (g ∘ f) x₁ = (g ∘ f) x₂ hf : f x₁ = f x₂ ⊢ x₁ = x₂
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.of_comp
[69, 1]
[77, 8]
rw [Injective]
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) ⊢ Injective f
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) ⊢ ∀ {x₁ x₂ : X}, f x₁ = f x₂ → x₁ = x₂
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.of_comp
[69, 1]
[77, 8]
intro x₁ x₂ hf
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) ⊢ ∀ {x₁ x₂ : X}, f x₁ = f x₂ → x₁ = x₂
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) x₁ x₂ : X hf : f x₁ = f x₂ ⊢ x₁ = x₂
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.of_comp
[69, 1]
[77, 8]
have h : g (f x₁) = g (f x₂) := by sorry
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) x₁ x₂ : X hf : f x₁ = f x₂ ⊢ x₁ = x₂
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) x₁ x₂ : X hf : f x₁ = f x₂ h : g (f x₁) = g (f x₂) ⊢ x₁ = x₂
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.of_comp
[69, 1]
[77, 8]
sorry
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) x₁ x₂ : X hf : f x₁ = f x₂ h : g (f x₁) = g (f x₂) ⊢ x₁ = x₂
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Injective.of_comp
[69, 1]
[77, 8]
sorry
X Y Z : Type f : X → Y g : Y → Z hgfinj : Injective (g ∘ f) x₁ x₂ : X hf : f x₁ = f x₂ ⊢ g (f x₁) = g (f x₂)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Surjective.comp
[119, 1]
[126, 8]
rw [Surjective]
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g ⊢ Surjective (g ∘ f)
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g ⊢ ∀ (y : Z), ∃ x, (g ∘ f) x = y
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Surjective.comp
[119, 1]
[126, 8]
intro z
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g ⊢ ∀ (y : Z), ∃ x, (g ∘ f) x = y
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g z : Z ⊢ ∃ x, (g ∘ f) x = z
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Surjective.comp
[119, 1]
[126, 8]
have ⟨y, hy⟩ := hgsurj z
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g z : Z ⊢ ∃ x, (g ∘ f) x = z
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g z : Z y : Y hy : g y = z ⊢ ∃ x, (g ∘ f) x = z
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Surjective.comp
[119, 1]
[126, 8]
sorry
X Y Z : Type f : X → Y g : Y → Z hfsurj : Surjective f hgsurj : Surjective g z : Z y : Y hy : g y = z ⊢ ∃ x, (g ∘ f) x = z
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Basic/Lecture4.lean
Tutorial.Surjective.of_comp
[137, 1]
[138, 8]
sorry
X Y Z : Type f : X → Y g : Y → Z h : Surjective (g ∘ f) ⊢ Surjective g
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.Subgroup.mem_comm
[31, 1]
[42, 8]
intro hab
G : Type inst✝¹ : Group G N : Subgroup G inst✝ : Normal N a b : G ⊢ a * b ∈ N → b * a ∈ N
G : Type inst✝¹ : Group G N : Subgroup G inst✝ : Normal N a b : G hab : a * b ∈ N ⊢ b * a ∈ N
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.Subgroup.mem_comm
[31, 1]
[42, 8]
sorry
G : Type inst✝¹ : Group G N : Subgroup G inst✝ : Normal N a b : G hab : a * b ∈ N ⊢ b * a ∈ N
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.mem_of_eq_one
[82, 1]
[83, 8]
sorry
G : Type inst✝¹ : Group G N : Subgroup G inst✝ : Subgroup.Normal N a : G ⊢ LeftQuotient.mk a = 1 ↔ a ∈ N
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.Subgroup.coe_one
[170, 1]
[170, 48]
simp
G H : Type inst✝¹ : Group G inst✝ : Group H f : G →* H K : Subgroup G ⊢ 1 ∈ K
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.GroupHom.rangeKerLift_injective
[201, 1]
[202, 8]
sorry
G H : Type inst✝¹ : Group G inst✝ : Group H f : G →* H ⊢ Function.Injective ⇑(rangeKerLift f)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.GroupHom.rangeKerLift_surjective
[205, 1]
[208, 8]
intro ⟨y, hy⟩
G H : Type inst✝¹ : Group G inst✝ : Group H f : G →* H ⊢ Function.Surjective ⇑(rangeKerLift f)
G H : Type inst✝¹ : Group G inst✝ : Group H f : G →* H y : H hy : y ∈ range f ⊢ ∃ a, (rangeKerLift f) a = { val := y, property := hy }
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Tutorial/Advanced/Algebra/Lecture5.lean
Tutorial.GroupHom.rangeKerLift_surjective
[205, 1]
[208, 8]
sorry
G H : Type inst✝¹ : Group G inst✝ : Group H f : G →* H y : H hy : y ∈ range f ⊢ ∃ a, (rangeKerLift f) a = { val := y, property := hy }
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.abs_of_ten_inv
[18, 1]
[19, 55]
linarith
i : ℕ ⊢ 0 < 10
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
calc _ = Real.ofCauchy (Quotient.mk CauSeq.equiv (CauSeq.const abs 1)) := ?_ _ = (1 : ℝ) := Real.ofCauchy_one
⊢ { cauchy := ⟦«0.9999999»⟧ } = 1
⊢ { cauchy := ⟦«0.9999999»⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ }
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
rw [«0.9999999»]
⊢ { cauchy := ⟦«0.9999999»⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ }
⊢ { cauchy := ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ }
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
congr 1
⊢ { cauchy := ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ }
case e_cauchy ⊢ ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ = ⟦CauSeq.const abs 1⟧
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
apply Quotient.sound
case e_cauchy ⊢ ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ = ⟦CauSeq.const abs 1⟧
case e_cauchy.a ⊢ { val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } ≈ CauSeq.const abs 1
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
intro ε ε0
case e_cauchy.a ⊢ { val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } ≈ CauSeq.const abs 1
case e_cauchy.a ε : ℚ ε0 : ε > 0 ⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
suffices ∃ i, ∀ (j : ℕ), j ≥ i → (10 ^ j : ℚ)⁻¹ < ε by simpa [abs_of_ten_inv]
case e_cauchy.a ε : ℚ ε0 : ε > 0 ⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε
case e_cauchy.a ε : ℚ ε0 : ε > 0 ⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
have ⟨n, hn⟩ : ∃ n : ℕ, ε⁻¹ < 10 ^ n := pow_unbounded_of_one_lt ε⁻¹ rfl
case e_cauchy.a ε : ℚ ε0 : ε > 0 ⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n ⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
have : (10 ^ n : ℚ)⁻¹ < ε := inv_lt_of_inv_lt ε0 hn
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n ⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε ⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
exists n
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε ⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε ⊢ ∀ j ≥ n, (10 ^ j)⁻¹ < ε
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
intro h hj
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε ⊢ ∀ j ≥ n, (10 ^ j)⁻¹ < ε
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε h : ℕ hj : h ≥ n ⊢ (10 ^ h)⁻¹ < ε
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
calc (10 ^ h : ℚ )⁻¹ ≤ (10 ^ n : ℚ)⁻¹ := inv_pow_le_inv_pow_of_le (by linarith) hj _ < ε := this
case e_cauchy.a ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε h : ℕ hj : h ≥ n ⊢ (10 ^ h)⁻¹ < ε
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
simpa [abs_of_ten_inv]
ε : ℚ ε0 : ε > 0 this : ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε ⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.«0.9999999 = 1»
[39, 1]
[54, 18]
linarith
ε : ℚ ε0 : ε > 0 n : ℕ hn : ε⁻¹ < 10 ^ n this : (10 ^ n)⁻¹ < ε h : ℕ hj : h ≥ n ⊢ 1 ≤ 10
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
rcases hac with ⟨ι_ac, cover_ac⟩
ι : Type U : ι → Set ℝ a c b : ℝ hac : HasFinSubCover U (Icc a c) hcb : HasFinSubCover U (Icc c b) ⊢ HasFinSubCover U (Icc a b)
case intro ι : Type U : ι → Set ℝ a c b : ℝ hcb : HasFinSubCover U (Icc c b) ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ⊢ HasFinSubCover U (Icc a b)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
rcases hcb with ⟨ι_cb, cover_cb⟩
case intro ι : Type U : ι → Set ℝ a c b : ℝ hcb : HasFinSubCover U (Icc c b) ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ⊢ HasFinSubCover U (Icc a b)
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i ⊢ HasFinSubCover U (Icc a b)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
exists ι_ac ∪ ι_cb
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i ⊢ HasFinSubCover U (Icc a b)
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i ⊢ Icc a b ⊆ ⋃ i ∈ ι_ac ∪ ι_cb, U i
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
intro x hx
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i ⊢ Icc a b ⊆ ⋃ i ∈ ι_ac ∪ ι_cb, U i
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b ⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
suffices ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i by simpa using this
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b ⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
cases le_total x c
case intro.intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
case intro.intro.inl ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b h✝ : x ≤ c ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i case intro.intro.inr ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b h✝ : c ≤ x ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
case inl hxc => obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_ac ∧ x ∈ U i := by simpa using cover_ac ⟨hx.left, hxc⟩ exact ⟨i, Or.inl hi.1, hi.2⟩
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : x ≤ c ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
case inr hxc => obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_cb ∧ x ∈ U i := by simpa using cover_cb ⟨hxc, hx.right⟩ exact ⟨i, Or.inr hi.1, hi.2⟩
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : c ≤ x ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
simpa using this
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b this : ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i ⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_ac ∧ x ∈ U i := by simpa using cover_ac ⟨hx.left, hxc⟩
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : x ≤ c ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
case intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : x ≤ c i : ι hi : i ∈ ι_ac ∧ x ∈ U i ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
exact ⟨i, Or.inl hi.1, hi.2⟩
case intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : x ≤ c i : ι hi : i ∈ ι_ac ∧ x ∈ U i ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
simpa using cover_ac ⟨hx.left, hxc⟩
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : x ≤ c ⊢ ∃ i ∈ ι_ac, x ∈ U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_cb ∧ x ∈ U i := by simpa using cover_cb ⟨hxc, hx.right⟩
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : c ≤ x ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
case intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : c ≤ x i : ι hi : i ∈ ι_cb ∧ x ∈ U i ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
exact ⟨i, Or.inr hi.1, hi.2⟩
case intro ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : c ≤ x i : ι hi : i ∈ ι_cb ∧ x ∈ U i ⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.hasFinSubCover_concat
[109, 1]
[123, 33]
simpa using cover_cb ⟨hxc, hx.right⟩
ι : Type U : ι → Set ℝ a c b : ℝ ι_ac : Finset ι cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i ι_cb : Finset ι cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i x : ℝ hx : x ∈ Icc a b hxc : c ≤ x ⊢ ∃ i ∈ ι_cb, x ∈ U i
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.not_HasFinSubCover_concat
[125, 1]
[128, 48]
contrapose!
ι : Type U : ι → Set ℝ a b c : ℝ ⊢ ¬HasFinSubCover U (Icc a b) → HasFinSubCover U (Icc a c) → ¬HasFinSubCover U (Icc c b)
ι : Type U : ι → Set ℝ a b c : ℝ ⊢ HasFinSubCover U (Icc a c) ∧ HasFinSubCover U (Icc c b) → HasFinSubCover U (Icc a b)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.not_HasFinSubCover_concat
[125, 1]
[128, 48]
apply (fun H ↦ hasFinSubCover_concat H.1 H.2)
ι : Type U : ι → Set ℝ a b c : ℝ ⊢ HasFinSubCover U (Icc a c) ∧ HasFinSubCover U (Icc c b) → HasFinSubCover U (Icc a b)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSucc_eq_or_eq
[140, 1]
[143, 21]
apply ite_eq_or_eq
ι : Type U : ι → Set ℝ a b : ℝ ⊢ nestedIntervalSucc U a b = (a, (a + b) / 2) ∨ nestedIntervalSucc U a b = ((a + b) / 2, b)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
have := nestedInterval_le n
ι : Type U : ι → Set ℝ n : ℕ ⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 ⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
cases nestedIntervalSucc_eq_or_eq U (α n) (β n) with | inl h => rw [nestedInterval, h]; dsimp only; linarith | inr h => rw [nestedInterval, h]; dsimp only; linarith
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 ⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
rw [nestedInterval, h]
case inl ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
case inl ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 < ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
dsimp only
case inl ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 < ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2
case inl ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ (nestedInterval U n).1 < ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
linarith
case inl ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ (nestedInterval U n).1 < ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
rw [nestedInterval, h]
case inr ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
case inr ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 < (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
dsimp only
case inr ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 < (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2
case inr ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 < (nestedInterval U n).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_le
[145, 1]
[151, 60]
linarith
case inr ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 < (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
have := nestedInterval_le U n
ι : Type U : ι → Set ℝ n : ℕ ⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 ⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
cases nestedIntervalSucc_eq_or_eq U (α n) (β n) with | inl h => apply Icc_subset_Icc (by rw [nestedInterval, h]) (by rw [nestedInterval, h]; dsimp only; linarith) | inr h => apply Icc_subset_Icc (by rw [nestedInterval, h]; dsimp only; linarith) (by rw [nestedInterval, h])
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 ⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
apply Icc_subset_Icc (by rw [nestedInterval, h]) (by rw [nestedInterval, h]; dsimp only; linarith)
case inl ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
rw [nestedInterval, h]
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ (nestedInterval U n).1 ≤ (nestedInterval U (n + 1)).1
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
rw [nestedInterval, h]
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ (nestedInterval U (n + 1)).2 ≤ (nestedInterval U n).2
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 ≤ (nestedInterval U n).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
dsimp only
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 ≤ (nestedInterval U n).2
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
linarith
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2) ⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
apply Icc_subset_Icc (by rw [nestedInterval, h]; dsimp only; linarith) (by rw [nestedInterval, h])
case inr ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
rw [nestedInterval, h]
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U n).1 ≤ (nestedInterval U (n + 1)).1
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U n).1 ≤ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
dsimp only
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U n).1 ≤ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
linarith
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested_succ
[153, 1]
[159, 103]
rw [nestedInterval, h]
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 h : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ⊢ (nestedInterval U (n + 1)).2 ≤ (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested
[161, 1]
[166, 86]
rw [(Nat.add_sub_of_le hij).symm]
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j ⊢ Icc (nestedInterval U j).1 (nestedInterval U j).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j ⊢ Icc (nestedInterval U (i + (j - i))).1 (nestedInterval U (i + (j - i))).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested
[161, 1]
[166, 86]
set k := j - i
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j ⊢ Icc (nestedInterval U (i + (j - i))).1 (nestedInterval U (i + (j - i))).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j k : ℕ := j - i ⊢ Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested
[161, 1]
[166, 86]
induction k with | zero => apply rfl.subset | succ k ih => intro x hx; apply ih (nestedIntervalSeq_is_nested_succ U (i + k) hx)
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j k : ℕ := j - i ⊢ Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested
[161, 1]
[166, 86]
apply rfl.subset
case zero ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j k : ℕ := j - i ⊢ Icc (nestedInterval U (i + Nat.zero)).1 (nestedInterval U (i + Nat.zero)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested
[161, 1]
[166, 86]
intro x hx
case succ ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j k✝ : ℕ := j - i k : ℕ ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2 ⊢ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
case succ ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j k✝ : ℕ := j - i k : ℕ ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2 x : ℝ hx : x ∈ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2 ⊢ x ∈ Icc (nestedInterval U i).1 (nestedInterval U i).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_is_nested
[161, 1]
[166, 86]
apply ih (nestedIntervalSeq_is_nested_succ U (i + k) hx)
case succ ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j k✝ : ℕ := j - i k : ℕ ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2 x : ℝ hx : x ∈ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2 ⊢ x ∈ Icc (nestedInterval U i).1 (nestedInterval U i).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_mem
[168, 1]
[171, 26]
simp only [mem_Icc, nestedIntervalSeq]
ι : Type U : ι → Set ℝ n : ℕ ⊢ nestedIntervalSeq U n ∈ Icc (nestedInterval U n).1 (nestedInterval U n).2
ι : Type U : ι → Set ℝ n : ℕ ⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_mem
[168, 1]
[171, 26]
have := nestedInterval_le U n
ι : Type U : ι → Set ℝ n : ℕ ⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 ⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_mem
[168, 1]
[171, 26]
split_ands <;> linarith
ι : Type U : ι → Set ℝ n : ℕ this : (nestedInterval U n).1 < (nestedInterval U n).2 ⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
by_cases H : HasFinSubCover U (Icc (α n) ((α n + β n) / 2))
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
case pos ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) case neg ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
case pos => rw [nestedInterval, nestedIntervalSucc_right H] apply not_HasFinSubCover_concat ?_ H apply nestedInterval_not_HasFinSubCover h n
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
case neg => rw [nestedInterval, nestedIntervalSucc_left H] apply H
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
rw [nestedInterval, nestedIntervalSucc_right H]
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
apply not_HasFinSubCover_concat ?_ H
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
apply nestedInterval_not_HasFinSubCover h n
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
rw [nestedInterval, nestedIntervalSucc_left H]
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2)
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_not_HasFinSubCover
[180, 1]
[190, 14]
apply H
ι : Type U : ι → Set ℝ h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2) n : ℕ H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2)) ⊢ ¬HasFinSubCover U (Icc ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2)
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_len
[195, 1]
[202, 61]
simp [nestedInterval]
ι : Type U : ι → Set ℝ ⊢ (nestedInterval U 0).2 - (nestedInterval U 0).1 = (2 ^ 0)⁻¹
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_len
[195, 1]
[202, 61]
have ih := nestedInterval_len n
ι : Type U : ι → Set ℝ n : ℕ ⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹
ι : Type U : ι → Set ℝ n : ℕ ih : (nestedInterval U n).2 - (nestedInterval U n).1 = (2 ^ n)⁻¹ ⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_len
[195, 1]
[202, 61]
rcases nestedIntervalSucc_eq_or_eq U (α n) (β n) with H | H <;> rw [nestedInterval, H] <;> field_simp at ih ⊢ <;> calc _ = (β n - α n) * 2 ^ n * 2 := by ring _ = 2 := by rw [ih]; ring
ι : Type U : ι → Set ℝ n : ℕ ih : (nestedInterval U n).2 - (nestedInterval U n).1 = (2 ^ n)⁻¹ ⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_len
[195, 1]
[202, 61]
ring
ι : Type U : ι → Set ℝ n : ℕ H : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1 ⊢ ((nestedInterval U n).2 * 2 - ((nestedInterval U n).1 + (nestedInterval U n).2)) * 2 ^ (n + 1) = ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n * 2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_len
[195, 1]
[202, 61]
rw [ih]
ι : Type U : ι → Set ℝ n : ℕ H : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1 ⊢ ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n * 2 = 2
ι : Type U : ι → Set ℝ n : ℕ H : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1 ⊢ 1 * 2 = 2
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedInterval_len
[195, 1]
[202, 61]
ring
ι : Type U : ι → Set ℝ n : ℕ H : nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 = (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2) ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1 ⊢ 1 * 2 = 2
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_isCauSeq_aux
[204, 1]
[207, 47]
dsimp [Icc] at hx hy
ι : Type U : ι → Set ℝ a b x y : ℝ hx : x ∈ Icc a b hy : y ∈ Icc a b ⊢ |y - x| ≤ b - a
ι : Type U : ι → Set ℝ a b x y : ℝ hx : a ≤ x ∧ x ≤ b hy : a ≤ y ∧ y ≤ b ⊢ |y - x| ≤ b - a
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_isCauSeq_aux
[204, 1]
[207, 47]
apply (abs_sub_le_iff.2 ⟨_, _⟩) <;> linarith
ι : Type U : ι → Set ℝ a b x y : ℝ hx : a ≤ x ∧ x ≤ b hy : a ≤ y ∧ y ≤ b ⊢ |y - x| ≤ b - a
no goals
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_isCauSeq_aux'
[209, 1]
[212, 40]
have := nestedIntervalSeq_isCauSeq_aux (nestedIntervalSeq_mem U i) (nestedIntervalSeq_mem_of_le U hij)
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j ⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j this : |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (nestedInterval U i).2 - (nestedInterval U i).1 ⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹
https://github.com/yuma-mizuno/lean-math-workshop.git
4a69b0130b276b45212e2b12b90032b146b56d67
Solution/Advanced/Analysis/Lecture3.lean
Tutorial.nestedIntervalSeq_isCauSeq_aux'
[209, 1]
[212, 40]
simpa [nestedInterval_len] using this
ι : Type U : ι → Set ℝ i j : ℕ hij : i ≤ j this : |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (nestedInterval U i).2 - (nestedInterval U i).1 ⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹
no goals