url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.comp | [35, 1] | [43, 8] | rw [Injective] | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
⊢ Injective (g ∘ f) | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
⊢ ∀ {x₁ x₂ : X}, (g ∘ f) x₁ = (g ∘ f) x₂ → x₁ = x₂ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.comp | [35, 1] | [43, 8] | intro x₁ x₂ hgf | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
⊢ ∀ {x₁ x₂ : X}, (g ∘ f) x₁ = (g ∘ f) x₂ → x₁ = x₂ | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
⊢ x₁ = x₂ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.comp | [35, 1] | [43, 8] | have hf := hginj hgf | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
⊢ x₁ = x₂ | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
hf : f x₁ = f x₂
⊢ x₁ = x₂ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.comp | [35, 1] | [43, 8] | sorry | X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
hf : f x₁ = f x₂
⊢ x₁ = x₂ | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.of_comp | [69, 1] | [77, 8] | rw [Injective] | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
⊢ Injective f | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
⊢ ∀ {x₁ x₂ : X}, f x₁ = f x₂ → x₁ = x₂ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.of_comp | [69, 1] | [77, 8] | intro x₁ x₂ hf | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
⊢ ∀ {x₁ x₂ : X}, f x₁ = f x₂ → x₁ = x₂ | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
⊢ x₁ = x₂ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.of_comp | [69, 1] | [77, 8] | have h : g (f x₁) = g (f x₂) := by
sorry | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
⊢ x₁ = x₂ | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
h : g (f x₁) = g (f x₂)
⊢ x₁ = x₂ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.of_comp | [69, 1] | [77, 8] | sorry | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
h : g (f x₁) = g (f x₂)
⊢ x₁ = x₂ | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Injective.of_comp | [69, 1] | [77, 8] | sorry | X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
⊢ g (f x₁) = g (f x₂) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Surjective.comp | [119, 1] | [126, 8] | rw [Surjective] | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
⊢ Surjective (g ∘ f) | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
⊢ ∀ (y : Z), ∃ x, (g ∘ f) x = y |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Surjective.comp | [119, 1] | [126, 8] | intro z | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
⊢ ∀ (y : Z), ∃ x, (g ∘ f) x = y | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
⊢ ∃ x, (g ∘ f) x = z |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Surjective.comp | [119, 1] | [126, 8] | have ⟨y, hy⟩ := hgsurj z | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
⊢ ∃ x, (g ∘ f) x = z | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
y : Y
hy : g y = z
⊢ ∃ x, (g ∘ f) x = z |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Surjective.comp | [119, 1] | [126, 8] | sorry | X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
y : Y
hy : g y = z
⊢ ∃ x, (g ∘ f) x = z | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Basic/Lecture4.lean | Tutorial.Surjective.of_comp | [137, 1] | [138, 8] | sorry | X Y Z : Type
f : X → Y
g : Y → Z
h : Surjective (g ∘ f)
⊢ Surjective g | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.Subgroup.mem_comm | [31, 1] | [42, 8] | intro hab | G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
a b : G
⊢ a * b ∈ N → b * a ∈ N | G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
a b : G
hab : a * b ∈ N
⊢ b * a ∈ N |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.Subgroup.mem_comm | [31, 1] | [42, 8] | sorry | G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
a b : G
hab : a * b ∈ N
⊢ b * a ∈ N | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.mem_of_eq_one | [82, 1] | [83, 8] | sorry | G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Subgroup.Normal N
a : G
⊢ LeftQuotient.mk a = 1 ↔ a ∈ N | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.Subgroup.coe_one | [170, 1] | [170, 48] | simp | G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
K : Subgroup G
⊢ 1 ∈ K | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.GroupHom.rangeKerLift_injective | [201, 1] | [202, 8] | sorry | G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
⊢ Function.Injective ⇑(rangeKerLift f) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.GroupHom.rangeKerLift_surjective | [205, 1] | [208, 8] | intro ⟨y, hy⟩ | G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
⊢ Function.Surjective ⇑(rangeKerLift f) | G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
y : H
hy : y ∈ range f
⊢ ∃ a, (rangeKerLift f) a = { val := y, property := hy } |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Tutorial/Advanced/Algebra/Lecture5.lean | Tutorial.GroupHom.rangeKerLift_surjective | [205, 1] | [208, 8] | sorry | G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
y : H
hy : y ∈ range f
⊢ ∃ a, (rangeKerLift f) a = { val := y, property := hy } | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.abs_of_ten_inv | [18, 1] | [19, 55] | linarith | i : ℕ
⊢ 0 < 10 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | calc _ = Real.ofCauchy (Quotient.mk CauSeq.equiv (CauSeq.const abs 1)) := ?_
_ = (1 : ℝ) := Real.ofCauchy_one | ⊢ { cauchy := ⟦«0.9999999»⟧ } = 1 | ⊢ { cauchy := ⟦«0.9999999»⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ } |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | rw [«0.9999999»] | ⊢ { cauchy := ⟦«0.9999999»⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ } | ⊢ { cauchy := ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ } =
{ cauchy := ⟦CauSeq.const abs 1⟧ } |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | congr 1 | ⊢ { cauchy := ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ } =
{ cauchy := ⟦CauSeq.const abs 1⟧ } | case e_cauchy
⊢ ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ = ⟦CauSeq.const abs 1⟧ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | apply Quotient.sound | case e_cauchy
⊢ ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ = ⟦CauSeq.const abs 1⟧ | case e_cauchy.a
⊢ { val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } ≈ CauSeq.const abs 1 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | intro ε ε0 | case e_cauchy.a
⊢ { val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } ≈ CauSeq.const abs 1 | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | suffices ∃ i, ∀ (j : ℕ), j ≥ i → (10 ^ j : ℚ)⁻¹ < ε by simpa [abs_of_ten_inv] | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | have ⟨n, hn⟩ : ∃ n : ℕ, ε⁻¹ < 10 ^ n := pow_unbounded_of_one_lt ε⁻¹ rfl | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | have : (10 ^ n : ℚ)⁻¹ < ε := inv_lt_of_inv_lt ε0 hn | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | exists n | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∀ j ≥ n, (10 ^ j)⁻¹ < ε |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | intro h hj | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∀ j ≥ n, (10 ^ j)⁻¹ < ε | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
h : ℕ
hj : h ≥ n
⊢ (10 ^ h)⁻¹ < ε |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | calc (10 ^ h : ℚ )⁻¹ ≤ (10 ^ n : ℚ)⁻¹ := inv_pow_le_inv_pow_of_le (by linarith) hj
_ < ε := this | case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
h : ℕ
hj : h ≥ n
⊢ (10 ^ h)⁻¹ < ε | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | simpa [abs_of_ten_inv] | ε : ℚ
ε0 : ε > 0
this : ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.«0.9999999 = 1» | [39, 1] | [54, 18] | linarith | ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
h : ℕ
hj : h ≥ n
⊢ 1 ≤ 10 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | rcases hac with ⟨ι_ac, cover_ac⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
hac : HasFinSubCover U (Icc a c)
hcb : HasFinSubCover U (Icc c b)
⊢ HasFinSubCover U (Icc a b) | case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
hcb : HasFinSubCover U (Icc c b)
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
⊢ HasFinSubCover U (Icc a b) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | rcases hcb with ⟨ι_cb, cover_cb⟩ | case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
hcb : HasFinSubCover U (Icc c b)
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
⊢ HasFinSubCover U (Icc a b) | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ HasFinSubCover U (Icc a b) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | exists ι_ac ∪ ι_cb | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ HasFinSubCover U (Icc a b) | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ Icc a b ⊆ ⋃ i ∈ ι_ac ∪ ι_cb, U i |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | intro x hx | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ Icc a b ⊆ ⋃ i ∈ ι_ac ∪ ι_cb, U i | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | suffices ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i by
simpa using this | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | cases le_total x c | case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | case intro.intro.inl
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
h✝ : x ≤ c
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
case intro.intro.inr
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
h✝ : c ≤ x
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | case inl hxc =>
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_ac ∧ x ∈ U i := by simpa using cover_ac ⟨hx.left, hxc⟩
exact ⟨i, Or.inl hi.1, hi.2⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | case inr hxc =>
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_cb ∧ x ∈ U i := by simpa using cover_cb ⟨hxc, hx.right⟩
exact ⟨i, Or.inr hi.1, hi.2⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | simpa using this | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
this : ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_ac ∧ x ∈ U i := by simpa using cover_ac ⟨hx.left, hxc⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
i : ι
hi : i ∈ ι_ac ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | exact ⟨i, Or.inl hi.1, hi.2⟩ | case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
i : ι
hi : i ∈ ι_ac ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | simpa using cover_ac ⟨hx.left, hxc⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
⊢ ∃ i ∈ ι_ac, x ∈ U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_cb ∧ x ∈ U i := by simpa using cover_cb ⟨hxc, hx.right⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
i : ι
hi : i ∈ ι_cb ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | exact ⟨i, Or.inr hi.1, hi.2⟩ | case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
i : ι
hi : i ∈ ι_cb ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.hasFinSubCover_concat | [109, 1] | [123, 33] | simpa using cover_cb ⟨hxc, hx.right⟩ | ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
⊢ ∃ i ∈ ι_cb, x ∈ U i | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.not_HasFinSubCover_concat | [125, 1] | [128, 48] | contrapose! | ι : Type
U : ι → Set ℝ
a b c : ℝ
⊢ ¬HasFinSubCover U (Icc a b) → HasFinSubCover U (Icc a c) → ¬HasFinSubCover U (Icc c b) | ι : Type
U : ι → Set ℝ
a b c : ℝ
⊢ HasFinSubCover U (Icc a c) ∧ HasFinSubCover U (Icc c b) → HasFinSubCover U (Icc a b) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.not_HasFinSubCover_concat | [125, 1] | [128, 48] | apply (fun H ↦ hasFinSubCover_concat H.1 H.2) | ι : Type
U : ι → Set ℝ
a b c : ℝ
⊢ HasFinSubCover U (Icc a c) ∧ HasFinSubCover U (Icc c b) → HasFinSubCover U (Icc a b) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSucc_eq_or_eq | [140, 1] | [143, 21] | apply ite_eq_or_eq | ι : Type
U : ι → Set ℝ
a b : ℝ
⊢ nestedIntervalSucc U a b = (a, (a + b) / 2) ∨ nestedIntervalSucc U a b = ((a + b) / 2, b) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | have := nestedInterval_le n | ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | cases nestedIntervalSucc_eq_or_eq U (α n) (β n) with
| inl h => rw [nestedInterval, h]; dsimp only; linarith
| inr h => rw [nestedInterval, h]; dsimp only; linarith | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | rw [nestedInterval, h] | case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2 | case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 <
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | dsimp only | case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 <
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 | case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U n).1 < ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | linarith | case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U n).1 < ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | rw [nestedInterval, h] | case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2 | case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 <
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | dsimp only | case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 <
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2 | case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 < (nestedInterval U n).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_le | [145, 1] | [151, 60] | linarith | case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 < (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | have := nestedInterval_le U n | ι : Type
U : ι → Set ℝ
n : ℕ
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | cases nestedIntervalSucc_eq_or_eq U (α n) (β n) with
| inl h =>
apply Icc_subset_Icc (by rw [nestedInterval, h]) (by rw [nestedInterval, h]; dsimp only; linarith)
| inr h =>
apply Icc_subset_Icc (by rw [nestedInterval, h]; dsimp only; linarith) (by rw [nestedInterval, h]) | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | apply Icc_subset_Icc (by rw [nestedInterval, h]) (by rw [nestedInterval, h]; dsimp only; linarith) | case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | rw [nestedInterval, h] | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U n).1 ≤ (nestedInterval U (n + 1)).1 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | rw [nestedInterval, h] | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U (n + 1)).2 ≤ (nestedInterval U n).2 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 ≤ (nestedInterval U n).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | dsimp only | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 ≤ (nestedInterval U n).2 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | linarith | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | apply Icc_subset_Icc (by rw [nestedInterval, h]; dsimp only; linarith) (by rw [nestedInterval, h]) | case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | rw [nestedInterval, h] | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ (nestedInterval U (n + 1)).1 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | dsimp only | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | linarith | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested_succ | [153, 1] | [159, 103] | rw [nestedInterval, h] | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U (n + 1)).2 ≤ (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested | [161, 1] | [166, 86] | rw [(Nat.add_sub_of_le hij).symm] | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ Icc (nestedInterval U j).1 (nestedInterval U j).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2 | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ Icc (nestedInterval U (i + (j - i))).1 (nestedInterval U (i + (j - i))).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested | [161, 1] | [166, 86] | set k := j - i | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ Icc (nestedInterval U (i + (j - i))).1 (nestedInterval U (i + (j - i))).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2 | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k : ℕ := j - i
⊢ Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested | [161, 1] | [166, 86] | induction k with
| zero => apply rfl.subset
| succ k ih => intro x hx; apply ih (nestedIntervalSeq_is_nested_succ U (i + k) hx) | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k : ℕ := j - i
⊢ Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested | [161, 1] | [166, 86] | apply rfl.subset | case zero
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k : ℕ := j - i
⊢ Icc (nestedInterval U (i + Nat.zero)).1 (nestedInterval U (i + Nat.zero)).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested | [161, 1] | [166, 86] | intro x hx | case succ
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k✝ : ℕ := j - i
k : ℕ
ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
⊢ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2 | case succ
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k✝ : ℕ := j - i
k : ℕ
ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
x : ℝ
hx : x ∈ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2
⊢ x ∈ Icc (nestedInterval U i).1 (nestedInterval U i).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_is_nested | [161, 1] | [166, 86] | apply ih (nestedIntervalSeq_is_nested_succ U (i + k) hx) | case succ
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k✝ : ℕ := j - i
k : ℕ
ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
x : ℝ
hx : x ∈ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2
⊢ x ∈ Icc (nestedInterval U i).1 (nestedInterval U i).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_mem | [168, 1] | [171, 26] | simp only [mem_Icc, nestedIntervalSeq] | ι : Type
U : ι → Set ℝ
n : ℕ
⊢ nestedIntervalSeq U n ∈ Icc (nestedInterval U n).1 (nestedInterval U n).2 | ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_mem | [168, 1] | [171, 26] | have := nestedInterval_le U n | ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2 | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_mem | [168, 1] | [171, 26] | split_ands <;> linarith | ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | by_cases H : HasFinSubCover U (Icc (α n) ((α n + β n) / 2)) | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) | case pos
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
case neg
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | case pos =>
rw [nestedInterval, nestedIntervalSucc_right H]
apply not_HasFinSubCover_concat ?_ H
apply nestedInterval_not_HasFinSubCover h n | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | case neg =>
rw [nestedInterval, nestedIntervalSucc_left H]
apply H | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | rw [nestedInterval, nestedIntervalSucc_right H] | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | apply not_HasFinSubCover_concat ?_ H | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2) | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | apply nestedInterval_not_HasFinSubCover h n | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | rw [nestedInterval, nestedIntervalSucc_left H] | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2) | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2) |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_not_HasFinSubCover | [180, 1] | [190, 14] | apply H | ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2) | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_len | [195, 1] | [202, 61] | simp [nestedInterval] | ι : Type
U : ι → Set ℝ
⊢ (nestedInterval U 0).2 - (nestedInterval U 0).1 = (2 ^ 0)⁻¹ | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_len | [195, 1] | [202, 61] | have ih := nestedInterval_len n | ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹ | ι : Type
U : ι → Set ℝ
n : ℕ
ih : (nestedInterval U n).2 - (nestedInterval U n).1 = (2 ^ n)⁻¹
⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_len | [195, 1] | [202, 61] | rcases nestedIntervalSucc_eq_or_eq U (α n) (β n) with H | H <;>
rw [nestedInterval, H] <;> field_simp at ih ⊢ <;>
calc _ = (β n - α n) * 2 ^ n * 2 := by ring
_ = 2 := by rw [ih]; ring | ι : Type
U : ι → Set ℝ
n : ℕ
ih : (nestedInterval U n).2 - (nestedInterval U n).1 = (2 ^ n)⁻¹
⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹ | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_len | [195, 1] | [202, 61] | ring | ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ ((nestedInterval U n).2 * 2 - ((nestedInterval U n).1 + (nestedInterval U n).2)) * 2 ^ (n + 1) =
((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n * 2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_len | [195, 1] | [202, 61] | rw [ih] | ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n * 2 = 2 | ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ 1 * 2 = 2 |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedInterval_len | [195, 1] | [202, 61] | ring | ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ 1 * 2 = 2 | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_isCauSeq_aux | [204, 1] | [207, 47] | dsimp [Icc] at hx hy | ι : Type
U : ι → Set ℝ
a b x y : ℝ
hx : x ∈ Icc a b
hy : y ∈ Icc a b
⊢ |y - x| ≤ b - a | ι : Type
U : ι → Set ℝ
a b x y : ℝ
hx : a ≤ x ∧ x ≤ b
hy : a ≤ y ∧ y ≤ b
⊢ |y - x| ≤ b - a |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_isCauSeq_aux | [204, 1] | [207, 47] | apply (abs_sub_le_iff.2 ⟨_, _⟩) <;> linarith | ι : Type
U : ι → Set ℝ
a b x y : ℝ
hx : a ≤ x ∧ x ≤ b
hy : a ≤ y ∧ y ≤ b
⊢ |y - x| ≤ b - a | no goals |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_isCauSeq_aux' | [209, 1] | [212, 40] | have := nestedIntervalSeq_isCauSeq_aux (nestedIntervalSeq_mem U i) (nestedIntervalSeq_mem_of_le U hij) | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹ | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
this : |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (nestedInterval U i).2 - (nestedInterval U i).1
⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹ |
https://github.com/yuma-mizuno/lean-math-workshop.git | 4a69b0130b276b45212e2b12b90032b146b56d67 | Solution/Advanced/Analysis/Lecture3.lean | Tutorial.nestedIntervalSeq_isCauSeq_aux' | [209, 1] | [212, 40] | simpa [nestedInterval_len] using this | ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
this : |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (nestedInterval U i).2 - (nestedInterval U i).1
⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹ | no goals |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.