metadata
license: mit
language:
- en
tags:
- embedding
- multimodal
pretty_name: mmE5 labeled data
size_categories:
- 1M<n<10M
configs:
- config_name: TAT-DQA
data_files:
- split: train
path: TAT-DQA/TAT-DQA.parquet
- config_name: ArxivQA
data_files:
- split: train
path: ArxivQA/ArxivQA.parquet
- config_name: InfoSeek_it2t
data_files:
- split: train
path: InfoSeek_it2t/InfoSeek_it2t.parquet
- config_name: InfoSeek_it2it
data_files:
- split: train
path: InfoSeek_it2it/InfoSeek_it2it.parquet
- config_name: ImageNet_1K
data_files:
- split: train
path: ImageNet_1K/ImageNet_1K.parquet
- config_name: N24News
data_files:
- split: train
path: N24News/N24News.parquet
- config_name: HatefulMemes
data_files:
- split: train
path: HatefulMemes/HatefulMemes.parquet
- config_name: SUN397
data_files:
- split: train
path: SUN397/SUN397.parquet
- config_name: VOC2007
data_files:
- split: train
path: VOC2007/VOC2007.parquet
- config_name: InfographicsVQA
data_files:
- split: train
path: InfographicsVQA/InfographicsVQA.parquet
- config_name: ChartQA
data_files:
- split: train
path: ChartQA/ChartQA.parquet
- config_name: A-OKVQA
data_files:
- split: train
path: A-OKVQA/A-OKVQA.parquet
- config_name: DocVQA
data_files:
- split: train
path: DocVQA/DocVQA.parquet
- config_name: OK-VQA
data_files:
- split: train
path: OK-VQA/OK-VQA.parquet
- config_name: Visual7W
data_files:
- split: train
path: Visual7W/Visual7W.parquet
- config_name: VisDial
data_files:
- split: train
path: VisDial/VisDial.parquet
- config_name: CIRR
data_files:
- split: train
path: CIRR/CIRR.parquet
- config_name: NIGHTS
data_files:
- split: train
path: NIGHTS/NIGHTS.parquet
- config_name: WebQA
data_files:
- split: train
path: WebQA/WebQA.parquet
- config_name: VisualNews_i2t
data_files:
- split: train
path: VisualNews_i2t/VisualNews_i2t.parquet
- config_name: VisualNews_t2i
data_files:
- split: train
path: VisualNews_t2i/VisualNews_t2i.parquet
- config_name: MSCOCO_i2t
data_files:
- split: train
path: MSCOCO_i2t/MSCOCO_i2t.parquet
- config_name: MSCOCO_t2i
data_files:
- split: train
path: MSCOCO_t2i/MSCOCO_t2i.parquet
- config_name: MSCOCO
data_files:
- split: train
path: MSCOCO/MSCOCO.parquet
mmE5 Labeled Data
This dataset contains datasets used for the supervised finetuning of mmE5 (mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data):
- MMEB (with hard negative)
- InfoSeek (from M-BEIR)
- TAT-DQA
- ArxivQA
Image Preparation
First, you should prepare the images used for training:
Image Downloads
- Download All Images Used in mmE5:
You can use the script provided in our source code to download all images used in mmE5.
git clone https://github.com/haon-chen/mmE5.git
cd mmE5
bash scripts/prepare_images.sh
Image Organization
images/
βββ mbeir_images/
β βββ oven_images/
β βββ ... .jpg (InfoSeek)
βββ ArxivQA/
β βββ images/
β βββ ... .jpg (ArxivQA)
βββ TAT-DQA/
β βββ ... .png (TAT-DQA)
βββ A-OKVQA/
βββ Train/
β βββ ... .jpg (A-OKVQA)
β
... (MMEB Training images)
You can refer to the image paths in each subset to view the image organization.
You can also customize your image paths by altering the image_path fields.
Citation
If you use this dataset in your research, please cite the associated paper.
@article{chen2025mmE5,
title={mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data},
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
journal={arXiv preprint arXiv:2502.08468},
year={2025}
}