introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2023, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import os
import numpy as np
import onnx
import onnxruntime
import requests
import torch
import pathml
import pathml.preprocessing.transforms as Transforms
from pathml.inference.mesmer_utils import (
deep_watershed,
format_output_mesmer,
mesmer_preprocess,
)
def remove_initializer_from_input(model_path, new_path):
"""Removes initializers from HaloAI ONNX models
Taken from https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py
Args:
model_path (str): path to ONNX model,
new_path (str): path to save adjusted model w/o initializers,
Returns:
ONNX model w/o initializers to run inference using PathML
"""
model = onnx.load(model_path)
inputs = model.graph.input
name_to_input = {}
for onnx_input in inputs:
name_to_input[onnx_input.name] = onnx_input
for initializer in model.graph.initializer:
if initializer.name in name_to_input:
inputs.remove(name_to_input[initializer.name])
onnx.save(model, new_path)
def check_onnx_clean(model_path):
"""Checks if the model has had it's initalizers removed from input graph.
Adapted from from https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py
Args:
model_path (str): path to ONNX model,
Returns:
Boolean if there are initializers in input graph.
"""
model = onnx.load(model_path)
inputs = model.graph.input
name_to_input = {}
for onnx_input in inputs:
name_to_input[onnx_input.name] = onnx_input
for initializer in model.graph.initializer:
if initializer.name in name_to_input:
return True
def convert_pytorch_onnx(
model, dummy_tensor, model_name, opset_version=10, input_name="data"
):
"""Converts a Pytorch Model to ONNX
Adjusted from https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
You need to define the model class and load the weights before exporting. See URL above for full steps.
Args:
model_path (torch.nn.Module Model): Pytorch model to be converted,
dummy_tensor (torch.tensor): dummy input tensor that is an example of what will be passed into the model,
model_name (str): name of ONNX model created with .onnx at the end,
opset_version (int): which opset version you want to use to export
input_name (str): name assigned to dummy_tensor
Returns:
Exports ONNX model converted from Pytorch
"""
if not isinstance(model, torch.nn.Module):
raise ValueError(
f"The model is not of type torch.nn.Module. Received {type(model)}."
)
if not torch.is_tensor(dummy_tensor):
raise ValueError(
f"The dummy tensor needs to be a torch tensor. Received {type(dummy_tensor)}."
)
torch.onnx.export(
model,
dummy_tensor,
model_name,
export_params=True,
opset_version=opset_version,
do_constant_folding=True,
input_names=[input_name],
)
# Base class
class InferenceBase(Transforms.Transform):
"""
Base class for all ONNX Models.
Each transform must operate on a Tile.
"""
def __init__(self):
self.model_card = {
"name": None,
"num_classes": None,
"model_type": None,
"notes": None,
"model_input_notes": None,
"model_output_notes": None,
"citation": None,
}
def __repr__(self):
return "Base class for all ONNX models"
def get_model_card(self):
"""Returns model card."""
return self.model_card
def set_name(self, name):
"""
Sets the "name" parameter in the model card.
Args:
name (str): Name for the model
"""
self.model_card["name"] = name
def set_num_classes(self, num):
"""
Sets the "num_classes" parameter in the model card.
Args:
num (int): Number of classes your model predicts
"""
self.model_card["num_classes"] = num
def set_model_type(self, model_type):
"""
Sets the "model_type" parameter in the model card.
Args:
model_type (str): Type of model, e.g. "segmentation"
"""
self.model_card["model_type"] = model_type
def set_notes(self, note):
"""
Sets the "notes" parameter in the model card.
Args:
note (str): Any extra information you want to put in the model card
"""
self.model_card["notes"] = note
def set_model_input_notes(self, note):
"""
Sets the "model_input_notes" parameter in the model card.
Args:
note (str): Comments on the model input
"""
self.model_card["model_input_notes"] = note
def set_model_output_notes(self, note):
"""
Sets the "model_output_notes" parameter in the model card.
Args:
note (str): Comments on the model output
"""
self.model_card["model_output_notes"] = note
def set_citation(self, citation):
"""
Sets the "citation" parameter in the model card.
Args:
citation (str): Citation for the model
"""
self.model_card["citation"] = citation
def reshape(self, image):
"""standard reshaping of tile image"""
# flip dimensions
# follows convention used here https://github.com/Dana-Farber-AIOS/pathml/blob/master/pathml/ml/dataset.py
if image.ndim == 3:
# swap axes from HWC to CHW
image = image.transpose(2, 0, 1)
# add a dimesion bc onnx models usually have batch size as first dim: e.g. (1, channel, height, width)
image = np.expand_dims(image, axis=0)
return image
else:
# in this case, we assume that we have XYZCT channel order
# so we swap axes to TCZYX for batching
# note we are not adding a dim here for batch bc we assume that subsetting will create a batch "placeholder" dim
image = image.T
return image
def F(self, target):
"""functional implementation"""
raise NotImplementedError
def apply(self, tile):
"""modify Tile object in-place"""
raise NotImplementedError
# class to handle local onnx models
class Inference(InferenceBase):
"""Transformation to run inferrence on ONNX model.
Assumptions:
- The ONNX model has been cleaned by `remove_initializer_from_input` first
Args:
model_path (str): path to ONNX model w/o initializers,
input_name (str): name of the input the ONNX model accepts, default = "data"
num_classes (int): number of classes you are predicting
model_type (str): type of model, e.g. "segmentation"
local (bool): True if the model is stored locally, default = "True"
"""
def __init__(
self,
model_path=None,
input_name="data",
num_classes=None,
model_type=None,
local=True,
):
super().__init__()
self.input_name = input_name
self.num_classes = num_classes
self.model_type = model_type
self.local = local
if self.local:
# using a local onnx model
self.model_path = model_path
else:
# if using a model from the model zoo, set the local path to a temp file
self.model_path = "temp.onnx"
# fill in parts of the model_card with the following info
self.model_card["num_classes"] = self.num_classes
self.model_card["model_type"] = self.model_type
# check if there are initializers in input graph if using a local model
if local:
if check_onnx_clean(model_path):
raise ValueError(
"The ONNX model still has graph initializers in the input graph. Use `remove_initializer_from_input` to remove them."
)
else:
pass
def __repr__(self):
if self.local:
return f"Class to handle ONNX model locally stored at {self.model_path}"
else:
return f"Class to handle a {self.model_card['name']} from the PathML model zoo."
def inference(self, image):
# reshape the image
image = self.reshape(image)
# load fixed model
onnx_model = onnx.load(self.model_path)
# check tile dimensions match ONNX input dimensions
input_node = onnx_model.graph.input
dimensions = []
for input in input_node:
if input.name == self.input_name:
input_shape = input.type.tensor_type.shape.dim
for dim in input_shape:
dimensions.append(dim.dim_value)
assert (
image.shape[-1] == dimensions[-1] and image.shape[-2] == dimensions[-2]
), f"expecting tile shape of {dimensions[-2]} by {dimensions[-1]}, got {image.shape[-2]} by {image.shape[-1]}"
# check onnx model
onnx.checker.check_model(onnx_model)
# start an inference session
ort_sess = onnxruntime.InferenceSession(self.model_path)
# create model output, returns a list
model_output = ort_sess.run(None, {self.input_name: image.astype("f")})
return model_output
def F(self, image):
# run inference function
prediction_map = self.inference(image)
# single task model
if len(prediction_map) == 1:
# return first and only prediction array in the list
return prediction_map[0]
# multi task model
else:
# concatenate prediction results
# assumes that the tasks all output prediction arrays of same dimension on H and W
result_array = np.concatenate(prediction_map, axis=1)
return result_array
def apply(self, tile):
tile.image = self.F(tile.image)
class HaloAIInference(Inference):
"""Transformation to run inferrence on HALO AI ONNX model.
Assumptions:
- Assumes that the ONNX model returns a tensor in which there is one prediction map for each class
- For example, if there are 5 classes, the ONNX model will output a (1, 5, Height, Weight) tensor
- If you select to argmax the classes, the class assumes a softmax or sigmoid has already been applied
- HaloAI ONNX models always have 20 class maps so you need to index into the first x maps if you have x classes
Args:
model_path (str): path to HaloAI ONNX model w/o initializers,
input_name (str): name of the input the ONNX model accepts, default = "data"
num_classes (int): number of classes you are predicting
model_type (str): type of model, e.g. "segmentation"
local (bool): True if the model is stored locally, default = "True"
"""
def __init__(
self,
model_path=None,
input_name="data",
num_classes=None,
model_type=None,
local=True,
):
super().__init__(model_path, input_name, num_classes, model_type, local)
self.model_card["num_classes"] = self.num_classes
self.model_card["model_type"] = self.model_type
def __repr__(self):
return f"Class to handle HALO AI ONNX model locally stored at {self.model_path}"
def F(self, image):
prediction_map = self.inference(image)
prediction_map = prediction_map[0][:, 0 : self.num_classes, :, :]
return prediction_map
def apply(self, tile):
tile.image = self.F(tile.image)
# class to handle remote onnx models
class RemoteTestHoverNet(Inference):
"""Transformation to run inference on ONNX model.
Citation for model:
Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D.
TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120.
Args:
model_path (str): temp file name to download onnx from huggingface, do not change
input_name (str): name of the input the ONNX model accepts, default = "data", do not change
num_classes (int): number of classes you are predicting, do not change
model_type (str): type of model, e.g. "segmentation", do not change
local (bool): True if the model is stored locally, default = "True", do not change
"""
def __init__(
self,
model_path="temp.onnx",
input_name="data",
num_classes=5,
model_type="Segmentation",
local=False,
):
super().__init__(model_path, input_name, num_classes, model_type, local)
# specify URL of the model in PathML public repository
url = "https://huggingface.co/pathml/test/resolve/main/hovernet_fast_tiatoolbox_fixed.onnx"
# download model, save as temp.onnx
with open(self.model_path, "wb") as out_file:
content = requests.get(url, stream=True).content
out_file.write(content)
self.model_card["num_classes"] = self.num_classes
self.model_card["model_type"] = self.model_type
self.model_card["name"] = "Tiabox HoverNet Test"
self.model_card["model_input_notes"] = "Accepts tiles of 256 x 256"
self.model_card["citation"] = (
"Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D. TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120."
)
def __repr__(self):
return "Class to handle remote TIAToolBox HoverNet test ONNX. See model card for citation."
def apply(self, tile):
tile.image = self.F(tile.image)
def remove(self):
# remove the temp.onnx model
os.remove(self.model_path)
class RemoteMesmer(Inference):
"""
Transformation to run inference on ONNX Mesmer model.
Citation for model:
Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C.
Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning.
Nature biotechnology. 2022 Apr;40(4):555-65.
Args:
model_path (str): temp file name to download onnx from huggingface, do not change
input_name (str): name of the input the ONNX model accepts, default = "data", do not change
num_classes (int): number of classes you are predicting, do not change
model_type (str): type of model, e.g. "segmentation", do not change
local (bool): True if the model is stored locally, default = "True", do not change
nuclear_channel(int): channel that defines cell nucleus
cytoplasm_channel(int): channel that defines cell membrane or cytoplasm
image_resolution(float): pixel resolution of image in microns. Currently only supports 0.5
preprocess_kwargs(dict): keyword arguemnts to pass to pre-processing function
postprocess_kwargs_nuclear(dict): keyword arguments to pass to post-processing function
postprocess_kwargs_whole_cell(dict): keyword arguments to pass to post-processing function
"""
def __init__(
self,
model_path="temp.onnx",
input_name="data",
num_classes=3,
model_type="Segmentation",
local=False,
nuclear_channel=None,
cytoplasm_channel=None,
image_resolution=0.5,
preprocess_kwargs=None,
postprocess_kwargs_nuclear=None,
postprocess_kwargs_whole_cell=None,
):
super().__init__(model_path, input_name, num_classes, model_type, local)
assert isinstance(
nuclear_channel, int
), "nuclear_channel must be an int indicating index"
assert isinstance(
cytoplasm_channel, int
), "cytoplasm_channel must be an int indicating index"
self.nuclear_channel = nuclear_channel
self.cytoplasm_channel = cytoplasm_channel
self.image_resolution = image_resolution
self.preprocess_kwargs = preprocess_kwargs if preprocess_kwargs else {}
self.postprocess_kwargs_nuclear = (
postprocess_kwargs_nuclear if postprocess_kwargs_nuclear else {}
)
self.postprocess_kwargs_whole_cell = (
postprocess_kwargs_whole_cell if postprocess_kwargs_whole_cell else {}
)
# specify URL of the model in PathML public repository
url = "https://huggingface.co/pathml/test/resolve/main/mesmer.onnx"
# download model, save as temp.onnx
with open(self.model_path, "wb") as out_file:
content = requests.get(url, stream=True).content
out_file.write(content)
self.model_card["num_classes"] = self.num_classes
self.model_card["model_type"] = self.model_type
self.model_card["name"] = "Deepcell's Mesmer"
self.model_card["model_input_notes"] = (
"Accepts tiles of 256 x 256, resolution must be 0.5. Unlike other inference classes, segmentation maps are saved to tile.masks."
)
self.model_card["citation"] = (
"Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
)
print(self.model_card["model_input_notes"])
if not (self.image_resolution == 0.5): # pragma: no cover
print("The model only works with images of resolution 0.5.")
def __repr__(self):
return "Class to handle remote Mesmer Model from Deepcell. See model card for citation."
def remove(self):
# remove the temp.onnx model
os.remove(self.model_path)
def inference(self, image):
# load fixed model
onnx_model = onnx.load(self.model_path)
# check tile dimensions match ONNX input dimensions
input_node = onnx_model.graph.input
dimensions = []
for input in input_node:
if input.name == self.input_name:
input_shape = input.type.tensor_type.shape.dim
for dim in input_shape:
dimensions.append(dim.dim_value)
# check onnx model
onnx.checker.check_model(onnx_model)
# start an inference session
ort_sess = onnxruntime.InferenceSession(self.model_path)
# create model output, returns a list
model_output = ort_sess.run(None, {self.input_name: image.astype("f")})
return model_output
def F(self, image):
img = image.copy()
if len(img.shape) not in [3, 4]:
raise ValueError(
f"input image has shape {img.shape}. supported image shapes are x,y,c or batch,x,y,c."
) # pragma: no cover
if len(img.shape) == 3:
img = np.expand_dims(img, axis=0)
if img.shape[1] != 256 and img.shape[2] != 256:
raise ValueError(
f"input image has shape {img.shape}. currently, we only support image shapes that are (256,256,c) or (batch,256,256,c)."
) # pragma: no cover
nuc_cytoplasm = np.stack(
(img[:, :, :, self.nuclear_channel], img[:, :, :, self.cytoplasm_channel]),
axis=-1,
)
# get pre-processing output
pre_processed_output = mesmer_preprocess(
nuc_cytoplasm, **self.preprocess_kwargs
)
# run infernece
output = self.inference(pre_processed_output)
# reformat output
output = format_output_mesmer(output)
# post-processing
label_images_cell = deep_watershed(
output["whole-cell"], **self.postprocess_kwargs_whole_cell
)
label_images_nucleus = deep_watershed(
output["nuclear"], **self.postprocess_kwargs_nuclear
)
return np.squeeze(label_images_cell, axis=0), np.squeeze(
label_images_nucleus, axis=0
)
def apply(self, tile):
assert isinstance(
tile, pathml.core.tile.Tile
), f"tile is type {type(tile)} but must be pathml.core.tile.Tile"
assert (
tile.slide_type.stain == "Fluor"
), f"Tile has slide_type.stain='{tile.slide_type.stain}', but must be 'Fluor'"
cell_segmentation, nuclear_segmentation = self.F(tile.image)
tile.masks["cell_segmentation"] = cell_segmentation
tile.masks["nuclear_segmentation"] = nuclear_segmentation