|
""" |
|
The following functions were taken from the Deepcell package to enable PathML to support their Mesmer segmentation model. |
|
|
|
Deepcell website: |
|
https://deepcell.readthedocs.io/en/master/# |
|
|
|
Citation: |
|
"Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
""" |
|
|
|
import warnings |
|
|
|
import numpy as np |
|
import scipy.ndimage as nd |
|
from skimage.exposure import equalize_adapthist, rescale_intensity |
|
from skimage.feature import peak_local_max |
|
from skimage.measure import label, regionprops |
|
from skimage.morphology import ( |
|
ball, |
|
cube, |
|
dilation, |
|
disk, |
|
h_maxima, |
|
remove_small_holes, |
|
remove_small_objects, |
|
square, |
|
) |
|
from skimage.segmentation import find_boundaries, relabel_sequential, watershed |
|
|
|
|
|
def erode_edges(mask, erosion_width): |
|
"""Erode edge of objects to prevent them from touching |
|
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
|
|
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/utils.py |
|
|
|
Args: |
|
mask (numpy.array): uniquely labeled instance mask |
|
erosion_width (int): integer value for pixel width to erode edges |
|
|
|
Returns: |
|
numpy.array: mask where each instance has had the edges eroded |
|
|
|
Raises: |
|
ValueError: mask.ndim is not 2 or 3 |
|
""" |
|
|
|
if mask.ndim not in {2, 3}: |
|
raise ValueError( |
|
"erode_edges expects arrays of ndim 2 or 3." |
|
"Got ndim: {}".format(mask.ndim) |
|
) |
|
if erosion_width: |
|
new_mask = np.copy(mask) |
|
for _ in range(erosion_width): |
|
boundaries = find_boundaries(new_mask, mode="inner") |
|
new_mask[boundaries > 0] = 0 |
|
return new_mask |
|
|
|
return mask |
|
|
|
|
|
def fill_holes(label_img, size=10, connectivity=1): |
|
"""Fills holes located completely within a given label with pixels of the same value |
|
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
|
|
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/utils.py |
|
|
|
Args: |
|
label_img (numpy.array): a 2D labeled image |
|
size (int): maximum size for a hole to be filled in |
|
connectivity (int): the connectivity used to define the hole |
|
|
|
Returns: |
|
numpy.array: a labeled image with no holes smaller than ``size`` |
|
contained within any label. |
|
""" |
|
output_image = np.copy(label_img) |
|
|
|
props = regionprops(np.squeeze(label_img.astype("int")), cache=False) |
|
for prop in props: |
|
if prop.euler_number < 1: |
|
|
|
patch = output_image[prop.slice] |
|
|
|
filled = remove_small_holes( |
|
ar=(patch == prop.label), area_threshold=size, connectivity=connectivity |
|
) |
|
|
|
output_image[prop.slice] = np.where(filled, prop.label, patch) |
|
|
|
return output_image |
|
|
|
|
|
def percentile_threshold(image, percentile=99.9): |
|
"""Threshold an image to reduce bright spots |
|
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
|
|
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/processing.py |
|
|
|
Args: |
|
image: numpy array of image data |
|
percentile: cutoff used to threshold image |
|
|
|
Returns: |
|
np.array: thresholded version of input image |
|
|
|
""" |
|
|
|
processed_image = np.zeros_like(image) |
|
for img in range(image.shape[0]): |
|
for chan in range(image.shape[-1]): |
|
current_img = np.copy(image[img, ..., chan]) |
|
non_zero_vals = current_img[np.nonzero(current_img)] |
|
|
|
|
|
if len(non_zero_vals) > 0: |
|
img_max = np.percentile(non_zero_vals, percentile) |
|
|
|
|
|
threshold_mask = current_img > img_max |
|
current_img[threshold_mask] = img_max |
|
|
|
|
|
processed_image[img, ..., chan] = current_img |
|
|
|
return processed_image |
|
|
|
|
|
def histogram_normalization(image, kernel_size=None): |
|
"""Pre-process images using Contrast Limited Adaptive |
|
Histogram Equalization (CLAHE). |
|
|
|
If one of the inputs is a constant-value array, it will |
|
be normalized as an array of all zeros of the same shape. |
|
|
|
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
|
|
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/processing.py |
|
|
|
Args: |
|
image (numpy.array): numpy array of phase image data. |
|
kernel_size (integer): Size of kernel for CLAHE, |
|
defaults to 1/8 of image size. |
|
|
|
Returns: |
|
numpy.array: Pre-processed image data with dtype float32. |
|
""" |
|
|
|
|
|
image = image.astype("float32") |
|
|
|
for batch in range(image.shape[0]): |
|
for channel in range(image.shape[-1]): |
|
X = image[batch, ..., channel] |
|
sample_value = X[(0,) * X.ndim] |
|
if (X == sample_value).all(): |
|
|
|
|
|
|
|
|
|
|
|
image[batch, ..., channel] = np.zeros_like(X) |
|
continue |
|
|
|
|
|
X = rescale_intensity(X, out_range=(0.0, 1.0)) |
|
X = equalize_adapthist(X, kernel_size=kernel_size) |
|
image[batch, ..., channel] = X |
|
return image |
|
|
|
|
|
|
|
def mesmer_preprocess(image, **kwargs): |
|
"""Preprocess input data for Mesmer model. |
|
|
|
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
|
|
https://github.com/vanvalenlab/deepcell-tf/blob/master/deepcell/applications/mesmer.py |
|
|
|
Args: |
|
image: array to be processed |
|
|
|
Returns: |
|
np.array: processed image array |
|
""" |
|
|
|
if len(image.shape) != 4: |
|
raise ValueError(f"Image data must be 4D, got image of shape {image.shape}") |
|
|
|
output = np.copy(image) |
|
threshold = kwargs.get("threshold", True) |
|
if threshold: |
|
percentile = kwargs.get("percentile", 99.9) |
|
output = percentile_threshold(image=output, percentile=percentile) |
|
|
|
normalize = kwargs.get("normalize", True) |
|
if normalize: |
|
kernel_size = kwargs.get("kernel_size", 128) |
|
output = histogram_normalization(image=output, kernel_size=kernel_size) |
|
|
|
return output |
|
|
|
|
|
def format_output_mesmer(output_list): |
|
"""Takes list of model outputs and formats into a dictionary for better readability |
|
|
|
https://github.com/vanvalenlab/deepcell-tf/blob/master/deepcell/applications/mesmer.py |
|
|
|
Args: |
|
output_list (list): predictions from semantic heads |
|
|
|
Returns: |
|
dict: Dict of predictions for whole cell and nuclear. |
|
|
|
Raises: |
|
ValueError: if model output list is not len(4) |
|
""" |
|
expected_length = 4 |
|
if len(output_list) != expected_length: |
|
raise ValueError( |
|
"output_list was length {}, expecting length {}".format( |
|
len(output_list), expected_length |
|
) |
|
) |
|
|
|
formatted_dict = { |
|
"whole-cell": [output_list[0], output_list[1][..., 1:2]], |
|
"nuclear": [output_list[2], output_list[3][..., 1:2]], |
|
} |
|
|
|
return formatted_dict |
|
|
|
|
|
def deep_watershed( |
|
outputs, |
|
radius=10, |
|
maxima_threshold=0.1, |
|
interior_threshold=0.01, |
|
maxima_smooth=0, |
|
interior_smooth=1, |
|
maxima_index=0, |
|
interior_index=-1, |
|
label_erosion=0, |
|
small_objects_threshold=0, |
|
fill_holes_threshold=0, |
|
pixel_expansion=None, |
|
maxima_algorithm="h_maxima", |
|
**kwargs, |
|
): |
|
"""Uses ``maximas`` and ``interiors`` to perform watershed segmentation. |
|
``maximas`` are used as the watershed seeds for each object and |
|
``interiors`` are used as the watershed mask. |
|
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65." |
|
|
|
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/deep_watershed.py |
|
|
|
Args: |
|
outputs (list): List of [maximas, interiors] model outputs. |
|
Use `maxima_index` and `interior_index` if list is longer than 2, |
|
or if the outputs are in a different order. |
|
radius (int): Radius of disk used to search for maxima |
|
maxima_threshold (float): Threshold for the maxima prediction. |
|
interior_threshold (float): Threshold for the interior prediction. |
|
maxima_smooth (int): smoothing factor to apply to ``maximas``. |
|
Use ``0`` for no smoothing. |
|
interior_smooth (int): smoothing factor to apply to ``interiors``. |
|
Use ``0`` for no smoothing. |
|
maxima_index (int): The index of the maxima prediction in ``outputs``. |
|
interior_index (int): The index of the interior prediction in |
|
``outputs``. |
|
label_erosion (int): Number of pixels to erode segmentation labels. |
|
small_objects_threshold (int): Removes objects smaller than this size. |
|
fill_holes_threshold (int): Maximum size for holes within segmented |
|
objects to be filled. |
|
pixel_expansion (int): Number of pixels to expand ``interiors``. |
|
maxima_algorithm (str): Algorithm used to locate peaks in ``maximas``. |
|
One of ``h_maxima`` (default) or ``peak_local_max``. |
|
``peak_local_max`` is much faster but seems to underperform when |
|
given regious of ambiguous maxima. |
|
|
|
Returns: |
|
numpy.array: Integer label mask for instance segmentation. |
|
|
|
Raises: |
|
ValueError: ``outputs`` is not properly formatted. |
|
""" |
|
try: |
|
maximas = outputs[maxima_index] |
|
interiors = outputs[interior_index] |
|
except (TypeError, KeyError, IndexError): |
|
raise ValueError( |
|
"`outputs` should be a list of at least two " "NumPy arryas of equal shape." |
|
) |
|
|
|
valid_algos = {"h_maxima", "peak_local_max"} |
|
if maxima_algorithm not in valid_algos: |
|
raise ValueError( |
|
"Invalid value for maxima_algorithm: {}. " |
|
"Must be one of {}".format(maxima_algorithm, valid_algos) |
|
) |
|
|
|
total_pixels = maximas.shape[1] * maximas.shape[2] |
|
if maxima_algorithm == "h_maxima" and total_pixels > 5000**2: |
|
warnings.warn( |
|
"h_maxima peak finding algorithm was selected, " |
|
"but the provided image is larger than 5k x 5k pixels." |
|
"This will lead to slow prediction performance." |
|
) |
|
|
|
if maximas.shape[:-1] != interiors.shape[:-1]: |
|
raise ValueError( |
|
"All input arrays must have the same shape. " |
|
"Got {} and {}".format(maximas.shape, interiors.shape) |
|
) |
|
|
|
if maximas.ndim not in {4, 5}: |
|
raise ValueError( |
|
"maxima and interior tensors must be rank 4 or 5. " |
|
"Rank 4 is 2D data of shape (batch, x, y, c). " |
|
"Rank 5 is 3D data of shape (batch, frames, x, y, c)." |
|
) |
|
|
|
input_is_3d = maximas.ndim > 4 |
|
|
|
|
|
if fill_holes_threshold and input_is_3d: |
|
warnings.warn("`fill_holes` is not supported for 3D data.") |
|
fill_holes_threshold = 0 |
|
|
|
label_images = [] |
|
for maxima, interior in zip(maximas, interiors): |
|
|
|
maxima = nd.gaussian_filter(maxima[..., 0], maxima_smooth) |
|
interior = nd.gaussian_filter(interior[..., 0], interior_smooth) |
|
|
|
if pixel_expansion: |
|
fn = cube if input_is_3d else square |
|
interior = dilation(interior, footprint=fn(pixel_expansion * 2 + 1)) |
|
|
|
|
|
|
|
if maxima_algorithm == "peak_local_max": |
|
coords = peak_local_max( |
|
maxima, |
|
min_distance=radius, |
|
threshold_abs=maxima_threshold, |
|
exclude_border=kwargs.get("exclude_border", False), |
|
) |
|
|
|
markers = np.zeros_like(maxima) |
|
slc = tuple(coords[:, i] for i in range(coords.shape[1])) |
|
markers[slc] = 1 |
|
else: |
|
|
|
fn = ball if input_is_3d else disk |
|
markers = h_maxima(image=maxima, h=maxima_threshold, footprint=fn(radius)) |
|
|
|
markers = label(markers) |
|
label_image = watershed( |
|
-1 * interior, markers, mask=interior > interior_threshold, watershed_line=0 |
|
) |
|
|
|
if label_erosion: |
|
label_image = erode_edges(label_image, label_erosion) |
|
|
|
|
|
if small_objects_threshold: |
|
label_image = remove_small_objects( |
|
label_image, min_size=small_objects_threshold |
|
) |
|
|
|
|
|
if fill_holes_threshold > 0: |
|
label_image = fill_holes(label_image, size=fill_holes_threshold) |
|
|
|
|
|
label_image, _, _ = relabel_sequential(label_image) |
|
|
|
label_images.append(label_image) |
|
|
|
label_images = np.stack(label_images, axis=0) |
|
label_images = np.expand_dims(label_images, axis=-1) |
|
|
|
return label_images |
|
|