introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import numpy as np
def extract_tiles(arr, tile_size, stride=None):
"""
Extract tiles from an array. Allows user to specify stride between tiles.
Based on original implementation in ``sklearn.feature_extraction.image_ref._extract_patches``
Incomplete tiles on the edge are dropped (TO DO: fix this (zero padding?))
Args:
arr (np.ndarray): input array. Must be 3 dimensional (H, W, n_channels)
tile_size (int): Dimension of extracted tiles. Each tile will be shape (tile_size, tile_size, n_channels)
stride (int, optional): Stride length between tiles.
If ``None``, uses ``stride = tile_size`` for non-overlapping tiles. Defaults to None
Returns:
np.ndarray: Array of extracted tiles of shape `(n_tiles, tile_size, tile_size, n_channels)`
"""
assert arr.ndim == 3, f"Number of input dimensions {arr.ndim} must be 3"
if stride is None:
stride = tile_size
i, j, n_channels = arr.shape
if (i - tile_size) % stride != 0 or (j - tile_size) % stride != 0:
raise NotImplementedError(
f"Array of shape {arr.shape} is not perfectly tiled by tiles of size {tile_size} and stride {stride}."
)
patch_strides = arr.strides
patch_shape = (tile_size, tile_size, n_channels)
extraction_step = (stride, stride, 1)
slices = tuple(slice(None, None, st) for st in extraction_step)
indexing_strides = arr[slices].strides
patch_indices_shape = (
(np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)
) + 1
shape = tuple(list(patch_indices_shape) + list(patch_shape))
strides = tuple(list(indexing_strides) + list(patch_strides))
tiles = np.lib.stride_tricks.as_strided(arr, shape=shape, strides=strides)
# squeeze out unnecessary axis
tiles = tiles.squeeze(axis=2)
tiles = tiles.reshape(-1, *tiles.shape[2:])
return tiles
def extract_tiles_with_mask(arr, mask, tile_size, stride=None, threshold=0.5):
"""
Generate tiles and only keep tiles that overlap with the
masks above some threshold.
Args:
arr (np.ndarray): input array. Must be 3 dimensional (H, W, n_channels)
mask (np.ndarray): array of masks. Must be 3 dimensional (H, W, n_masks).
tile_size (int): Dimension of extracted tiles. Each tile will be shape (tile_size, tile_size, n_channels)
stride (int, optional): Stride length between tiles.
If ``None``, uses ``stride = tile_size`` for non-overlapping tiles. Defaults to None
threshold (float): for each tile, all values in the corresponding mask region will be averaged.
`threshold` is the cutoff value, above which the tile will be kept and below which the tile
will be discarded. Defaults to 0.5
Returns:
np.ndarray: Array of extracted tiles of shape `(n_tiles, tile_size, tile_size, n_channels)`
"""
# check inputs here
assert isinstance(
mask, np.ndarray
), f"Input mask type {type(mask)} must be a numpy array"
assert isinstance(
arr, np.ndarray
), f"input array type {type(arr)} must be a numpy array"
assert arr.ndim == 3, f"array of shape {arr.shape} must be 3 dimensional"
assert mask.ndim == 3, f"mask of shape {mask.shape} must be 3 dimensional"
assert (
arr.shape[0:2] == mask.shape[0:2]
), f"Dims of input image_ref {arr.shape} and mask {mask.shape} must match"
arr_tiles = extract_tiles(arr, tile_size=tile_size, stride=stride)
mask_tiles = extract_tiles(mask, tile_size=tile_size, stride=stride)
tile_mask_means = mask_tiles.mean(axis=tuple(range(1, mask_tiles.ndim)))
out = arr_tiles[tile_mask_means >= threshold, ...]
return out
# TODO: do we need to have coords for each tile?