|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import copy |
|
|
|
import numpy as np |
|
|
|
from pathml.core import HESlide |
|
from pathml.preprocessing.pipeline import Pipeline |
|
|
|
|
|
def test_h5manager(example_slide_data): |
|
""" |
|
See issue #181. |
|
""" |
|
pipe = Pipeline([]) |
|
example_slide_data.run(pipe, distributed=False, tile_size=200) |
|
for tile in example_slide_data.tiles: |
|
assert np.count_nonzero(tile.image) > 0 |
|
|
|
|
|
def test_h5manager2(tileHE): |
|
slidedata1 = HESlide("tests/testdata/small_HE.svs") |
|
slidedata2 = HESlide("tests/testdata/small_HE.svs") |
|
tiles1 = slidedata1.tiles |
|
tiles2 = slidedata2.tiles |
|
coordslist = [(0, 0), (0, 500), (0, 0)] |
|
for coord in coordslist[0:2]: |
|
tile = copy.deepcopy(tileHE) |
|
tile.coords = coord |
|
tiles1.add(tile) |
|
|
|
for coord in coordslist: |
|
tile = copy.deepcopy(tileHE) |
|
tile.coords = coord |
|
tiles2.add(tile) |
|
|
|
for tile1, tile2 in zip(tiles1, tiles2): |
|
np.testing.assert_array_equal(tile1.image, tile2.image) |
|
|
|
|
|
def test_tile_dtype_HE(tileHE): |
|
"""make sure that retrieved tiles and corresponding masks are float16""" |
|
slidedata = HESlide("tests/testdata/small_HE.svs") |
|
slidedata.tiles.add(tileHE) |
|
tile_retrieved = slidedata.tiles[tileHE.coords] |
|
assert tile_retrieved.image.dtype == np.float16 |
|
assert tile_retrieved.masks["testmask"].dtype == np.float16 |
|
|
|
|
|
def test_tile_dtype_IF(tileVectra, vectra_slide): |
|
"""make sure that retrieved tiles and corresponding masks are float16""" |
|
vectra_slide.tiles.add(tileVectra) |
|
tile_retrieved = vectra_slide.tiles[tileVectra.coords] |
|
assert tile_retrieved.image.dtype == np.float16 |
|
assert tile_retrieved.masks["testmask"].dtype == np.float16 |
|
|