introvoyz041's picture
Migrated from GitHub
12d2e9e verified
from unittest.mock import MagicMock, mock_open, patch
import pytest
from pathml.datasets.deepfocus import DeepFocusDataModule
# Mocking the dataset for integrity check
@pytest.fixture
def mock_dataset(tmp_path):
dataset_path = tmp_path / "outoffocus2017_patches5Classification.h5"
dataset_path.write_bytes(b"fake content to simulate an actual file")
return tmp_path
@patch("pathml.datasets.deepfocus.download_from_url")
@patch("os.path.exists", return_value=True)
@patch("builtins.open", new_callable=mock_open, read_data=b"fake content")
@patch("hashlib.md5")
def test_deepfocusdatamodule_init_with_correct_checksum(
mock_md5, mock_file, mock_exists, mock_download, mock_dataset
):
# Setup mock to return a specific checksum
mock_md5.return_value.hexdigest.return_value = "ba7b4a652c2a5a7079b216edd267b628"
# Initialize the data module
dm = DeepFocusDataModule(str(mock_dataset), download=False)
# Ensure download was not triggered
mock_download.assert_not_called()
# Check if the integrity check passes
assert dm._check_integrity()
# Test for initialization failure due to incorrect checksum
@patch("pathml.datasets.deepfocus.download_from_url")
@patch("os.path.exists", return_value=True)
@patch("builtins.open", new_callable=mock_open, read_data=b"incorrect content")
@patch("hashlib.md5")
def test_deepfocusdatamodule_init_with_incorrect_checksum(
mock_md5, mock_file, mock_exists, mock_download, mock_dataset
):
# Setup mock to return an incorrect checksum
mock_md5.return_value.hexdigest.return_value = "wrongchecksum"
# Expect an AssertionError due to integrity check failure
with pytest.raises(AssertionError):
DeepFocusDataModule(str(mock_dataset), download=False)
# Test for automatic download when dataset is missing or fails integrity check
@patch("pathml.datasets.deepfocus.download_from_url")
@patch("os.path.exists", return_value=False) # Simulate missing file
def test_deepfocusdatamodule_auto_download(mock_exists, mock_download, mock_dataset):
DeepFocusDataModule(str(mock_dataset), download=True)
# Verify that download_from_url was called due to missing dataset
mock_download.assert_called_once_with(
"https://zenodo.org/record/1134848/files/outoffocus2017_patches5Classification.h5",
mock_dataset,
)
@patch(
"pathml.datasets.deepfocus.DeepFocusDataModule._check_integrity", return_value=True
)
def test_get_dataset(mock_check_integrity, mock_dataset):
with patch("pathml.datasets.deepfocus.DeepFocusDataset") as mock_deepfocusdataset:
dm = DeepFocusDataModule(str(mock_dataset), download=False)
# Rest of your test code
dm._get_dataset(fold_ix=1)
mock_deepfocusdataset.assert_called_once_with(
data_dir=mock_dataset, fold_ix=1, transforms=None
)
# Reset mock to test another fold index
mock_deepfocusdataset.reset_mock()
dm._get_dataset(fold_ix=2)
mock_deepfocusdataset.assert_called_once_with(
data_dir=mock_dataset, fold_ix=2, transforms=None
)
@patch(
"pathml.datasets.deepfocus.DeepFocusDataModule._check_integrity", return_value=True
)
@patch("pathml.datasets.deepfocus.logger.info")
def test_download_deepfocus_already_downloaded(
mock_logger_info, mock_check_integrity, mock_dataset
):
dm = DeepFocusDataModule(str(mock_dataset), download=True)
dm._download_deepfocus(dm.data_dir)
mock_logger_info.assert_called_with("File already downloaded with correct hash.")
# Ensure each mocked dataset returns the correct length for its respective fold
@patch(
"pathml.datasets.deepfocus.DeepFocusDataModule._check_integrity", return_value=True
)
@patch("pathml.datasets.deepfocus.DeepFocusDataset")
def test_dataloader_properties(
mock_deepfocusdataset, mock_check_integrity, mock_dataset
):
# Mock lengths for train, validation, and test datasets respectively
mock_deepfocusdataset.side_effect = [
MagicMock(__len__=MagicMock(return_value=163199)), # Training
MagicMock(__len__=MagicMock(return_value=20400)), # Validation
MagicMock(__len__=MagicMock(return_value=20400)), # Test
]
dm = DeepFocusDataModule(
str(mock_dataset), download=False, shuffle=True, batch_size=8
)
assert (
len(dm.train_dataloader.dataset) == 163199
), "Incorrect length for training dataset"
assert (
len(dm.valid_dataloader.dataset) == 20400
), "Incorrect length for validation dataset"
assert len(dm.test_dataloader.dataset) == 20400, "Incorrect length for test dataset"