|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import numpy as np |
|
import pytest |
|
from skimage.draw import ellipse |
|
from skimage.measure import label |
|
|
|
from pathml.graph import ColorMergedSuperpixelExtractor |
|
from pathml.graph.preprocessing import SLICSuperpixelExtractor |
|
|
|
|
|
def make_fake_instance_maps(num, image_size, ellipse_height, ellipse_width): |
|
img = np.zeros(image_size) |
|
|
|
|
|
for i in range(num): |
|
|
|
center_x = np.random.randint(ellipse_width, image_size[1] - ellipse_width) |
|
center_y = np.random.randint(ellipse_height, image_size[0] - ellipse_height) |
|
|
|
|
|
rr, cc = ellipse( |
|
center_y, center_x, ellipse_height, ellipse_width, shape=image_size |
|
) |
|
|
|
|
|
img[rr, cc] = 1 |
|
|
|
label_img = label(img.astype(int)) |
|
|
|
return label_img |
|
|
|
|
|
def make_fake_image(instance_map): |
|
image = instance_map[:, :, None] |
|
image[image > 0] = 1 |
|
noised_image = ( |
|
np.random.rand(instance_map.shape[0], instance_map.shape[1], 3) * 0.15 + image |
|
) * 255 |
|
|
|
return noised_image.astype("uint8") |
|
|
|
|
|
@pytest.mark.parametrize("superpixel_size", [20, 200]) |
|
@pytest.mark.parametrize("compactness", [50, 100]) |
|
@pytest.mark.parametrize("blur_kernel_size", [0.2, 1]) |
|
@pytest.mark.parametrize("threshold", [0.1, 0.9]) |
|
@pytest.mark.parametrize("downsampling_factor", [4, 10]) |
|
@pytest.mark.parametrize( |
|
"extractor", [ColorMergedSuperpixelExtractor, SLICSuperpixelExtractor] |
|
) |
|
def test_tissue_extractors( |
|
superpixel_size, |
|
compactness, |
|
blur_kernel_size, |
|
threshold, |
|
downsampling_factor, |
|
extractor, |
|
): |
|
image_size = (256, 256) |
|
|
|
instance_map = make_fake_instance_maps( |
|
num=30, image_size=image_size, ellipse_height=20, ellipse_width=8 |
|
) |
|
image = make_fake_image(instance_map.copy()) |
|
|
|
tissue_detector = extractor( |
|
superpixel_size=superpixel_size, |
|
compactness=compactness, |
|
blur_kernel_size=blur_kernel_size, |
|
threshold=threshold, |
|
downsampling_factor=downsampling_factor, |
|
) |
|
|
|
superpixels = tissue_detector.process(image) |
|
|
|
if isinstance(superpixels, tuple): |
|
superpixels = superpixels[0] |
|
|
|
assert superpixels.shape == image_size |
|
|