|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import os |
|
import sys |
|
|
|
import h5py |
|
import numpy as np |
|
import pytest |
|
from dask.distributed import Client, LocalCluster |
|
|
|
from pathml.core import HESlide, SlideData, VectraSlide |
|
from pathml.ml import TileDataset |
|
from pathml.preprocessing import ( |
|
BoxBlur, |
|
CollapseRunsVectra, |
|
Pipeline, |
|
QuantifyMIF, |
|
TissueDetectionHE, |
|
) |
|
from pathml.preprocessing.transforms import Transform |
|
from pathml.utils import pil_to_rgb |
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
"im_path", ["tests/testdata/small_HE.svs", "tests/testdata/small_dicom.dcm"] |
|
) |
|
@pytest.mark.parametrize("dist", [False, True]) |
|
def test_pipeline_HE(tmp_path, im_path, dist): |
|
|
|
if dist: |
|
if sys.platform.startswith("win"): |
|
pytest.skip( |
|
"dask distributed not available on windows", allow_module_level=False |
|
) |
|
|
|
labs = { |
|
"test_string_label": "testlabel", |
|
"test_array_label": np.array([2, 3, 4]), |
|
"test_int_label": 3, |
|
"test_float_label": 3.0, |
|
"test_bool_label": True, |
|
} |
|
slide = HESlide(im_path, labels=labs) |
|
pipeline = Pipeline( |
|
[BoxBlur(kernel_size=15), TissueDetectionHE(mask_name="tissue")] |
|
) |
|
if dist: |
|
cluster = LocalCluster(n_workers=2) |
|
cli = Client(cluster) |
|
else: |
|
cli = None |
|
slide.run(pipeline, distributed=dist, client=cli, tile_size=500) |
|
save_path = str(tmp_path) + str(np.round(np.random.rand(), 8)) + "HE_slide.h5" |
|
slide.write(path=save_path) |
|
if dist: |
|
cli.shutdown() |
|
|
|
|
|
dataset = TileDataset(save_path) |
|
assert len(dataset) == len(slide.tiles) |
|
|
|
im, mask, lab_tile, lab_slide = dataset[0] |
|
|
|
for k, v in lab_slide.items(): |
|
if isinstance(v, np.ndarray): |
|
assert np.array_equal(v, labs[k]) |
|
else: |
|
assert v == labs[k] |
|
assert np.array_equal(im, slide.tiles[0].image.transpose(2, 0, 1)) |
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("dist", [False, True]) |
|
@pytest.mark.parametrize("tile_size", [256, (256, 256)]) |
|
def test_pipeline_bioformats_tiff(tmp_path, dist, tile_size): |
|
|
|
if dist: |
|
if sys.platform.startswith("win"): |
|
pytest.skip( |
|
"dask distributed not available on windows", allow_module_level=False |
|
) |
|
|
|
slide = VectraSlide("tests/testdata/smalltif.tif") |
|
|
|
pipeline = Pipeline([]) |
|
if dist: |
|
cluster = LocalCluster(n_workers=2) |
|
cli = Client(cluster) |
|
else: |
|
cli = None |
|
slide.run(pipeline, distributed=dist, client=cli, tile_size=tile_size) |
|
slide.write(path=str(tmp_path) + "tifslide.h5") |
|
readslidedata = SlideData(str(tmp_path) + "tifslide.h5") |
|
assert readslidedata.name == slide.name |
|
np.testing.assert_equal(readslidedata.labels, slide.labels) |
|
if slide.masks is None: |
|
assert readslidedata.masks is None |
|
if slide.tiles is None: |
|
assert readslidedata.tiles is None |
|
assert scan_hdf5(readslidedata.h5manager.h5) == scan_hdf5(slide.h5manager.h5) |
|
if readslidedata.counts.obs.empty: |
|
assert slide.counts.obs.empty |
|
else: |
|
np.testing.assert_equal(readslidedata.counts.obs, slide.counts.obs) |
|
if readslidedata.counts.var.empty: |
|
assert slide.counts.var.empty |
|
else: |
|
np.testing.assert_equal(readslidedata.counts.var, slide.counts.var) |
|
os.remove(str(tmp_path) + "tifslide.h5") |
|
if dist: |
|
cli.shutdown() |
|
|
|
|
|
@pytest.mark.parametrize("dist", [False, True]) |
|
@pytest.mark.parametrize("tile_size", [256, (256, 256)]) |
|
def test_pipeline_bioformats_vectra(tmp_path, dist, tile_size): |
|
if dist: |
|
if sys.platform.startswith("win"): |
|
pytest.skip( |
|
"dask distributed not available on windows", allow_module_level=False |
|
) |
|
|
|
from pathml.preprocessing.transforms import SegmentMIFRemote |
|
|
|
slide = VectraSlide("tests/testdata/small_vectra.qptiff") |
|
pipeline = Pipeline( |
|
[ |
|
CollapseRunsVectra(), |
|
SegmentMIFRemote( |
|
nuclear_channel=0, |
|
cytoplasm_channel=2, |
|
image_resolution=0.5, |
|
), |
|
QuantifyMIF(segmentation_mask="cell_segmentation"), |
|
] |
|
) |
|
if dist: |
|
cluster = LocalCluster(n_workers=2) |
|
cli = Client(cluster) |
|
else: |
|
cli = None |
|
slide.run(pipeline, distributed=dist, client=cli, tile_size=tile_size) |
|
slide.write(path=str(tmp_path) + "vectraslide.h5") |
|
os.remove(str(tmp_path) + "vectraslide.h5") |
|
if dist: |
|
cli.shutdown() |
|
|
|
|
|
def scan_hdf5(f, recursive=True, tab_step=2): |
|
def scan_node(g, tabs=0): |
|
elems = [] |
|
for k, v in g.items(): |
|
if isinstance(v, h5py.Dataset): |
|
elems.append(v.name) |
|
elif isinstance(v, h5py.Group) and recursive: |
|
elems.append((v.name, scan_node(v, tabs=tabs + tab_step))) |
|
return elems |
|
|
|
return scan_node(f) |
|
|
|
|
|
class AddMean(Transform): |
|
"""Transform using global statistic for tile (average)""" |
|
|
|
def F(self, arr): |
|
return arr + np.mean(arr) |
|
|
|
def apply(self, tile): |
|
tile.image = self.F(tile.image) |
|
|
|
|
|
@pytest.mark.parametrize("tile_size", [500]) |
|
@pytest.mark.parametrize("stride", [250, 500, 1000]) |
|
@pytest.mark.parametrize("pad", [True, False]) |
|
def test_pipeline_overlapping_tiles(tmp_path, stride, pad, tile_size): |
|
"""test that we can run pipeline with overlapping tiles""" |
|
pipe = Pipeline([AddMean()]) |
|
wsi = SlideData("tests/testdata/small_HE.svs") |
|
|
|
wsi.run( |
|
pipe, distributed=False, tile_size=tile_size, tile_stride=stride, tile_pad=pad |
|
) |
|
|
|
if pad: |
|
tile_count = [dim // stride + 1 for dim in wsi.shape] |
|
else: |
|
tile_count = [(dim - tile_size) // stride + 1 for dim in wsi.shape] |
|
|
|
|
|
assert len(wsi.tiles) == np.prod(tile_count) |
|
|
|
path = tmp_path / "testhe.h5" |
|
wsi.write(path) |
|
readslidedata = SlideData(path) |
|
|
|
assert len(readslidedata.tiles) == np.prod(tile_count) |
|
|
|
|
|
|
|
|
|
|
|
im = pil_to_rgb( |
|
wsi.slide.slide.read_region( |
|
location=(1000, 1000), level=0, size=(tile_size, tile_size) |
|
) |
|
) |
|
expected = AddMean().F(im).astype(np.float16) |
|
np.testing.assert_equal(readslidedata.tiles[(1000, 1000)].image, expected) |
|
|