introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import numpy as np
import pytest
from pathml.core import Tile
from pathml.preprocessing import (
AdaptiveHistogramEqualization,
BinaryThreshold,
BoxBlur,
CollapseRunsCODEX,
CollapseRunsVectra,
ForegroundDetection,
GaussianBlur,
HistogramEqualization,
LabelArtifactTileHE,
LabelWhiteSpaceHE,
MedianBlur,
MorphClose,
MorphOpen,
NucleusDetectionHE,
QuantifyMIF,
RescaleIntensity,
StainNormalizationHE,
SuperpixelInterpolation,
TissueDetectionHE,
)
from pathml.utils import RGB_to_GREY
@pytest.mark.parametrize("ksize", [3, 7, 21])
@pytest.mark.parametrize("transform", [MedianBlur, BoxBlur])
def test_median_box_blur(tileHE, ksize, transform):
t = transform(kernel_size=ksize)
orig_im = tileHE.image
t.apply(tileHE)
assert np.array_equal(tileHE.image, t.F(orig_im))
@pytest.mark.parametrize("ksize", [3, 7, 21])
@pytest.mark.parametrize("sigma", [0.1, 3, 0.999])
def test_gaussian_blur(tileHE, ksize, sigma):
t = GaussianBlur(kernel_size=ksize, sigma=sigma)
orig_im = tileHE.image
t.apply(tileHE)
assert np.array_equal(tileHE.image, t.F(orig_im))
@pytest.mark.parametrize("in_range", ["image", (0, 255), "dtype"])
@pytest.mark.parametrize("out_range", ["image", (0, 255), "dtype"])
def test_rescale_intensity(tileVectra, in_range, out_range):
t = RescaleIntensity(in_range=in_range, out_range=out_range)
orig_im = tileVectra.image
t.apply(tileVectra)
assert np.array_equal(tileVectra.image, t.F(orig_im))
@pytest.mark.parametrize("nbins", [120, 255, 500])
def test_histogram_equalization(tileVectra, nbins):
t = HistogramEqualization(nbins=nbins)
orig_im = tileVectra.image
t.apply(tileVectra)
assert np.array_equal(tileVectra.image, t.F(orig_im))
@pytest.mark.parametrize("clip_limit", [0.05, 0.1, 0.3])
@pytest.mark.parametrize("nbins", [120, 255, 500])
def test_adaptive_histogram_equalization(tileVectra, clip_limit, nbins):
t = AdaptiveHistogramEqualization(clip_limit=clip_limit, nbins=nbins)
vectra_collapse = CollapseRunsVectra()
vectra_collapse.apply(tileVectra)
orig_im = tileVectra.image
t.apply(tileVectra)
assert np.array_equal(tileVectra.image, t.F(orig_im))
@pytest.mark.parametrize("thresh", [0, 0.5, 200])
@pytest.mark.parametrize("otsu", [True, False])
def test_binary_thresholding(tileHE, thresh, otsu):
t = BinaryThreshold(use_otsu=otsu, threshold=thresh, mask_name="testing")
t.apply(tileHE)
assert np.array_equal(tileHE.masks["testing"], t.F(RGB_to_GREY(tileHE.image)))
@pytest.mark.parametrize("n_iter", [1, 3])
@pytest.mark.parametrize("ksize", [3, 21])
@pytest.mark.parametrize("transform", [MorphOpen, MorphClose])
def test_open_close(tileHE, transform, ksize, n_iter):
t = transform(kernel_size=ksize, n_iterations=n_iter, mask_name="testmask")
orig_mask = np.copy(tileHE.masks["testmask"])
m = t.F(orig_mask)
t.apply(tileHE)
assert np.array_equal(tileHE.masks["testmask"], m)
@pytest.mark.parametrize("min_reg_size", [0, 10])
@pytest.mark.parametrize("max_hole_size", [0, 10])
@pytest.mark.parametrize("outer_contours_only", [True, False])
def test_foreground_detection(tileHE, min_reg_size, max_hole_size, outer_contours_only):
t = ForegroundDetection(
min_region_size=min_reg_size,
max_hole_size=max_hole_size,
outer_contours_only=outer_contours_only,
mask_name="testmask",
)
orig_mask = tileHE.masks["testmask"]
t.apply(tileHE)
assert np.array_equal(tileHE.masks["testmask"], t.F(orig_mask))
@pytest.mark.parametrize("n_iter", [1, 30])
@pytest.mark.parametrize("region_size", [10, 20])
def test_superpix_interp(tileHE, region_size, n_iter):
t = SuperpixelInterpolation(region_size=region_size, n_iter=n_iter)
orig_im = tileHE.image
t.apply(tileHE)
assert np.array_equal(tileHE.image, t.F(orig_im))
@pytest.mark.parametrize("target", ["normalize", "hematoxylin", "eosin"])
@pytest.mark.parametrize("method", ["vahadane", "macenko"])
def test_stain_normalization_he(tileHE, method, target):
t = StainNormalizationHE(target=target, stain_estimation_method=method)
orig_im = tileHE.image
t.fit_to_reference(orig_im)
assert t.stain_matrix_target_od.shape == (2, 3)
@pytest.mark.parametrize("target", ["normalize", "hematoxylin", "eosin"])
@pytest.mark.parametrize("method", ["vahadane", "macenko"])
def test_stain_normalization_he_fit(tileHE, method, target):
t = StainNormalizationHE(target=target, stain_estimation_method=method)
orig_im = tileHE.image
t.apply(tileHE)
if method == "vahadane":
# theres an element of randomness in vahadane implementation, haven't been able to figure
# out how to set a seed
assert tileHE.image.shape == t.F(orig_im).shape
else:
assert np.allclose(tileHE.image, t.F(orig_im))
def test_nuc_detectionHE(tileHE):
t = NucleusDetectionHE(mask_name="testing", stain_estimation_method="macenko")
orig_im = tileHE.image
t.apply(tileHE)
assert np.array_equal(tileHE.masks["testing"], t.F(orig_im))
@pytest.mark.parametrize("use_saturation", [True, False])
@pytest.mark.parametrize("threshold", [None, 100])
def test_tissue_detectionHE(tileHE, threshold, use_saturation):
t = TissueDetectionHE(
mask_name="testing", threshold=threshold, use_saturation=use_saturation
)
orig_im = tileHE.image
m = t.F(orig_im)
t.apply(tileHE)
assert np.array_equal(tileHE.masks["testing"], m)
@pytest.mark.parametrize("transform", [LabelArtifactTileHE, LabelWhiteSpaceHE])
def test_binary_label_transforms(tileHE, transform):
t = transform(label_name="test_label")
t.apply(tileHE)
assert tileHE.labels["test_label"] in [True, False]
def test_segment_mif(tileVectra):
from pathml.preprocessing.transforms import SegmentMIFRemote
vectra_collapse = CollapseRunsVectra()
vectra_collapse.apply(tileVectra)
t = SegmentMIFRemote(
nuclear_channel=0,
cytoplasm_channel=1,
postprocess_kwargs_nuclear={
"label_erosion": 10,
"small_objects_threshold": 0.2,
"fill_holes_threshold": 0.2,
"pixel_expansion": 10,
"maxima_algorithm": "peak_local_max",
},
)
orig_im = tileVectra.image
cell, nuclear = t.F(orig_im)
t.apply(tileVectra)
assert np.array_equal(tileVectra.masks["cell_segmentation"], cell)
assert np.array_equal(tileVectra.masks["nuclear_segmentation"], nuclear)
def test_quantify_mif(tileVectra):
from pathml.preprocessing.transforms import SegmentMIFRemote
t = QuantifyMIF("cell_segmentation")
with pytest.raises(AssertionError):
t.apply(tileVectra)
t2 = SegmentMIFRemote(nuclear_channel=0, cytoplasm_channel=1)
vectra_collapse = CollapseRunsVectra()
vectra_collapse.apply(tileVectra)
t2.apply(tileVectra)
t.apply(tileVectra)
assert tileVectra.counts
def test_quantify_mif_coords():
# make sure that QuantifyMIF uses i,j coordinates
# make fake im with a single region
im = np.zeros(shape=(50, 50, 3))
seg = np.zeros(shape=(50, 50, 1), dtype=np.uint8)
# add a region with known centroid at (i=27, j=7) == (x=7, y=27)
seg[25:30, 5:10] = 1
tile = Tile(image=im, coords=(0, 0), masks={"seg": seg}, stain="Fluor")
quantifymif = QuantifyMIF(segmentation_mask="seg")
quantifymif.apply(tile)
assert tile.counts.obs.x[0] == 7
assert tile.counts.obs.y[0] == 27
def test_collapse_runs_vectra(tileVectra):
t = CollapseRunsVectra()
orig_im = tileVectra.image
m = t.F(orig_im)
t.apply(tileVectra)
assert np.array_equal(m, tileVectra.image)
assert len(m.shape) == 3
@pytest.mark.parametrize(
"transform",
[
MedianBlur(),
GaussianBlur(),
BoxBlur(),
BinaryThreshold(),
MorphOpen(),
MorphClose(),
ForegroundDetection(),
SuperpixelInterpolation(),
StainNormalizationHE(),
NucleusDetectionHE(),
TissueDetectionHE(),
LabelArtifactTileHE(),
LabelWhiteSpaceHE(),
QuantifyMIF(segmentation_mask="test"),
CollapseRunsVectra(),
CollapseRunsCODEX(z=0),
AdaptiveHistogramEqualization(),
HistogramEqualization(),
RescaleIntensity(),
],
)
def test_repr(transform):
repr(transform)
def test_segmentMIF_repr():
from pathml.preprocessing.transforms import SegmentMIFRemote
repr(SegmentMIFRemote(nuclear_channel=0, cytoplasm_channel=1))
def test_collapse_runs_codex_repr():
z_value = 2
collapse_runs_codex = CollapseRunsCODEX(z=z_value)
assert repr(collapse_runs_codex) == f"CollapseRunsCODEX(z={z_value})"
@pytest.mark.parametrize("z_value", [0, 1, 2]) # Example z-values
def test_collapse_runs_codex(tileCODEX, z_value):
# Assuming tileCODEX is a pre-prepared CODEX tile for testing
t = CollapseRunsCODEX(z=z_value)
orig_im = tileCODEX.image
# Manual calculation of expected result
expected_image = orig_im[:, :, z_value, :]
combined_channels = orig_im.shape[3] * orig_im.shape[4]
expected_image = expected_image.reshape(
orig_im.shape[0], orig_im.shape[1], combined_channels
)
# Apply transformation
t.apply(tileCODEX)
# Assert conditions
assert np.array_equal(
tileCODEX.image, expected_image
), "Image transformation did not match expected result"
assert (
len(tileCODEX.image.shape) == 3
), "Transformed image does not have correct shape"