introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import os
import shutil
import tempfile
from pathlib import Path
from unittest.mock import mock_open, patch
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.testing.decorators import check_figures_equal
from pathml.utils import (
RGB_to_GREY,
RGB_to_HSI,
RGB_to_HSV,
RGB_to_LAB,
RGB_to_OD,
_pad_or_crop_1d,
contour_centroid,
download_from_url,
find_qupath_home,
normalize_matrix_cols,
normalize_matrix_rows,
pad_or_crop,
parse_file_size,
plot_mask,
plot_segmentation,
segmentation_lines,
setup_qupath,
sort_points_clockwise,
upsample_array,
)
@pytest.mark.parametrize(
"test_input,expected", [("10 gb", 10**10), ("1.17 mB", 1.17e6), ("0.89 KB", 890)]
)
def test_parse_file_sizes(test_input, expected):
assert parse_file_size(test_input) == expected
def test_download_from_url(tmp_path):
url = "http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/index.yaml"
d = tmp_path / "test"
download_from_url(url=url, download_dir=d, name="testfile")
file1 = open(d / "testfile", "r")
assert file1.readline() == "format: Aperio SVS\n"
# Test successful download
def test_successful_download(tmp_path):
url = "http://example.com/testfile.txt"
download_dir = tmp_path / "downloads"
file_content = b"Sample file content"
with patch(
"urllib.request.urlopen", mock_open(read_data=file_content)
) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file:
download_from_url(url, download_dir, "downloaded_file.txt")
mocked_url_open.assert_called_with(url)
mocked_file.assert_called_with(
os.path.join(download_dir, "downloaded_file.txt"), "wb"
)
# Test skipping download for existing file
def test_skip_existing_download(tmp_path):
url = "http://example.com/testfile.txt"
download_dir = tmp_path / "downloads"
download_dir.mkdir(parents=True, exist_ok=True) # Ensure directory exists
existing_file = download_dir / "existing_file.txt"
existing_file.touch() # Create an empty file
with patch("urllib.request.urlopen", mock_open()) as mocked_url_open:
download_from_url(url, download_dir, "existing_file.txt")
mocked_url_open.assert_not_called()
# Test download with default filename
def test_download_default_filename(tmp_path):
url = "http://example.com/testfile.txt"
download_dir = tmp_path / "downloads"
file_content = b"Sample file content for default"
with patch(
"urllib.request.urlopen", mock_open(read_data=file_content)
) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file:
download_from_url(url, download_dir)
mocked_url_open.assert_called_with(url)
mocked_file.assert_called_with(os.path.join(download_dir, "testfile.txt"), "wb")
@pytest.fixture(scope="module")
def random_rgb():
im = np.random.randint(low=0, high=255, size=(50, 50, 3), dtype=np.uint8)
return im
@pytest.fixture(scope="module")
def simple_mask():
im = np.zeros((7, 7), dtype=np.uint8)
im[2:5, 2:5] = 1
return im
@pytest.fixture(scope="module")
def example_contour(simple_mask):
# contour will be at points (2, 2), (2, 4), (4, 4), (4, 2)
cnt, _ = cv2.findContours(simple_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return cnt[0].astype(np.uint8)
@pytest.fixture(scope="module")
def random_5_5_5_5():
m = np.random.rand(5, 5, 5, 5)
return m
@pytest.fixture(scope="module")
def random_50_50():
m = np.random.rand(50, 50)
return m
# Tests
@pytest.mark.parametrize("conv", [RGB_to_HSV, RGB_to_OD, RGB_to_HSI, RGB_to_LAB])
def test_color_conversion_shape(conv, random_rgb):
im_converted = conv(random_rgb)
assert im_converted.shape == random_rgb.shape
def test_RGB_to_GREY(random_rgb):
im_converted = RGB_to_GREY(random_rgb)
assert im_converted.shape[0:2] == random_rgb.shape[0:2]
def test_segmentation_lines(simple_mask):
x, y = segmentation_lines(simple_mask)
for x, y in zip(x, y):
assert (x, y) in [
(1, 1),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 1),
(2, 5),
(3, 1),
(3, 5),
(4, 1),
(4, 5),
(5, 1),
(5, 2),
(5, 3),
(5, 4),
(5, 5),
]
@check_figures_equal(extensions=[".png"])
def test_plot_mask(fig_test, fig_ref):
# dummy image
im = np.random.randint(low=1, high=254, size=(6, 6, 3), dtype=np.uint8)
# mask
mask = np.zeros((6, 6), dtype=np.uint8)
mask[2:4, 2:4] = 1
# manual generation of points around mask
x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4]
# manually plot fig_ref
fig_ref.gca().imshow(im)
fig_ref.gca().scatter(x, y, color="red", marker=".", s=1)
fig_ref.gca().axis("off")
# plot_mask on fig_test
plot_mask(im=im, mask_in=mask, ax=fig_test.gca())
@check_figures_equal(extensions=[".png"])
def test_plot_mask_downsample(fig_test, fig_ref):
# to test downsample by factor of two, we can use same code as above but upscale everything first
# dummy image
im = np.random.randint(low=1, high=254, size=(12, 12, 3), dtype=np.uint8)
# mask
mask = np.zeros((12, 12), dtype=np.uint8)
mask[4:8, 4:8] = 1
# manual generation of points around mask
x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4]
# manually plot fig_ref
fig_ref.gca().imshow(im[::2, ::2, :])
fig_ref.gca().scatter(x, y, color="red", marker=".", s=1)
fig_ref.gca().axis("off")
# plot_mask on fig_test
plot_mask(im=im, mask_in=mask, ax=fig_test.gca(), downsample_factor=2)
def test_upsample_array(simple_mask):
factor = 11
upsampled = upsample_array(simple_mask, factor=factor)
upsampled_kron = np.kron(simple_mask, np.ones((factor, factor), simple_mask.dtype))
assert np.array_equal(upsampled, upsampled_kron)
def test_sort_points_clockwise():
points = np.array([[1, 1], [-1, 1], [1, -1], [-1, -1]])
points_sorted_correct = np.array([[-1, -1], [-1, 1], [1, 1], [1, -1]])
points_sorted = sort_points_clockwise(points)
assert points.shape == points_sorted.shape
assert np.array_equal(points_sorted, points_sorted_correct)
def test_contour_centroid(example_contour):
i, j = contour_centroid(example_contour.astype(np.float32))
assert np.allclose([i, j], [3, 3])
def test_pad_or_crop_1d(random_5_5_5_5):
padded = _pad_or_crop_1d(random_5_5_5_5, axis=2, target_dim=10)
assert padded.shape == (5, 5, 10, 5)
cropped = _pad_or_crop_1d(random_5_5_5_5, axis=1, target_dim=2)
assert cropped.shape == (5, 2, 5, 5)
no_change = _pad_or_crop_1d(random_5_5_5_5, axis=0, target_dim=5)
assert no_change.shape == (5, 5, 5, 5)
@pytest.mark.parametrize(
"target_shape",
[(5, 5, 5, 5), (5, 6, 6, 5), (5, 4, 4, 5), (6, 4, 5, 5), (10, 11, 12, 13)],
)
def test_pad_or_crop(random_5_5_5_5, target_shape):
assert (
pad_or_crop(random_5_5_5_5, target_shape).shape == target_shape
), f"target shape: {target_shape}"
def test_normalize_matrix_rows(random_50_50):
a = normalize_matrix_rows(random_50_50)
assert np.all(np.isclose(np.linalg.norm(a, axis=1), 1.0))
def test_normalize_matrix_cols(random_50_50):
a = normalize_matrix_cols(random_50_50)
assert np.all(np.isclose(np.linalg.norm(a, axis=0), 1.0))
def test_plot_segmentation():
ax = plt.gca()
masks = np.zeros((3, 12, 12), dtype=np.uint8)
masks[0, 4:8, 4:8] = 1
masks[1, 1:3, 1:3] = 2
masks[2, 8:11, 8:11] = 3
palette = None
markersize = 5
plot_segmentation(ax, masks, palette, markersize)
def test_find_existing_qupath_home(tmp_path):
# Create a mock QuPath directory structure
qupath_dir = tmp_path / "qupath"
qupath_dir.mkdir(parents=True)
qupath_jar = qupath_dir / "qupath.jar"
qupath_jar.touch()
# Test if the function finds the QuPath home correctly
qupath_home = find_qupath_home(str(tmp_path))
assert qupath_home == str(qupath_dir.parent.parent)
def test_no_qupath_home_found(tmp_path):
# Test with a directory without QuPath JAR
qupath_home = find_qupath_home(str(tmp_path))
assert qupath_home is None
def test_find_qupath_home():
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Case 1: QuPath jar is present
os.makedirs(Path(temp_dir) / "qupath")
open(Path(temp_dir) / "qupath/qupath.jar", "a").close()
assert find_qupath_home(temp_dir) is not None
# Cleanup
shutil.rmtree(Path(temp_dir) / "qupath")
# Case 2: QuPath jar is not present
assert find_qupath_home(temp_dir) is None
@patch("builtins.print") # To suppress print statements in the test
def test_setup_qupath(mock_print):
with tempfile.TemporaryDirectory() as temp_dir:
qupath_home = Path(temp_dir) / "qupath"
# Simulate the environment before QuPath installation
expected_path = (
qupath_home / "QuPath"
) # Update according to the actual behavior of setup_qupath
assert setup_qupath(str(qupath_home)) == str(expected_path)
print(setup_qupath(str(qupath_home)))
print(str(expected_path))
# Test when QuPath is already installed
assert setup_qupath(str(qupath_home)) == str(expected_path)