|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import os |
|
import shutil |
|
import tempfile |
|
from pathlib import Path |
|
from unittest.mock import mock_open, patch |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pytest |
|
from matplotlib.testing.decorators import check_figures_equal |
|
|
|
from pathml.utils import ( |
|
RGB_to_GREY, |
|
RGB_to_HSI, |
|
RGB_to_HSV, |
|
RGB_to_LAB, |
|
RGB_to_OD, |
|
_pad_or_crop_1d, |
|
contour_centroid, |
|
download_from_url, |
|
find_qupath_home, |
|
normalize_matrix_cols, |
|
normalize_matrix_rows, |
|
pad_or_crop, |
|
parse_file_size, |
|
plot_mask, |
|
plot_segmentation, |
|
segmentation_lines, |
|
setup_qupath, |
|
sort_points_clockwise, |
|
upsample_array, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"test_input,expected", [("10 gb", 10**10), ("1.17 mB", 1.17e6), ("0.89 KB", 890)] |
|
) |
|
def test_parse_file_sizes(test_input, expected): |
|
assert parse_file_size(test_input) == expected |
|
|
|
|
|
def test_download_from_url(tmp_path): |
|
url = "http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/index.yaml" |
|
d = tmp_path / "test" |
|
download_from_url(url=url, download_dir=d, name="testfile") |
|
file1 = open(d / "testfile", "r") |
|
assert file1.readline() == "format: Aperio SVS\n" |
|
|
|
|
|
|
|
def test_successful_download(tmp_path): |
|
url = "http://example.com/testfile.txt" |
|
download_dir = tmp_path / "downloads" |
|
file_content = b"Sample file content" |
|
with patch( |
|
"urllib.request.urlopen", mock_open(read_data=file_content) |
|
) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file: |
|
download_from_url(url, download_dir, "downloaded_file.txt") |
|
|
|
mocked_url_open.assert_called_with(url) |
|
mocked_file.assert_called_with( |
|
os.path.join(download_dir, "downloaded_file.txt"), "wb" |
|
) |
|
|
|
|
|
|
|
def test_skip_existing_download(tmp_path): |
|
url = "http://example.com/testfile.txt" |
|
download_dir = tmp_path / "downloads" |
|
download_dir.mkdir(parents=True, exist_ok=True) |
|
existing_file = download_dir / "existing_file.txt" |
|
existing_file.touch() |
|
|
|
with patch("urllib.request.urlopen", mock_open()) as mocked_url_open: |
|
download_from_url(url, download_dir, "existing_file.txt") |
|
|
|
mocked_url_open.assert_not_called() |
|
|
|
|
|
|
|
def test_download_default_filename(tmp_path): |
|
url = "http://example.com/testfile.txt" |
|
download_dir = tmp_path / "downloads" |
|
file_content = b"Sample file content for default" |
|
|
|
with patch( |
|
"urllib.request.urlopen", mock_open(read_data=file_content) |
|
) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file: |
|
download_from_url(url, download_dir) |
|
|
|
mocked_url_open.assert_called_with(url) |
|
mocked_file.assert_called_with(os.path.join(download_dir, "testfile.txt"), "wb") |
|
|
|
|
|
@pytest.fixture(scope="module") |
|
def random_rgb(): |
|
im = np.random.randint(low=0, high=255, size=(50, 50, 3), dtype=np.uint8) |
|
return im |
|
|
|
|
|
@pytest.fixture(scope="module") |
|
def simple_mask(): |
|
im = np.zeros((7, 7), dtype=np.uint8) |
|
im[2:5, 2:5] = 1 |
|
return im |
|
|
|
|
|
@pytest.fixture(scope="module") |
|
def example_contour(simple_mask): |
|
|
|
cnt, _ = cv2.findContours(simple_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
return cnt[0].astype(np.uint8) |
|
|
|
|
|
@pytest.fixture(scope="module") |
|
def random_5_5_5_5(): |
|
m = np.random.rand(5, 5, 5, 5) |
|
return m |
|
|
|
|
|
@pytest.fixture(scope="module") |
|
def random_50_50(): |
|
m = np.random.rand(50, 50) |
|
return m |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("conv", [RGB_to_HSV, RGB_to_OD, RGB_to_HSI, RGB_to_LAB]) |
|
def test_color_conversion_shape(conv, random_rgb): |
|
im_converted = conv(random_rgb) |
|
assert im_converted.shape == random_rgb.shape |
|
|
|
|
|
def test_RGB_to_GREY(random_rgb): |
|
im_converted = RGB_to_GREY(random_rgb) |
|
assert im_converted.shape[0:2] == random_rgb.shape[0:2] |
|
|
|
|
|
def test_segmentation_lines(simple_mask): |
|
x, y = segmentation_lines(simple_mask) |
|
for x, y in zip(x, y): |
|
assert (x, y) in [ |
|
(1, 1), |
|
(1, 2), |
|
(1, 3), |
|
(1, 4), |
|
(1, 5), |
|
(2, 1), |
|
(2, 5), |
|
(3, 1), |
|
(3, 5), |
|
(4, 1), |
|
(4, 5), |
|
(5, 1), |
|
(5, 2), |
|
(5, 3), |
|
(5, 4), |
|
(5, 5), |
|
] |
|
|
|
|
|
@check_figures_equal(extensions=[".png"]) |
|
def test_plot_mask(fig_test, fig_ref): |
|
|
|
im = np.random.randint(low=1, high=254, size=(6, 6, 3), dtype=np.uint8) |
|
|
|
mask = np.zeros((6, 6), dtype=np.uint8) |
|
mask[2:4, 2:4] = 1 |
|
|
|
x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4] |
|
y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4] |
|
|
|
fig_ref.gca().imshow(im) |
|
fig_ref.gca().scatter(x, y, color="red", marker=".", s=1) |
|
fig_ref.gca().axis("off") |
|
|
|
plot_mask(im=im, mask_in=mask, ax=fig_test.gca()) |
|
|
|
|
|
@check_figures_equal(extensions=[".png"]) |
|
def test_plot_mask_downsample(fig_test, fig_ref): |
|
|
|
|
|
im = np.random.randint(low=1, high=254, size=(12, 12, 3), dtype=np.uint8) |
|
|
|
mask = np.zeros((12, 12), dtype=np.uint8) |
|
mask[4:8, 4:8] = 1 |
|
|
|
x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4] |
|
y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4] |
|
|
|
fig_ref.gca().imshow(im[::2, ::2, :]) |
|
fig_ref.gca().scatter(x, y, color="red", marker=".", s=1) |
|
fig_ref.gca().axis("off") |
|
|
|
plot_mask(im=im, mask_in=mask, ax=fig_test.gca(), downsample_factor=2) |
|
|
|
|
|
def test_upsample_array(simple_mask): |
|
factor = 11 |
|
upsampled = upsample_array(simple_mask, factor=factor) |
|
upsampled_kron = np.kron(simple_mask, np.ones((factor, factor), simple_mask.dtype)) |
|
assert np.array_equal(upsampled, upsampled_kron) |
|
|
|
|
|
def test_sort_points_clockwise(): |
|
points = np.array([[1, 1], [-1, 1], [1, -1], [-1, -1]]) |
|
points_sorted_correct = np.array([[-1, -1], [-1, 1], [1, 1], [1, -1]]) |
|
points_sorted = sort_points_clockwise(points) |
|
assert points.shape == points_sorted.shape |
|
assert np.array_equal(points_sorted, points_sorted_correct) |
|
|
|
|
|
def test_contour_centroid(example_contour): |
|
i, j = contour_centroid(example_contour.astype(np.float32)) |
|
assert np.allclose([i, j], [3, 3]) |
|
|
|
|
|
def test_pad_or_crop_1d(random_5_5_5_5): |
|
padded = _pad_or_crop_1d(random_5_5_5_5, axis=2, target_dim=10) |
|
assert padded.shape == (5, 5, 10, 5) |
|
cropped = _pad_or_crop_1d(random_5_5_5_5, axis=1, target_dim=2) |
|
assert cropped.shape == (5, 2, 5, 5) |
|
no_change = _pad_or_crop_1d(random_5_5_5_5, axis=0, target_dim=5) |
|
assert no_change.shape == (5, 5, 5, 5) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"target_shape", |
|
[(5, 5, 5, 5), (5, 6, 6, 5), (5, 4, 4, 5), (6, 4, 5, 5), (10, 11, 12, 13)], |
|
) |
|
def test_pad_or_crop(random_5_5_5_5, target_shape): |
|
assert ( |
|
pad_or_crop(random_5_5_5_5, target_shape).shape == target_shape |
|
), f"target shape: {target_shape}" |
|
|
|
|
|
def test_normalize_matrix_rows(random_50_50): |
|
a = normalize_matrix_rows(random_50_50) |
|
assert np.all(np.isclose(np.linalg.norm(a, axis=1), 1.0)) |
|
|
|
|
|
def test_normalize_matrix_cols(random_50_50): |
|
a = normalize_matrix_cols(random_50_50) |
|
assert np.all(np.isclose(np.linalg.norm(a, axis=0), 1.0)) |
|
|
|
|
|
def test_plot_segmentation(): |
|
ax = plt.gca() |
|
|
|
masks = np.zeros((3, 12, 12), dtype=np.uint8) |
|
masks[0, 4:8, 4:8] = 1 |
|
masks[1, 1:3, 1:3] = 2 |
|
masks[2, 8:11, 8:11] = 3 |
|
|
|
palette = None |
|
markersize = 5 |
|
|
|
plot_segmentation(ax, masks, palette, markersize) |
|
|
|
|
|
def test_find_existing_qupath_home(tmp_path): |
|
|
|
qupath_dir = tmp_path / "qupath" |
|
qupath_dir.mkdir(parents=True) |
|
qupath_jar = qupath_dir / "qupath.jar" |
|
qupath_jar.touch() |
|
|
|
|
|
qupath_home = find_qupath_home(str(tmp_path)) |
|
assert qupath_home == str(qupath_dir.parent.parent) |
|
|
|
|
|
def test_no_qupath_home_found(tmp_path): |
|
|
|
qupath_home = find_qupath_home(str(tmp_path)) |
|
assert qupath_home is None |
|
|
|
|
|
def test_find_qupath_home(): |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
|
|
os.makedirs(Path(temp_dir) / "qupath") |
|
open(Path(temp_dir) / "qupath/qupath.jar", "a").close() |
|
assert find_qupath_home(temp_dir) is not None |
|
|
|
|
|
shutil.rmtree(Path(temp_dir) / "qupath") |
|
|
|
|
|
assert find_qupath_home(temp_dir) is None |
|
|
|
|
|
@patch("builtins.print") |
|
def test_setup_qupath(mock_print): |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
qupath_home = Path(temp_dir) / "qupath" |
|
|
|
|
|
expected_path = ( |
|
qupath_home / "QuPath" |
|
) |
|
assert setup_qupath(str(qupath_home)) == str(expected_path) |
|
print(setup_qupath(str(qupath_home))) |
|
print(str(expected_path)) |
|
|
|
assert setup_qupath(str(qupath_home)) == str(expected_path) |
|
|