|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Fast decoding routines for inference from a trained model. |
|
|
|
Modified https://github.com/google/flax/blob/main/examples/wmt/decode.py |
|
to acommodate |
|
|
|
(a) continued decoding from a previous beam cache. |
|
(b) init with with a single beam and then expand into beam_size beams. |
|
""" |
|
|
|
from typing import Any |
|
|
|
import flax |
|
import jax |
|
from jax import lax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
NEG_INF = np.array(-1.0e7) |
|
|
|
|
|
BEAM_SEARCH_DEFAULT_ALPHA = 0.6 |
|
MAX_DECODE_LEN = 32 |
|
|
|
|
|
BREVITY_LEN_BIAS_NUMERATOR = 5.0 |
|
BREVITY_LEN_BIAS_DENOMINATOR = 6.0 |
|
|
|
|
|
def brevity_penalty(alpha: float, length: int): |
|
"""Brevity penalty function for beam search penalizing short sequences. |
|
|
|
Args: |
|
alpha: float: brevity-penalty scaling parameter. |
|
length: int: length of considered sequence. |
|
|
|
Returns: |
|
Brevity penalty score as jax scalar. |
|
""" |
|
return jnp.power( |
|
((BREVITY_LEN_BIAS_NUMERATOR + length) / BREVITY_LEN_BIAS_DENOMINATOR), |
|
alpha, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def add_beam_dim(x: jnp.ndarray, beam_size: int) -> jnp.ndarray: |
|
"""Creates new beam dimension in non-scalar array and tiles into it.""" |
|
if x.ndim == 0: |
|
return x |
|
x = jnp.expand_dims(x, axis=1) |
|
tile_dims = [1] * x.ndim |
|
tile_dims[1] = beam_size |
|
return jnp.tile(x, tile_dims) |
|
|
|
|
|
def add_beam_dim_cache( |
|
cache: tuple[dict[str, jnp.ndarray], ...], beam_size: int |
|
) -> tuple[dict[str, jnp.ndarray], ...]: |
|
"""Creates new beam dimension in non-scalar array and tiles into it.""" |
|
new_cache = [] |
|
|
|
for layer in cache: |
|
new_layer = {} |
|
for key, x in layer.items(): |
|
if key in ['keys', 'vals']: |
|
x = add_beam_dim(x, beam_size) |
|
new_layer[key] = x |
|
new_cache.append(new_layer) |
|
|
|
return tuple(new_cache) |
|
|
|
|
|
def flatten_beam_dim(x): |
|
"""Flattens the first two dimensions of a non-scalar array.""" |
|
if x.ndim < 2: |
|
return x |
|
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:]) |
|
|
|
|
|
def unflatten_beam_dim(x, batch_size, beam_size): |
|
"""Unflattens the first, flat batch*beam dimension of a non-scalar array.""" |
|
if x.ndim == 0: |
|
return x |
|
assert batch_size * beam_size == x.shape[0] |
|
return x.reshape((batch_size, beam_size) + x.shape[1:]) |
|
|
|
|
|
def flat_batch_beam_expand(x, beam_size): |
|
"""Expands the each batch item by beam_size in batch_dimension.""" |
|
return flatten_beam_dim(add_beam_dim(x, beam_size)) |
|
|
|
|
|
def gather_beams(nested, beam_indices, batch_size, new_beam_size): |
|
"""Gathers the beam slices indexed by beam_indices into new beam array. |
|
|
|
Args: |
|
nested: pytree of arrays or scalars (the latter ignored). |
|
beam_indices: array of beam_indices |
|
batch_size: int: size of batch. |
|
new_beam_size: int: size of _new_ beam dimension. |
|
|
|
Returns: |
|
New pytree with new beam arrays. |
|
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...] |
|
""" |
|
batch_indices = jnp.reshape( |
|
jnp.arange(batch_size * new_beam_size) // new_beam_size, |
|
(batch_size, new_beam_size), |
|
) |
|
|
|
def gather_fn(x): |
|
if x.ndim == 0: |
|
return x |
|
else: |
|
return x[batch_indices, beam_indices] |
|
|
|
return jax.tree_util.tree_map(gather_fn, nested) |
|
|
|
|
|
def gather_topk_beams(nested, score_or_log_prob, batch_size, new_beam_size): |
|
"""Gathers the top-k beam slices given by score_or_log_prob array. |
|
|
|
Args: |
|
nested: pytree of arrays or scalars (the latter ignored). |
|
score_or_log_prob: [batch_size, old_beam_size] array of values to sort by |
|
for top-k selection of beam slices. |
|
batch_size: int: size of batch. |
|
new_beam_size: int: size of _new_ top-k selected beam dimension |
|
|
|
Returns: |
|
New pytree with new beam arrays containing top k new_beam_size slices. |
|
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...] |
|
""" |
|
_, topk_indices = lax.top_k(score_or_log_prob, k=new_beam_size) |
|
topk_indices = jnp.flip(topk_indices, axis=1) |
|
return gather_beams(nested, topk_indices, batch_size, new_beam_size) |
|
|
|
|
|
def apply_on_cache(fn, cache, *args, **kwargs): |
|
"""Apply fn(val) only when key is 'keys' or 'val'.""" |
|
new_cache = [] |
|
for layer in cache: |
|
new_layer = {} |
|
for key, val in layer.items(): |
|
if key in ['keys', 'values', 'current_index', 'relative_position_bias']: |
|
val = fn(val, *args, **kwargs) |
|
new_layer[key] = val |
|
new_cache.append(new_layer) |
|
return tuple(new_cache) |
|
|
|
|
|
|
|
|
|
|
|
@flax.struct.dataclass |
|
class BeamState: |
|
"""Holds beam search state data.""" |
|
|
|
|
|
cur_index: jax.Array |
|
|
|
live_logprobs: jax.Array |
|
finished_scores: jax.Array |
|
|
|
live_seqs: jax.Array |
|
finished_seqs: jax.Array |
|
|
|
|
|
finished_flags: jax.Array |
|
|
|
cache: Any |
|
|
|
|
|
def beam_init(seed_token, batch_size, beam_size, max_decode_len, cache): |
|
"""Initializes the beam search state data structure.""" |
|
cur_index0 = jnp.array(0) |
|
live_logprobs0 = jnp.tile( |
|
jnp.array([0.0] + [NEG_INF] * (beam_size - 1)), [batch_size, 1] |
|
) |
|
finished_scores0 = jnp.ones((batch_size, beam_size)) * NEG_INF |
|
|
|
live_seqs0 = jnp.concatenate( |
|
[ |
|
jnp.reshape(seed_token, (batch_size, beam_size, 1)), |
|
jnp.zeros((batch_size, beam_size, max_decode_len - 1), jnp.int32), |
|
], |
|
axis=-1, |
|
) |
|
|
|
finished_seqs0 = jnp.zeros((batch_size, beam_size, max_decode_len), jnp.int32) |
|
finished_flags0 = jnp.zeros((batch_size, beam_size), jnp.bool_) |
|
beam_cache0 = apply_on_cache(lambda x: jnp.expand_dims(x, axis=0), cache) |
|
return BeamState( |
|
cur_index=cur_index0, |
|
live_logprobs=live_logprobs0, |
|
finished_scores=finished_scores0, |
|
live_seqs=live_seqs0, |
|
finished_seqs=finished_seqs0, |
|
finished_flags=finished_flags0, |
|
cache=beam_cache0, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def beam_search_flat( |
|
seed_token, |
|
cache, |
|
tokens_to_logits, |
|
alpha=BEAM_SEARCH_DEFAULT_ALPHA, |
|
eos=None, |
|
max_decode_len=MAX_DECODE_LEN, |
|
mask=None, |
|
): |
|
"""Beam search for LM. |
|
|
|
inputs and cache is already flat! i.e. first dimention == batch*beam. |
|
|
|
Args: |
|
seed_token: array: [beam_size, 1] int32 sequence of tokens. |
|
cache: flax attention cache. |
|
tokens_to_logits: fast autoregressive decoder function taking single token |
|
slices and cache and returning next-token logits and updated cache. |
|
alpha: float: scaling factor for brevity penalty. |
|
eos: array: [vocab] 1 for end-of-sentence tokens, 0 for not. |
|
max_decode_len: int: maximum length of decoded translations. |
|
mask: array: [vocab] binary mask for vocab. 1 to keep the prob, 0 to set the |
|
prob := 0. |
|
|
|
Returns: |
|
Tuple of: |
|
[beam_size, max_decode_len] top-scoring sequences |
|
[beam_size] beam-search scores. |
|
""" |
|
|
|
batch_size, beam_size = 1, seed_token.shape[0] |
|
mask = mask.reshape((1, 1, -1)) |
|
eos = eos.reshape((1, 1, -1)) |
|
mask_bias = (1 - mask) * NEG_INF |
|
|
|
|
|
beam_search_init_state = beam_init( |
|
seed_token, batch_size, beam_size, max_decode_len, cache |
|
) |
|
|
|
def beam_search_loop_cond_fn(state): |
|
"""Beam search loop termination condition.""" |
|
|
|
not_at_end = state.cur_index < max_decode_len - 1 |
|
|
|
|
|
|
|
min_brevity_penalty = brevity_penalty(alpha, max_decode_len) |
|
best_live_scores = state.live_logprobs[:, -1:] / min_brevity_penalty |
|
|
|
worst_finished_scores = jnp.min( |
|
state.finished_scores, axis=1, keepdims=True |
|
) |
|
|
|
worst_finished_scores = jnp.where( |
|
state.finished_flags, worst_finished_scores, NEG_INF |
|
) |
|
|
|
|
|
search_terminated = jnp.all(worst_finished_scores > best_live_scores) |
|
|
|
|
|
|
|
return not_at_end & (~search_terminated) |
|
|
|
def beam_search_loop_body_fn(state): |
|
"""Beam search loop state update function.""" |
|
|
|
|
|
|
|
|
|
flat_ids = flatten_beam_dim( |
|
lax.dynamic_slice( |
|
state.live_seqs, (0, 0, state.cur_index), (batch_size, beam_size, 1) |
|
) |
|
) |
|
|
|
|
|
flat_cache = apply_on_cache(flatten_beam_dim, state.cache) |
|
|
|
|
|
|
|
flat_logits, new_flat_cache = tokens_to_logits(flat_ids, flat_cache) |
|
|
|
|
|
|
|
logits = unflatten_beam_dim(flat_logits, batch_size, beam_size) |
|
|
|
|
|
|
|
new_cache = apply_on_cache( |
|
unflatten_beam_dim, new_flat_cache, batch_size, beam_size |
|
) |
|
|
|
|
|
candidate_log_probs = jax.nn.log_softmax(logits) |
|
|
|
|
|
log_probs = candidate_log_probs + jnp.expand_dims( |
|
state.live_logprobs, axis=2 |
|
) |
|
|
|
|
|
vocab_size = log_probs.shape[2] |
|
|
|
|
|
log_probs += mask_bias |
|
|
|
|
|
|
|
|
|
|
|
|
|
beams_to_keep = 2 * beam_size |
|
|
|
flat_log_probs = log_probs.reshape((batch_size, beam_size * vocab_size)) |
|
|
|
|
|
topk_log_probs, topk_indices = lax.top_k(flat_log_probs, k=beams_to_keep) |
|
|
|
topk_beam_indices = topk_indices // vocab_size |
|
|
|
|
|
topk_seq = gather_beams( |
|
state.live_seqs, topk_beam_indices, batch_size, beams_to_keep |
|
) |
|
|
|
|
|
|
|
|
|
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2) |
|
|
|
|
|
topk_seq = lax.dynamic_update_slice( |
|
topk_seq, topk_ids, (0, 0, state.cur_index + 1) |
|
) |
|
|
|
|
|
|
|
|
|
last_token = topk_seq[:, :, state.cur_index + 1] |
|
last_token = jax.nn.one_hot(last_token, vocab_size, dtype=jnp.bfloat16) |
|
|
|
|
|
newly_finished = jnp.any(last_token * eos, axis=-1) |
|
|
|
|
|
|
|
|
|
new_log_probs = topk_log_probs + newly_finished * NEG_INF |
|
|
|
|
|
_, new_topk_indices = lax.top_k(new_log_probs, k=beam_size) |
|
new_topk_indices = jnp.flip(new_topk_indices, axis=1) |
|
|
|
|
|
top_alive_seq, top_alive_log_probs = gather_beams( |
|
[topk_seq, new_log_probs], new_topk_indices, batch_size, beam_size |
|
) |
|
|
|
|
|
|
|
top_alive_indices = gather_beams( |
|
topk_beam_indices, new_topk_indices, batch_size, beam_size |
|
) |
|
|
|
|
|
top_alive_cache = apply_on_cache( |
|
gather_beams, new_cache, top_alive_indices, batch_size, beam_size |
|
) |
|
|
|
|
|
|
|
new_scores = topk_log_probs / brevity_penalty(alpha, state.cur_index + 1) |
|
|
|
|
|
new_scores += (~newly_finished) * NEG_INF |
|
|
|
|
|
|
|
|
|
finished_seqs = jnp.concatenate( |
|
[state.finished_seqs, topk_seq], axis=1 |
|
) |
|
finished_scores = jnp.concatenate( |
|
[state.finished_scores, new_scores], axis=1 |
|
) |
|
finished_flags = jnp.concatenate( |
|
[state.finished_flags, newly_finished], axis=1 |
|
) |
|
|
|
top_finished_seq, top_finished_scores, top_finished_flags = ( |
|
gather_topk_beams( |
|
[finished_seqs, finished_scores, finished_flags], |
|
finished_scores, |
|
batch_size, |
|
beam_size, |
|
) |
|
) |
|
|
|
return BeamState( |
|
cur_index=state.cur_index + 1, |
|
live_logprobs=top_alive_log_probs, |
|
finished_scores=top_finished_scores, |
|
live_seqs=top_alive_seq, |
|
finished_seqs=top_finished_seq, |
|
finished_flags=top_finished_flags, |
|
cache=top_alive_cache, |
|
) |
|
|
|
|
|
final_state = lax.while_loop( |
|
beam_search_loop_cond_fn, beam_search_loop_body_fn, beam_search_init_state |
|
) |
|
|
|
|
|
|
|
|
|
none_finished = jnp.any(final_state.finished_flags, axis=1) |
|
|
|
finished_seqs = jnp.where( |
|
none_finished[:, None, None], |
|
final_state.finished_seqs, |
|
final_state.live_seqs, |
|
) |
|
|
|
finished_scores = jnp.where( |
|
none_finished[:, None], |
|
final_state.finished_scores, |
|
final_state.live_logprobs, |
|
) |
|
|
|
finished_seqs = jnp.reshape(finished_seqs, (beam_size, max_decode_len)) |
|
finished_scores = jnp.reshape(finished_scores, (beam_size,)) |
|
|
|
final_cache = apply_on_cache(flatten_beam_dim, final_state.cache) |
|
return finished_seqs, finished_scores, final_cache |
|
|