Mattergen / data /mattergen /denoiser.py
introvoyz041's picture
Migrated from GitHub
cfeea40 verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from typing import Callable
import torch
import torch.nn as nn
from mattergen.common.data.chemgraph import ChemGraph
from mattergen.common.data.types import PropertySourceId
from mattergen.common.utils.globals import MAX_ATOMIC_NUM, SELECTED_ATOMIC_NUMBERS
from mattergen.diffusion.model_utils import NoiseLevelEncoding
from mattergen.diffusion.score_models.base import ScoreModel
from mattergen.property_embeddings import (
ChemicalSystemMultiHotEmbedding,
get_property_embeddings,
get_use_unconditional_embedding,
)
BatchTransform = Callable[[ChemGraph], ChemGraph]
def atomic_numbers_to_mask(atomic_numbers: torch.LongTensor, max_atomic_num: int) -> torch.Tensor:
"""Convert atomic numbers to a mask.
Args:
atomic_numbers (torch.LongTensor): One-based atomic numbers of shape (batch_size, )
Returns:
torch.Tensor: Mask of shape (batch_size, num_classes)
"""
k_hot_mask = torch.eye(max_atomic_num, device=atomic_numbers.device)[atomic_numbers - 1]
return k_hot_mask
def mask_logits(logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""Mask logits by setting the logits for masked items to -inf.
Args:
logits (torch.Tensor): Logits of shape (batch_size, num_classes)
mask (torch.Tensor): Mask of shape (batch_size, num_classes). Values with zero are masked.
Returns:
torch.Tensor: Masked logits
"""
return logits + (1 - mask) * -1e10
def mask_disallowed_elements(
logits: torch.FloatTensor,
x: ChemGraph | None = None,
batch_idx: torch.LongTensor | None = None,
predictions_are_zero_based: bool = True,
):
"""
Mask out atom types that are disallowed in general,
as well as potentially all elements not in the chemical system we condition on.
Args:
logits (torch.Tensor): Logits of shape (batch_size, num_classes)
x (ChemGraph)
batch_idx (torch.LongTensor, optional): Batch indices. Defaults to None. Must be provided if condition is not None.
predictions_are_zero_based (bool, optional): Whether the logits are zero-based. Defaults to True. Basically, if we're using D3PM,
the logits are zero-based (model predicts atomic number index)
"""
# First, mask out generally undesired elements
# (1, num_selected_elements)
selected_atomic_numbers = torch.tensor(SELECTED_ATOMIC_NUMBERS, device=logits.device)
predictions_are_one_based = not predictions_are_zero_based
# (num_atoms, num_classes)
one_hot_selected_elements = atomic_numbers_to_mask(
atomic_numbers=selected_atomic_numbers + int(predictions_are_one_based),
max_atomic_num=logits.shape[1],
)
# (1, num_classes)
k_hot_mask = one_hot_selected_elements.sum(0)[None]
# Set the logits for disallowed elements to -inf
logits = mask_logits(logits=logits, mask=k_hot_mask)
# Optionally, also mask out elements that are not in the chemical system we condition on
if x is not None and "chemical_system" in x and x["chemical_system"] is not None:
try:
# torch.BoolTensor, shape (batch_size, 1) -- do not mask logits when we use an unconditional embedding
do_not_mask_atom_logits = get_use_unconditional_embedding(
batch=x, cond_field="chemical_system"
)
except KeyError:
# if no mask provided to use conditional/unconditional labels then do not mask logits
do_not_mask_atom_logits = torch.ones(
(len(x["chemical_system"]), 1), dtype=torch.bool, device=x["num_atoms"].device
)
# mypy
assert batch_idx is not None, "batch_idx must be provided if condition is not None"
# Only mask atom types where the condition is not masked
# A 1 means that we do not alter the logit, a 0 means that we change the logit to -inf
# keep_logits.shape=(Nbatch, MAX_ATOMIC_NUM+1)
# 1 = keep logit, 0 = set logit to -inf, shape = (Nbatch, MAX_ATOMIC_NUM+1)
keep_all_logits = torch.ones((len(x["chemical_system"]), 1), device=x["num_atoms"].device)
# torch.Tensor, shape=(Nbatch,MAX_ATOMIC_NUM+1) -- 1s where elements are present in chemical system condition, 0 elsewhere
multi_hot_chemical_system = ChemicalSystemMultiHotEmbedding.sequences_to_multi_hot(
x=ChemicalSystemMultiHotEmbedding.convert_to_list_of_str(x=x["chemical_system"]),
device=x["num_atoms"].device,
)
keep_logits = torch.where(
do_not_mask_atom_logits,
keep_all_logits,
multi_hot_chemical_system,
)
# This is converting the 1-based chemical system condition to a 0-based
# condition -- we're doing it on the multi-hot representation of the
# chemical system, so we need to shift the indices by one.
if predictions_are_zero_based:
keep_logits = keep_logits[:, 1:]
# If we use mask diffusion, logits is shape [batch_size, MAX_ATOMIC_NUM + 1]
# instead of [batch_size, MAX_ATOMIC_NUM], so we have to add one dummy column
if keep_logits.shape[1] == logits.shape[1] - 1:
keep_logits = torch.cat([keep_logits, torch.zeros_like(keep_logits[:, :1])], dim=-1)
# Mask out all logits outside the chemical system we condition on
logits = mask_logits(logits, keep_logits[batch_idx])
return logits
def get_chemgraph_from_denoiser_output(
pred_atom_types: torch.Tensor,
pred_lattice_eps: torch.Tensor,
pred_cart_pos_eps: torch.Tensor,
training: bool,
element_mask_func: Callable | None,
x_input: ChemGraph,
) -> ChemGraph:
"""
Convert raw denoiser output to ChemGraph and optionally apply masking to element logits.
Keyword arguments
-----------------
pred_atom_atoms: predicted logits for atom types
pred_lattice_eps: predicted lattice noise
pred_cart_pos_eps: predicted cartesian position noise
training: whether or not the model is in training mode - logit masking is only applied when sampling
element_mask_func: when not training, a function can be applied to mask logits for certain atom types
x_input: the nosiy state input to the score model, contains the lattice to convert cartesisan to fractional noise.
"""
if not training and element_mask_func:
# when sampling we may want to mask logits for atom types depending on info in x['chemical_system'] and x['chemical_system_MASK']
pred_atom_types = element_mask_func(
logits=pred_atom_types,
x=x_input,
batch_idx=x_input.get_batch_idx("pos"),
)
replace_dict = dict(
# convert from cartesian to fractional coordinate score
pos=(
x_input["cell"].inverse().transpose(1, 2)[x_input.get_batch_idx("pos")]
@ pred_cart_pos_eps.unsqueeze(-1)
).squeeze(-1),
cell=pred_lattice_eps,
atomic_numbers=pred_atom_types,
)
return x_input.replace(
**replace_dict,
)
class GemNetTDenoiser(ScoreModel):
"""Denoiser"""
def __init__(
self,
gemnet: nn.Module,
hidden_dim: int = 512,
denoise_atom_types: bool = True,
atom_type_diffusion: str = [
"mask",
"uniform",
][0],
property_embeddings: torch.nn.ModuleDict | None = None,
property_embeddings_adapt: torch.nn.ModuleDict | None = None,
element_mask_func: Callable | None = None,
**kwargs,
):
"""Construct a GemNetTDenoiser object.
Args:
gemnet: a GNN module
hidden_dim (int, optional): Number of hidden dimensions in the GemNet. Defaults to 128.
denoise_atom_types (bool, optional): Whether to denoise the atom types. Defaults to False.
atom_type_diffusion (str, optional): Which type of atom type diffusion to use. Defaults to "mask".
condition_on (Optional[List[str]], optional): Which aspects of the data to condition on. Strings must be in ["property", "chemical_system"]. If None (default), condition on ["chemical_system"].
"""
super(GemNetTDenoiser, self).__init__()
self.gemnet = gemnet
self.noise_level_encoding = NoiseLevelEncoding(hidden_dim)
self.hidden_dim = hidden_dim
self.denoise_atom_types = denoise_atom_types
self.atom_type_diffusion = atom_type_diffusion
# torch.nn.ModuleDict: Dict[PropertyName, PropertyEmbedding]
self.property_embeddings = torch.nn.ModuleDict(property_embeddings or {})
with_mask_type = self.denoise_atom_types and "mask" in self.atom_type_diffusion
self.fc_atom = nn.Linear(hidden_dim, MAX_ATOMIC_NUM + int(with_mask_type))
self.element_mask_func = element_mask_func
def forward(self, x: ChemGraph, t: torch.Tensor) -> ChemGraph:
"""
args:
x: tuple containing:
frac_coords: (N_atoms, 3)
lattice: (N_cryst, 3, 3)
atom_types: (N_atoms, ), need to use atomic number e.g. H = 1 or ion state
num_atoms: (N_cryst,)
batch: (N_atoms,)
t: (N_cryst,): timestep per crystal
returns:
tuple of:
predicted epsilon: (N_atoms, 3)
lattice update: (N_crystals, 3, 3)
predicted atom types: (N_atoms, MAX_ATOMIC_NUM)
"""
(frac_coords, lattice, atom_types, num_atoms, batch) = (
x["pos"],
x["cell"],
x["atomic_numbers"],
x["num_atoms"],
x.get_batch_idx("pos"),
)
# (num_atoms, hidden_dim) (num_crysts, 3)
t_enc = self.noise_level_encoding(t).to(lattice.device)
z_per_crystal = t_enc
# evaluate property embedding values
property_embedding_values = get_property_embeddings(
batch=x, property_embeddings=self.property_embeddings
)
if len(property_embedding_values) > 0:
z_per_crystal = torch.cat([z_per_crystal, property_embedding_values], dim=-1)
output = self.gemnet(
z=z_per_crystal,
frac_coords=frac_coords,
atom_types=atom_types,
num_atoms=num_atoms,
batch=batch,
lengths=None,
angles=None,
lattice=lattice,
# we construct the graph on the fly, hence pass None for these:
edge_index=None,
to_jimages=None,
num_bonds=None,
)
pred_atom_types = self.fc_atom(output.node_embeddings)
return get_chemgraph_from_denoiser_output(
pred_atom_types=pred_atom_types,
pred_lattice_eps=output.stress,
pred_cart_pos_eps=output.forces,
training=self.training,
element_mask_func=self.element_mask_func,
x_input=x,
)
@property
def cond_fields_model_was_trained_on(self) -> list[PropertySourceId]:
"""
We adopt the convention that all property embeddings are stored in torch.nn.ModuleDicts of
name property_embeddings or property_embeddings_adapt in the case of a fine tuned model.
This function returns the list of all field names that a given score model was trained to
condition on.
"""
return list(self.property_embeddings)