introvoyz041's picture
Migrated from GitHub
cfeea40 verified
# Copyright (c) 2022 The Google Research Authors.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# Adapted from https://github.com/google-research/google-research/blob/master/d3pm/text/diffusion.py
# Siginificant changes:
# * adapt code style/ formatting
# * Jax -> PyTorch
# * Remove Diffusion types that are not used by MatterGen
# ORIGINAL LICENSE NOTICE:
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diffusions for training and noise scheduling."""
import abc
import dataclasses
from typing import Any, Callable, Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch.distributions import Categorical
class DiffusionSchedule:
"""A wrapper around a simple schedule function."""
def __init__(self, schedule_fn, num_steps, is_constant=False):
self._schedule_fn = schedule_fn
self.num_steps = num_steps
self.is_constant = is_constant
def __call__(self, step):
return self._schedule_fn(step)
def __repr__(self):
return f"DiffusionSchedule(steps: {self.num_steps}, is_constant: {self.is_constant})"
class DiscreteDiffusionBase(abc.ABC):
"""Base class for all matrix-noise schedules."""
num_steps: int
dim: int
precision: Any = torch.float32
@abc.abstractmethod
def stationary_probs(self, shape):
"""Returns probs for the stationary distribution."""
@abc.abstractmethod
def sample_stationary(self, shape):
"""Draws a sample from the stationary distribution (q(x_T))."""
@property
def has_state(self):
"""Indicates if the diffusion has state which needs to be set/updated."""
return False
def set_state(self, state):
pass
def reset_state(self):
pass
def update_state(self, state):
pass
def sample_t(self, shape=(1,)):
"""Samples batches of time steps to use."""
num_steps = self.num_steps
t = torch.randint(shape, minval=0, maxval=num_steps)
return t
@abc.abstractmethod
def get_qt_given_q0(self, q0, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_t), the n-step posterior.
For example, for t = 0, it returns q0 unchanged.
Args:
q0: an array of floats specifying a distribution over p(x_0).
t: t in q(x_t | x_0).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q0 to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_t | x_0).
"""
@abc.abstractmethod
def sample_and_compute_posterior_q(
self,
x_0,
t,
samples=None,
transition_probs=None,
return_logits=True,
return_transition_probs=False,
transition_probs_in_logits=True,
make_one_hot=True,
epsilon=1e-20,
step_size=1,
):
"""Samples from q(x_{t+1} | x_0), then computes q(x_t | x_{t+1}, x_0).
Args:
x_0: an array containing x_0 samples. These are expected to be integral
unless make_one_hot is False (in which case probabilities can be
provided).
t: the timestep to compute (as an int or integer array with shape that
matches x_0.
samples: if not None, use these samples to compute the posterior.
transition_probs: precomputed transition probabilities.
return_logits: if True, returns the (noisy) log of the probabilities.
return_transition_probs: if true, returns the transition probs as well.
transition_probs_in_logits: include transition probs in logits.
make_one_hot: if True, will convert the input to a one_hot vector.
epsilon: a small amount of noise to add to logits if needed.
step_size: if provided, computes q(x_{t + step_size} | x_0), etc. This is
used to sample fewer steps for ELBO evaluation on a longer trained
model.
Returns:
a list of samples with the same shape as x_0 and the associated posterior
probabilities (or logits).
"""
class DiscreteDiffusionMatrixBase(DiscreteDiffusionBase):
"""Base class for all matrix-noise schedulers."""
num_steps: int
dim: int
precision: Any = torch.float32
def get(self, t):
"""Returns the transition matrix q(x_{t+1} | x_t)."""
raise NotImplementedError
def custom_product_fn(self, t):
"""Returns q(x_t | x_0), the product of the first t matrices."""
raise NotImplementedError
def supports_efficient_get(self):
"""Returns true if get() is implemented/efficient."""
return False
def supports_efficient_inference(self):
"""Returns true if custom_product_fn is implemented.
The ontology of efficient_get and efficient_inference is this:
* if efficient_inference is enabled, it is used to return q(x_t | x_0)
without computing expensive products.
* if efficient_get is enabled, get(...) is used to get the posterior of
q(x_{t-1} | x_t, x_0). If not, get_q_given_q0 is called to get
q(x_{t+1} | x_0), and qt_reverse is called to get the q(x_{t+1} | x_t).
"""
return False
def qt_reverse(self, qt_plus_1, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_{t+1} | x_t), for each possible value of x_t. Thus, the rows of the output do not sum to 1.
Args:
qt_plus_1: an array of floats specifying a distribution over q(x_{t+1} | x_0).
t: t in q(x_{t+1} | x_t).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q(x_{t+1}) to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_{t+1} | x_t), shape [num_samples, num_classes].
"""
raise NotImplementedError
def get_qt_matrix(self, t):
"""Returns the matrix Q = q(x_t | x_0) materialized over all x_0."""
if self.supports_efficient_inference():
return self.custom_product_fn(t)
# otherwise, multiply by the ith matrix in a for-loop.
def product_fn(i, state):
return torch.matmul(self.get(torch.tensor(i)), state)
val = torch.eye(self.dim, device=t.device)
for i in range(0, t):
val = product_fn(i, val)
return val
def get_qt_given_q0(self, q0, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_t), the n-step posterior.
For example, for t = 0, it returns q0 unchanged.
Args:
q0: an array of floats specifying a distribution over p(x_0).
t: t in q(x_t | x_0).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q0 to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_t | x_0).
"""
if make_one_hot:
assert q0.dtype == torch.long or q0.dtype == torch.int32
q0 = torch.eye(self.dim, device=q0.device)[q0]
assert q0.dtype == torch.float32
# if efficient inference is supported, just return those matrices.
if self.supports_efficient_inference():
prob_at_time_t = torch.einsum("bij,bj->bi", self.get_qt_matrix(t).to(q0.dtype), q0)
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
@dataclasses.dataclass
class ScanState:
final_time: int # target time
q: Any
def product_fn(state, current_time):
cond = current_time < state.final_time
transition = self.get(current_time)
q_t_plus_1 = torch.einsum("ij,sj->si", transition, state.q)
new_q = torch.where(cond[:, None], q_t_plus_1, state.q)
return ScanState(final_time=state.final_time, q=new_q), None
init_val = ScanState(final_time=t, q=q0)
carry = init_val
idx = torch.arange(self.num_steps, device=q0.device)
for i in idx:
carry, _ = product_fn(carry, i)
final_state = carry
prob_at_time_t = final_state.q
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
def sample_and_compute_posterior_q(
self,
x_0,
t,
samples=None,
transition_probs=None,
return_logits=True,
return_transition_probs=False,
transition_probs_in_logits=True,
make_one_hot=True,
epsilon=1e-20,
step_size=1,
):
"""Samples from q(x_{t+1} | x_0), then computes q(x_t | x_{t+1}, x_0).
Args:
x_0: an array containing x_0 samples. These are expected to be integral
unless make_one_hot is False (in which case probabilities can be
provided).
t: the timestep to compute (as an int or integer array with shape that
matches x_0.
samples: if not None, use these samples to compute the posterior.
transition_probs: precomputed transition probabilities.
return_logits: if True, returns the (noisy) log of the probabilities.
return_transition_probs: if true, returns the transition probs as well.
transition_probs_in_logits: include transition probs in logits.
make_one_hot: if True, will convert the input to a one_hot vector.
epsilon: a small amount of noise to add to logits if needed.
step_size: if provided, computes q(x_{t + step_size} | x_0), etc. This is
used to sample fewer steps for ELBO evaluation on a longer trained
model.
Returns:
a list of samples with the same shape as x_0 and the associated posterior
probabilities (or logits).
"""
dim = self.dim
device = x_0.device
# t = torch.tensor(t, device=x_0.device)
if make_one_hot:
assert x_0.dtype in [torch.long, torch.int32]
x_0 = torch.eye(dim, device=device)[x_0].reshape(x_0.shape + (dim,))
assert x_0.dtype == torch.float32
assert t.dtype in [torch.long, torch.int32]
prob_at_time_t = self.get_qt_given_q0(q0=x_0, t=t)
# most methods support efficiently returning the t-th transition matrix
# if so, we use that. Otherwise we recompute the t+1th probability.
if self.supports_efficient_get():
if step_size > 1:
transition_matrix = torch.eye(self.dim, device=x_0.device)
for i in range(step_size):
transition_matrix = self.get(t + i) @ transition_matrix
else:
transition_matrix = self.get(t)
prob_at_time_t_plus_one = torch.einsum(
"bij,bj->bi",
transition_matrix,
prob_at_time_t,
)
else:
prob_at_time_t_plus_one = self.get_qt_given_q0(q0=x_0, t=t + step_size)
if samples is None and transition_probs is not None:
raise ValueError("samples were not provided but transition_probs were.")
# if samples are provided, we use those. otherwise, we sample more.
if samples is None:
logits = torch.log(prob_at_time_t_plus_one + epsilon)
samples = Categorical(logits=logits).sample()
# we can optionally provide transition probs from another call to this
# function. If not, we recompute this. For most methods, we can reuse the
# transition matrix. If we didn't compute it, our method must support
# qt_reverse which usually computes efficient backwards VJPs.
if transition_probs is None:
if self.supports_efficient_get():
transition_probs = transition_matrix[range(samples.shape[0]), samples]
else:
if step_size > 1:
transition_probs = torch.eye(self.dim, device=samples.device)[samples]
for i in range(step_size):
transition_probs = self.qt_reverse(
qt_plus_1=transition_probs, make_one_hot=False, t=t + step_size - 1 - i
)
else:
# Computes q(x_{t+1} | x_t), i.e., for each possible x_t, what is the probability of transitioning to each x_{t+1}.
# Thus, these probabilities do not sum to 1 per row.
# If we don't return logits, transition_probs will be used to compute q(x_t | x_{t+1}).
# Otherwise, we return the logits of q(x_t | x_{t+1}) = q(x_{t+1} | x_t) * q(x_t | x_0), i.e., omit normalization by q(x_{t+1} | x_0).
# Shape [batch_size, num_classes]
transition_probs = self.qt_reverse(qt_plus_1=samples, make_one_hot=True, t=t)
if not transition_probs_in_logits and not return_logits:
raise ValueError(
"Cannot exclude transition probs from logits if return_logits is false."
)
if return_logits:
# for numerical stability, we can compute log(a*b) = log(a) + log(b)
posterior_logits = torch.log(prob_at_time_t + epsilon)
if transition_probs_in_logits:
posterior_logits += torch.log(transition_probs + epsilon)
if return_transition_probs:
return posterior_logits, samples, transition_probs
else:
return posterior_logits, samples
else:
# here we hope this never actually sums to zero. There's a chance
# this will produce NaN gradients, but that's OK because they'll be
# skipped.
posterior = transition_probs * prob_at_time_t
denominator = torch.sum(posterior, dim=-1, keepdims=True)
posterior = posterior / denominator
if return_transition_probs:
return posterior, samples, transition_probs
else:
return posterior, samples
class MaskDiffusion(DiscreteDiffusionMatrixBase):
"""A simple schedule that diffuses away from the identity matrix."""
def __init__(self, dim, schedule, precision=torch.float32, use_fast_inference=True):
"""A simple scheduler for masking policies.
Args:
dim: int, the dimensionality of the state space.
schedule: a DiffusionSchedule object for scheduling rates.
precision: matmul precision.
use_fast_inference: if False, uses a slower, brute force approach.
"""
self.num_steps = schedule.num_steps
self.schedule = schedule
self.use_fast_inference = use_fast_inference
self.precision = precision
self.dim = dim # allow mask
self.state = self._create_state()
def _create_state(self):
"""Initializes values used by the get function."""
betas = torch.cat([torch.tensor([0.0]), self.schedule(torch.arange(self.num_steps))]).to(
torch.float64
)
alphas = 1 - betas
state = torch.cumprod(alphas, dim=0)
state[-1] = 0.0
return state.float()
def supports_efficient_inference(self):
return self.use_fast_inference
def stationary_probs(self, shape):
"""Stationary distribution is one-hot at mask token."""
sample = torch.full(shape, self.dim - 1)
probs = torch.eye(self.dim, device=sample.device)[sample]
return probs
def sample_stationary(self, shape):
"""Stationary distribution is one-hot at mask token."""
return torch.full(shape, self.dim - 1)
def custom_product_fn(self, t):
"""Returns product of first n matrices. Only supported for beta constant."""
dim = self.dim
if self.schedule.is_constant:
beta = self.schedule(0)
return (1 - beta) ** t * torch.eye(dim) + (1 - (1 - beta) ** t) * self._get_mask()
else:
p = self.state[t]
return p * torch.eye(dim) + (1 - p) * self._get_mask()
def _get_mask(self):
dim = self.dim
return torch.ones((dim, dim)) * (torch.arange(0, dim)[:, None] == (dim - 1)).to(
torch.float32
)
def get(self, t):
_t = t if len(t.shape) == 1 else t[None]
beta = self.schedule(_t)
dim = self.dim
ret = (1 - beta)[:, None, None] * torch.eye(dim, device=_t.device)[None] + beta[
:, None, None
] * self._get_mask().to(_t.device)[None]
return ret if len(t.shape) == 1 else ret.squeeze(0)
def qt_reverse(self, qt_plus_1, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_{t+1} | x_t), for each possible value of x_t. Thus, the rows of the output do not sum to 1.
Args:
qt_plus_1: an array of floats specifying a distribution over q(x_{t+1} | x_0).
t: t in q(x_{t+1} | x_t).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q(x_{t+1}) to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_{t+1} | x_t), shape [num_samples, num_classes].
"""
if make_one_hot:
assert qt_plus_1.dtype in [torch.long, torch.int32]
qt_plus_1 = torch.eye(self.dim, device=qt_plus_1.device)[qt_plus_1]
assert qt_plus_1.dtype == torch.float32
beta = self.schedule(t)
# q(x_{t+1} | x_t) = (1 - beta) if x_t = x_{t+1} != mask type
# else: beta if x_t != mask type else 1. (beta is the probability of transitioning to the absorbing state at t).
# I.e., if x_{t+1} is in some non-masked state S, then the probability of transitioning from S in t to S in t+1 is (1 - beta).
# Else, if x_{t+1} is in the masked state, then the probability of transitioning from a non-masked state S in t to the masked state in t+1 is beta,
# and the probability of transitioning from the masked state to itself is 1.
non_mask_prob = (1 - beta)[:, None] * qt_plus_1[:, :-1] + beta[:, None] * qt_plus_1[:, -1:]
prob_at_time_t = (
torch.eye(self.dim, device=qt_plus_1.device)[self.dim - 1][None] * qt_plus_1[:, -1:]
)
prob_at_time_t[:, :-1] = non_mask_prob
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
def get_qt_given_q0(self, q0, t, return_logits=False, make_one_hot=False, epsilon=1e-20):
"""Get q(x_t), the n-step posterior.
Can do efficiently for masks.
For example, for t = 0, it returns q0 unchanged.
Args:
q0: an array of floats specifying a distribution over p(x_0).
t: t in q(x_t | x_0).
return_logits: if True, return the output logits
make_one_hot: if True, will convert q0 to floats if needed.
epsilon: a small number to normalize logits conversion with, if needed.
Returns:
q(x_t | x_0).
"""
if not self.supports_efficient_inference():
return super().get_qt_given_q0(
q0, t, return_logits=return_logits, make_one_hot=make_one_hot, epsilon=epsilon
)
if make_one_hot:
assert q0.dtype in [torch.int32, torch.long]
q0 = torch.eye(self.dim, device=q0.device)[q0]
assert q0.dtype == torch.float32
assert len(q0.shape) == 2
# p is probability of staying the same. (1 - p) is prob of masking.
p = self.state.to(q0.device)[t]
non_mask_prob = p[:, None] * q0[:, :-1]
mask_prob = 1 - non_mask_prob.sum(-1)
prob_at_time_t = (
mask_prob[:, None] * torch.eye(self.dim, device=q0.device)[self.dim - 1][None]
)
prob_at_time_t[:, :-1] = non_mask_prob
prob_at_time_t = torch.where(t[:, None] == 0, q0, prob_at_time_t)
if return_logits:
return torch.log(prob_at_time_t + epsilon)
else:
return prob_at_time_t
def supports_efficient_get(self):
return not self.use_fast_inference
def create_discrete_diffusion_schedule(
kind="linear",
beta_min=1e-3,
beta_max=1e-1,
num_steps=100,
scale=1.0,
):
"""Creates a callable schedule object to use for diffusion rates.
Args:
kind: str, one of 'standard', 'linear', 'cosine', 'mutual_information'. If
standard, performs standard binomial diffusion taken from Sohl-Dicksteein
et al, ignoring betas. Otherwise, linear schedule between beta_min and
beta_max.
beta_min: the minimum beta. Ignored if kind == standard.
beta_max: the maximum beta.
num_steps: int, the number of steps to take.
scale: for standard schedule, rescales num_steps by this amount.
Returns:
a DiffusionSchedule object.
"""
assert beta_min <= beta_max
assert num_steps > 0
assert scale >= 1
if kind == "standard":
def schedule_fn(step: Union[int, torch.Tensor]):
return 1 / (scale * num_steps - step)
return DiffusionSchedule(schedule_fn, num_steps, is_constant=False)
elif kind == "linear":
is_constant = beta_min == beta_max
linspace = torch.linspace(beta_min, beta_max, num_steps)
def schedule_fn(step: Union[int, torch.Tensor]):
return linspace[step]
return DiffusionSchedule(schedule_fn, num_steps, is_constant=is_constant)
elif kind == "cosine":
s = 0.008
def cosine_fn(step: torch.Tensor):
return torch.cos((step / num_steps + s) / (1 + s) * torch.pi / 2)
def schedule_fn(step: Union[int, torch.Tensor]):
if isinstance(step, int):
step = torch.tensor(step)
return torch.clamp(1 - (cosine_fn(step + 1) / cosine_fn(step)), 0, 0.999)
return DiffusionSchedule(schedule_fn, num_steps, is_constant=False)
else:
raise ValueError(f"kind {kind} is not supported.")
def p_forward(
denoise_fn,
x_t,
t,
diffusion,
predict_x0=True,
return_x0=False,
return_logits=False,
special_case_x0=False,
transition_probs=None,
transition_probs_in_logits=True,
maximum_likelihood=False,
epsilon=1e-20,
step_size=1,
):
"""Returns probabilities from the reverse process p(x_{t-1} | x_t).
Args:
denoise_fn: the reverse process. Must support embed, call, and attend.
x_t: the current value of x_t to condition on.
t: the timestep t.
diffusion: the Diffusion object to use for noise.
predict_x0: if True, assumes the model output corresponds to its prediction
for p(x_0 | x_t). Otherwise assumes model predicts p(x_{t-1} | x_t).
return_x0: if True, will return probs for x_0 as well as x_{t-1}.
return_logits: if True, will return logits instead of probabilities.
special_case_x0: if True, will directly predict x0 instead of using the
forward process probabilities.
transition_probs: if provided, q(x_{t+1} | x_t) probs to reuse.
transition_probs_in_logits: if False, will ignore transition probs in logits
(only allowed if return_logits is True). This is because this term is
independent of theta.
maximum_likelihood: if true, will draw the most likely x0 before applying
the forward process.
epsilon: a small number.
step_size: step size to compute posterior from.
Returns:
probabilities for q(x_{t-1} | x_t) (and probabilities for x0 if predict_x0
is True)
"""
assert not (step_size > 1 and not predict_x0)
logits = denoise_fn(targets=x_t, timestep=t)
probs = logits.softmax(dim=-1)
if not predict_x0:
retval = logits if return_logits else probs
if return_x0:
return retval, None
else:
return retval
if maximum_likelihood:
probs = probs.argmax(-1)
# we use this to compute p(x_{t-1} | x_t) = sum_x0 q(x_{t-1} | x_t, x_0)
# p(x_0 | x_t).
qt_probs, _ = diffusion.sample_and_compute_posterior_q(
x_0=probs,
t=t - step_size,
make_one_hot=maximum_likelihood,
return_logits=return_logits,
transition_probs_in_logits=transition_probs_in_logits,
transition_probs=transition_probs,
samples=x_t,
epsilon=epsilon,
step_size=step_size,
)
retval_x0 = logits if return_logits else probs
retval = qt_probs
# we can special case t = 1 to just use the raw logits outputs.
mask = (t == step_size) & special_case_x0
retval = mask[:, None] * retval_x0 + (mask.logical_not())[:, None] * retval
if return_x0:
return retval, retval_x0
else:
return retval
def q_sample(x_start, t, diffusion, return_logits=False):
"""Draws a sample from the posterior q(x_t | x_start)."""
assert x_start.dtype in [torch.int32, torch.long]
dim = diffusion.dim
x_start = torch.eye(dim, device=x_start.device)[x_start]
logits = diffusion.get_qt_given_q0(q0=x_start, t=t, return_logits=True)
sample = Categorical(logits=logits).sample()
if return_logits:
return sample, logits
return sample
def compute_prior_kl(x_start, diffusion, target_mask=None):
"""Computes KL divergence between q(x_T) and the true distribution."""
assert x_start.dtype in [torch.long, torch.int32]
num_steps = diffusion.num_steps
q_probs = diffusion.get_qt_given_q0(
q0=x_start,
t=torch.tensor(
[
num_steps,
],
device=x_start.device,
),
return_logits=False,
make_one_hot=True,
) # get end step
p_probs = diffusion.stationary_probs(q_probs.shape[:-1]).to(q_probs.device)
d1 = Categorical(probs=q_probs)
d2 = Categorical(probs=p_probs)
loss = torch.distributions.kl_divergence(d1, d2)
if target_mask is not None:
loss = (loss * target_mask).sum()
else:
loss = loss.sum()
return loss
def compute_kl_reverse_process(
x_start: torch.Tensor,
t: torch.Tensor,
*,
x_t_plus_1: Optional[torch.Tensor] = None,
diffusion: DiscreteDiffusionBase,
denoise_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
predict_x0: bool = True,
log_space: bool = False,
label_smoothing: float = 0.0,
hybrid_lambda: float = 0.0,
use_cached_transition: bool = True,
target_mask: Optional[torch.Tensor] = None,
step_size: int = 1,
) -> Dict[str, torch.Tensor]:
"""Returns the KL for one term in the ELBO (time t) (loss L_t).
This assumes x_start is a sample from x_0, from which we draw samples from
q(x_t | x_0) and then compute q(x_{t-1} | x_t, x_0) following the LaTeX. This
is the KL divergence for terms L_1 through L_{T-1}.
Args:
x_start: a sample from p(data) (or q(x_0)).
t: the loss term to compute.
diffusion: the diffusion object to use.
denoise_fn: a functool.partial-ed version of the model_apply function which
takes a set of targets (x_t) and noise level and returns q(x_{t-1} | x_t,
x_0).
predict_x0: if True, will predict a distribution over x0 instead of x_{t-1}.
log_space: if True, will perform the loss calculations in log space.
label_smoothing: label smoothing for cross entropy.
hybrid_lambda: coefficient for hybrid cross-entropy loss.
use_cached_transition: if True, will reuse q(x_{t+1} | x_t) computation.
target_mask: mask for target sequence.
step_size: the step size over which the ELBO is computed.
Returns:
the KL divergence and denominator.
"""
assert x_start.dtype in [torch.int32, torch.long]
if step_size > 1 and not predict_x0:
raise ValueError("cannot skip steps when not predicting x0.")
# If x_t_plus_1 is None, sample from q(x_{t+1} | x_start). Otherwise use the provided samples for x_{t+1}.
# Then compute q(x_t | x_{t+1}, x_start)
# q_t and p_t can be logits or probs depending on log_space.
q_t, x_t_plus_1, transition_probs = diffusion.sample_and_compute_posterior_q(
x_0=x_start,
t=t,
return_logits=log_space,
return_transition_probs=True,
step_size=step_size,
samples=x_t_plus_1,
)
transition_probs = transition_probs if use_cached_transition else None
p_t = p_forward(
denoise_fn=denoise_fn,
x_t=x_t_plus_1,
t=t + step_size,
diffusion=diffusion,
predict_x0=predict_x0,
return_x0=predict_x0 and hybrid_lambda > 0.0,
return_logits=log_space,
transition_probs=transition_probs,
step_size=step_size,
)
hybrid_loss = torch.tensor(0.0, device=x_start.device)
if predict_x0 and hybrid_lambda > 0.0:
# p_t, p_0 are shape [num_atoms, ].
p_t, p_0 = p_t
if log_space:
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=p_0, target=x_start, label_smoothing=label_smoothing, reduction="none"
)
else:
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=(p_0 + 1e-7).log(),
target=x_start,
label_smoothing=label_smoothing,
reduction="none",
)
hybrid_loss = hybrid_lambda * cross_entropy
assert not q_t.isnan().any() and not p_t.isnan().any()
if log_space:
d1 = Categorical(logits=q_t)
d2 = Categorical(logits=p_t)
# [num_atoms, ]
kl = torch.distributions.kl_divergence(p=d1, q=d2)
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=p_t, target=x_start, label_smoothing=label_smoothing, reduction="none"
)
else:
d1 = Categorical(logits=(q_t + 1e-7).log())
d2 = Categorical(logits=(p_t + 1e-7).log())
# [num_atoms, ]
kl = torch.distributions.kl_divergence(p=d1, q=d2)
# [num_atoms, ]
cross_entropy = F.cross_entropy(
input=(p_t + 1e-7).log(),
target=x_start,
label_smoothing=label_smoothing,
reduction="none",
)
if target_mask is not None: # can be used for inpainting
kl = kl * target_mask
cross_entropy = cross_entropy * target_mask
hybrid_loss = hybrid_loss * target_mask
# [num_atoms, ]
mask = t == 0
base_loss = mask * cross_entropy + (mask.logical_not()) * kl
loss = base_loss + hybrid_loss
denominator = torch.tensor(1, device=x_start.device)
metrics_dict = {
"loss": loss,
"denominator": denominator,
"kl/hybrid_loss": hybrid_loss,
"kl/base_loss": base_loss,
"kl/cross_entropy_loss": cross_entropy,
"kl/t0_loss": mask * cross_entropy,
"kl/kl_loss": kl,
}
return metrics_dict