|
|
|
|
|
|
|
import math |
|
from typing import Any, TypeVar |
|
|
|
import torch |
|
|
|
from mattergen.diffusion.corruption.sde_lib import SDE |
|
from mattergen.diffusion.data.batched_data import BatchedData |
|
from mattergen.diffusion.model_target import ModelTarget |
|
|
|
T = TypeVar("T", bound=BatchedData) |
|
|
|
|
|
def convert_model_out_to_score( |
|
*, |
|
model_target: ModelTarget, |
|
sde: SDE, |
|
model_out: torch.Tensor, |
|
batch_idx: torch.LongTensor, |
|
t: torch.Tensor, |
|
batch: Any |
|
) -> torch.Tensor: |
|
""" |
|
Convert a model output to a score, according to the specified model_target. |
|
|
|
model_target: says what the model predicts. |
|
For example, in RFDiffusion the model predicts clean coordinates; |
|
in EDM the model predicts the raw noise. |
|
sde: corruption process |
|
model_out: model output |
|
batch_idx: indicates which sample each row of model_out belongs to |
|
noisy_x: noisy data |
|
t: diffusion timestep |
|
batch: noisy batch, ignored except by strange SDEs |
|
""" |
|
_, std = sde.marginal_prob( |
|
x=torch.ones_like(model_out), |
|
t=t, |
|
batch_idx=batch_idx, |
|
batch=batch, |
|
) |
|
|
|
if model_target == ModelTarget.score_times_std: |
|
return model_out / std |
|
elif model_target == ModelTarget.logits: |
|
|
|
return model_out |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
class NoiseLevelEncoding(torch.nn.Module): |
|
""" |
|
From: https://pytorch.org/tutorials/beginner/transformer_tutorial.html |
|
""" |
|
|
|
def __init__(self, d_model: int, dropout: float = 0.0): |
|
super().__init__() |
|
self.dropout = torch.nn.Dropout(p=dropout) |
|
self.d_model = d_model |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
self.register_buffer("div_term", div_term) |
|
|
|
def forward(self, t: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
t: Tensor, shape [batch_size] |
|
""" |
|
x = torch.zeros((t.shape[0], self.d_model), device=self.div_term.device) |
|
x[:, 0::2] = torch.sin(t[:, None] * self.div_term[None]) |
|
x[:, 1::2] = torch.cos(t[:, None] * self.div_term[None]) |
|
return self.dropout(x) |
|
|