|
|
|
|
|
|
|
from typing import Iterable, Union |
|
|
|
import torch |
|
|
|
|
|
def get_grad_norm( |
|
parameters: Union[torch.Tensor, Iterable[torch.Tensor]], norm_type: float = 2.0 |
|
) -> torch.Tensor: |
|
""" |
|
Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_ |
|
""" |
|
|
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = [p for p in parameters if p.grad is not None] |
|
|
|
norm_type = float(norm_type) |
|
|
|
if len(parameters) == 0: |
|
return torch.tensor(0.0) |
|
|
|
device = parameters[0].grad.device |
|
|
|
total_norm = torch.norm( |
|
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), |
|
norm_type, |
|
) |
|
|
|
return total_norm |
|
|