File size: 8,650 Bytes
389d072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from visma.functions.constant import Constant
from visma.functions.variable import Variable
from visma.functions.structure import Expression
from visma.functions.operator import Plus, Minus
from visma.io.parser import tokensToString

######################
# functions.constant #
######################


def test_Constant():

    # Tests for Calculus operations for Constant Class.

    constant1 = Constant(10)
    assert constant1.__str__() == "{10}"
    constant1.differentiate()
    assert constant1.value == 0

    constant2 = Constant(5, 2)
    constant2.integrate('x')
    assert isinstance(constant2, Variable)
    assert constant2.__str__() == "25{x}"

    # Tests for Add/Sub operations (using Overloading) for Constant Class.

    constant4 = Constant(2, 2)
    constant5 = Constant(7)
    constant3 = constant4 - constant5
    assert constant3.__str__() == "{-3}"

    constant4 = Constant(7, 2)
    constant0 = Constant(5)
    constant6 = constant4 - constant3 - constant5 + constant0
    assert constant6.__str__() == "{50}"

    constant0 = Constant(5, 2, 2)
    constant2 = constant0
    variable0 = Variable(5, 'X', 3)
    summation0 = constant0 - variable0 + constant2
    assert summation0.__str__() == "{({100}-5{X}^{3})}"

    constant0 = Constant(5, 2, 2)
    constant2 = constant0
    variable0 = Variable(5, 'X', 3)
    summation0 = constant0 + variable0 + constant2
    assert summation0.__str__() == "{({100}+5{X}^{3})}"

    var1 = Variable(3, 'x', 3)
    const1 = Constant(5)
    expr1 = Expression([var1, Minus(), const1])
    constant2 = Constant(2, 2)
    sub1 = constant2 - expr1
    assert sub1.__str__() == "{({9}-3{x}^{3})}"

    constant1 = Constant(2)
    constant2 = Constant(7)
    constant3 = constant1 + constant2
    assert constant3.__str__() == "{9}"

    constant1 = Constant(2)
    constant2 = Constant(7)
    constant3 = constant1 - constant2
    assert constant3.__str__() == "{-5}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    summation = constant1 + variable1
    assert summation.__str__() == "{({5}+5{x}^{3})}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    summation = constant1 - variable1
    assert summation.__str__() == "{({5}-5{x}^{3})}"

# Tests for Add/Sub operations (using Overloading) for Constant Class.

    constant0 = Constant(0, 2)
    constant1 = Constant(5)
    mul1 = constant0 * constant1
    assert mul1.calculate() == 0
    mul1 = constant1 * constant0
    assert mul1.calculate() == 0
    mul1 = constant1 * constant1 + constant0 * constant1 + constant0 * constant1
    assert mul1.calculate() == 25

    constant1 = Constant(5, 2)
    constant2 = Constant(4, 2)
    variable0 = Variable(3, 'X', 3)
    mul3 = constant1 * (constant2 + variable0)
    assert mul3.__str__() == "{({400}+75{X}^{3})}"

    constant1 = Constant(5, 2)
    constant2 = Constant(4, 2)
    variable0 = Variable(3, 'X', 3)
    mul3 = constant1 / (constant2 + variable0)
    assert mul3.__str__() == "{25}*{({16}+3{X}^{3})}^{-1}"

    constant1 = Constant(5)
    constant2 = Constant(4)
    div1 = constant1 / constant2
    assert div1.__str__() == "{1.25}"

    constant1 = Constant(3, 2)
    constant2 = Constant(4, 2)
    variable0 = Variable(3, 'X', 3)
    mul3 = constant1 - constant1/(constant2/variable0 + constant1)
    assert mul3.__str__() == "{({9}-{9}*{(5.333333333333333{X}^{-3}+{9})}^{-1})}"

    constant1 = Constant(2, 2)
    constant2 = Constant(2, 2)
    mul3 = constant1 ** constant2
    assert mul3.__str__() == "{256}"

    constant1 = Constant(5)
    constant2 = Constant(5)
    summation = constant1 * constant2
    assert summation.__str__() == "{25}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    exp1 = Expression([constant1, Plus(), variable1])
    constant2 = Constant(10)
    summation = constant2 + exp1
    assert summation.__str__() == "{({15}+5{x}^{3})}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    exp1 = Expression([constant1, Plus(), variable1])
    constant2 = Constant(10)
    summation = constant2 - exp1
    assert summation.__str__() == "{({5}-5{x}^{3})}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    exp1 = Expression([constant1, Plus(), variable1])
    constant2 = Constant(10)
    summation = exp1 - constant2
    assert summation.__str__() == "{({-5}+5{x}^{3})}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    summation = constant1 * variable1
    assert summation.__str__() == "25{x}^{3}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    exp1 = Expression([constant1, Plus(), variable1])
    constant2 = Constant(10)
    summation = constant2 * exp1
    assert summation.__str__() == "{({50}+50{x}^{3})}"

    constant1 = Constant(5)
    constant2 = Constant(5)
    summation = constant1 / constant2
    assert summation.__str__() == "{1.0}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    summation = constant1 / variable1
    assert summation.__str__() == "{x}^{-3}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    exp1 = Expression([constant1, Plus(), variable1])
    constant2 = Constant(10)
    summation = constant2 / exp1
    assert summation.__str__() == "{10}*{({5}+5{x}^{3})}^{-1}"

    constant1 = Constant(5)
    variable1 = Variable(5, 'x', 3)
    exp1 = Expression([constant1, Plus(), variable1])
    constant2 = Constant(10)
    summation = exp1 / constant2
    assert summation.__str__() == "{({0.5}+0.5{x}^{3})}"


######################
# functions.variable #
######################


def test_Variable():

    variable1 = Variable(2, 'x', 3)
    assert variable1.__str__() == "2{x}^{3}"
    variable1, _ = variable1.integrate('x')
    assert variable1.__str__() == "0.5{x}^{4}"

    constant = Constant(3)
    variable = Variable(2, 'x', 3)
    add = variable + constant
    assert add.__str__() == "{(2{x}^{3}+{3})}"

    variable1 = Variable(2, 'x', 3)
    variable2 = Variable(4, 'x', 3)
    add1 = variable1 + variable2
    assert add1.__str__() == "6{x}^{3}"

    variable1 = Variable(2, 'x', 3)
    constant = Constant(3)
    exp1 = Expression([variable1, Plus(), constant])
    variable2 = Variable(4, 'x', 3)
    add2 = variable2 + exp1
    assert add2.__str__() == "{(6{x}^{3}+{3})}"

    variable1 = Variable(2, 'x', 3)
    constant = Constant(3)
    exp1 = variable1 + constant
    variable2 = Variable(4, 'x', 3)
    add2 = variable2 - exp1
    assert add2.__str__() == "{(2{x}^{3}-{3})}"

    variable1 = Variable(2, 'x', 3)
    constant = Constant(3)
    exp1 = Expression([variable1, Plus(), constant])
    variable2 = Variable(4, 'x', 3)
    add2 = exp1 - variable2
    assert add2.__str__() == "{(-2{x}^{3}+{3})}"

    constant = Constant(3)
    variable = Variable(2, 'x', 3)
    add = variable - constant
    assert add.__str__() == "{(2{x}^{3}-{3})}"

    variable1 = Variable(2, 'x', 3)
    variable2 = Variable(4, 'x', 3)
    variable3 = Variable(2, 'x', 4)
    variable4 = Variable(2, 'x', 3)
    add1 = variable1 - variable2
    add2 = variable3 - variable4
    assert add1.__str__() == "-2{x}^{3}"
    assert add2.__str__() == "{(2{x}^{4}-2{x}^{3})}"

    constant = Constant(3)
    variable = Variable(2, 'x', 3)
    add = variable * constant
    assert add.__str__() == "6{x}^{3}"

    variable1 = Variable(2, 'x', 3)
    variable2 = Variable(4, 'x', 3)
    add2 = variable1 * variable2
    assert add2.__str__() == "8{x}^{6}"

    variable1 = Variable(2, 'x', 3)
    variable2 = Variable(4, 'y', 3)
    add2 = variable1 * variable2
    assert add2.__str__() == "8{x}^{3}{y}^{3}"

    variable1 = Variable(2, 'x', 3)
    variable2 = Variable(4, 'y', 4)
    add1 = variable1 / variable2
    assert add1.__str__() == "0.5{x}^{3}{y}^{-4}"

    variable1 = Variable(2, 'x', 3)
    constant = Constant(3)
    exp1 = variable1 - constant
    variable2 = Variable(4, 'x', 3)
    add2 = variable2 / exp1
    assert add2.__str__() == "{(4.0{x}^{3}*{(2{x}^{3}-{3})}^{-1})}"

    variable1 = Variable(2, 'x', 3)
    constant = Constant(3)
    exp1 = variable1 - constant
    variable2 = Variable(4, 'x', 3)
    add2 = variable2 * exp1
    assert add2.__str__() == "{(8{x}^{6}-12{x}^{3})}"

    variable1 = Variable(2, 'x', 3)
    constant1 = Constant(3)
    exp1 = variable1 - constant1
    variable2 = Variable(4, 'x', 3)
    constant2 = Constant(4)
    exp2 = variable2 - constant2
    add2 = exp1 * exp2
    assert add2.__str__() == "{({(8{x}^{6}-8{x}^{3})}-{(12{x}^{3}-{12})})}"

    variable2 = Variable(3, 'x', -1)
    variable2, _ = variable2.integrate('x')
    assert tokensToString(variable2) == '3 * log(x)'