File size: 12,121 Bytes
389d072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import copy
import sys
from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QTabWidget, QVBoxLayout
from visma.calculus.differentiation import differentiate
from visma.calculus.integration import integrate
from visma.discreteMaths.combinatorics import factorial, combination, permutation
from visma.io.checks import checkTypes
from visma.io.tokenize import tokenizer, getLHSandRHS
from visma.io.parser import resultStringCLI, resultMatrixString
from visma.simplify.simplify import simplify, simplifyEquation
from visma.simplify.addsub import addition, additionEquation, subtraction, subtractionEquation
from visma.simplify.muldiv import multiplication, multiplicationEquation, division, divisionEquation
from visma.solvers.solve import solveFor
from visma.solvers.polynomial.roots import rootFinder
from visma.solvers.simulEqn import simulSolver
from visma.transform.factorization import factorize
from visma.matrix.structure import Matrix, SquareMat
from visma.matrix.operations import simplifyMatrix, addMatrix, subMatrix, multiplyMatrix
from visma.gui.plotter import plotFigure2D, plotFigure3D, plot
class App(QMainWindow):
def __init__(self, tokens):
super().__init__()
self.setWindowTitle('Plots')
self.setGeometry(300, 300, 450, 450)
self.table_widget = PlotWindow(self, tokens)
self.setCentralWidget(self.table_widget)
self.show()
class PlotWindow(QWidget):
def __init__(self, parent, tokens):
super(QWidget, self).__init__(parent)
self.layout = QVBoxLayout(self)
self.tabPlot = QTabWidget()
self.tabPlot.tab1 = QWidget()
self.tabPlot.tab2 = QWidget()
self.tabPlot.resize(300, 200)
self.tabPlot.addTab(self.tabPlot.tab1, "2D-Plot")
self.tabPlot.addTab(self.tabPlot.tab2, "3D-Plot")
self.tabPlot.tab1.setLayout(plotFigure2D(self))
self.tabPlot.tab2.setLayout(plotFigure3D(self))
self.layout.addWidget(self.tabPlot)
plot(self, tokens)
def commandExec(command):
operation = command.split('(', 1)[0]
inputEquation = command.split('(', 1)[1][:-1]
matrix = False # True when matrices operations are present in the code.
if operation[0:4] == 'mat_':
matrix = True
if not matrix:
"""
This part handles the cases when VisMa is NOT dealing with matrices.
Boolean flags used in code below:
simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases
"""
varName = None
if ',' in inputEquation:
varName = inputEquation.split(',')[1]
varName = "".join(varName.split())
inputEquation = inputEquation.split(',')[0]
simul = False # True when simultaneous equation is present
if (inputEquation.count(';') == 2) and (operation == 'solve'):
simul = True
afterSplit = inputEquation.split(';')
eqStr1 = afterSplit[0]
eqStr2 = afterSplit[1]
eqStr3 = afterSplit[2]
lhs = []
rhs = []
solutionType = ''
lTokens = []
rTokens = []
equationTokens = []
comments = []
if simul:
tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
else:
tokens = tokenizer(inputEquation)
if '=' in inputEquation:
lhs, rhs = getLHSandRHS(tokens)
lTokens = lhs
rTokens = rhs
_, solutionType = checkTypes(lhs, rhs)
else:
solutionType = 'expression'
lhs, rhs = getLHSandRHS(tokens)
lTokens = lhs
rTokens = rhs
if operation == 'plot':
app = QApplication(sys.argv)
App(tokens)
sys.exit(app.exec_())
elif operation == 'simplify':
if solutionType == 'expression':
tokens, _, _, equationTokens, comments = simplify(tokens)
else:
lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(lTokens, rTokens)
elif operation == 'addition':
if solutionType == 'expression':
tokens, _, _, equationTokens, comments = addition(tokens, True)
else:
lTokens, rTokens, _, _, equationTokens, comments = additionEquation(lTokens, rTokens, True)
elif operation == 'subtraction':
if solutionType == 'expression':
tokens, _, _, equationTokens, comments = subtraction(tokens, True)
else:
lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation(lTokens, rTokens, True)
elif operation == 'multiplication':
if solutionType == 'expression':
tokens, _, _, equationTokens, comments = multiplication(tokens, True)
else:
lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation(lTokens, rTokens, True)
elif operation == 'division':
if solutionType == 'expression':
tokens, _, _, equationTokens, comments = division(tokens, True)
else:
lTokens, rTokens, _, _, equationTokens, comments = divisionEquation(lTokens, rTokens, True)
elif operation == 'factorize':
tokens, _, _, equationTokens, comments = factorize(tokens)
elif operation == 'find-roots':
lTokens, rTokens, _, _, equationTokens, comments = rootFinder(lTokens, rTokens)
elif operation == 'solve':
if simul:
if varName is not None:
_, equationTokens, comments = simulSolver(tokens[0], tokens[1], tokens[2], varName)
else:
_, equationTokens, comments = simulSolver(tokens[0], tokens[1], tokens[2])
solutionType = equationTokens
else:
lhs, rhs = getLHSandRHS(tokens)
lTokens, rTokens, _, _, equationTokens, comments = solveFor(lTokens, rTokens, varName)
elif operation == 'factorial':
tokens, _, _, equationTokens, comments = factorial(tokens)
elif operation == 'combination':
n = tokenizer(inputEquation)
r = tokenizer(varName)
tokens, _, _, equationTokens, comments = combination(n, r)
elif operation == 'permutation':
n = tokenizer(inputEquation)
r = tokenizer(varName)
tokens, _, _, equationTokens, comments = permutation(n, r)
elif operation == 'integrate':
lhs, rhs = getLHSandRHS(tokens)
lTokens, _, _, equationTokens, comments = integrate(lTokens, varName)
elif operation == 'differentiate':
lhs, rhs = getLHSandRHS(tokens)
lTokens, _, _, equationTokens, comments = differentiate(lTokens, varName)
if operation != 'plot':
# FIXME: when either plotting window or GUI window is opened from CLI and after it is closed entire CLI exits, it would be better if it is avoided
final_string = resultStringCLI(equationTokens, operation, comments, solutionType, simul)
print(final_string)
else:
"""
This part handles the cases when VisMa is dealing with matrices.
Boolean flags used in code below:
dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc)
nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.)
scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.)
"""
operation = operation[4:]
dualOperand = False
nonMatrixResult = False
scalarOperations = False
if ', ' in inputEquation:
dualOperand = True
[inputEquation1, inputEquation2] = inputEquation.split(', ')
if '[' in inputEquation1:
inputEquation1 = inputEquation1[1:][:-1]
inputEquation1 = inputEquation1.split('; ')
matrixOperand1 = []
for row in inputEquation1:
row1 = row.split(' ')
for i, _ in enumerate(row1):
row1[i] = tokenizer(row1[i])
matrixOperand1.append(row1)
Matrix1 = Matrix()
Matrix1.value = matrixOperand1
inputEquation2 = inputEquation2[1:][:-1]
inputEquation2 = inputEquation2.split('; ')
matrixOperand2 = []
for row in inputEquation2:
row1 = row.split(' ')
for i, _ in enumerate(row1):
row1[i] = tokenizer(row1[i])
matrixOperand2.append(row1)
Matrix2 = Matrix()
Matrix2.value = matrixOperand2
Matrix1_copy = copy.deepcopy(Matrix1)
Matrix2_copy = copy.deepcopy(Matrix2)
else:
scalarOperations = True
scalar = inputEquation1
scalarTokens = scalar
# scalarTokens = tokenizer(scalar)
inputEquation2 = inputEquation2[1:][:-1]
inputEquation2 = inputEquation2.split('; ')
matrixOperand2 = []
for row in inputEquation2:
row1 = row.split(' ')
for i, _ in enumerate(row1):
row1[i] = tokenizer(row1[i])
matrixOperand2.append(row1)
Matrix2 = Matrix()
Matrix2.value = matrixOperand2
scalarTokens_copy = copy.deepcopy(scalarTokens)
Matrix2_copy = copy.deepcopy(Matrix2)
else:
inputEquation = inputEquation[1:][:-1]
inputEquation = inputEquation.split('; ')
matrixOperand = []
for row in inputEquation:
row1 = row.split(' ')
for i, _ in enumerate(row1):
row1[i] = tokenizer(row1[i])
matrixOperand.append(row1)
Matrix0 = Matrix()
Matrix0.value = matrixOperand
Matrix0_copy = copy.deepcopy(Matrix0)
if operation == 'simplify':
MatrixResult = simplifyMatrix(Matrix0)
elif operation == 'add':
MatrixResult = addMatrix(Matrix1, Matrix2)
elif operation == 'sub':
MatrixResult = subMatrix(Matrix1, Matrix2)
elif operation == 'mult':
MatrixResult = multiplyMatrix(Matrix1, Matrix2)
elif operation == 'determinant':
nonMatrixResult = True
sqMatrix = SquareMat()
sqMatrix.value = Matrix0.value
result = sqMatrix.determinant()
elif operation == 'trace':
nonMatrixResult = True
sqMatrix = SquareMat()
sqMatrix.value = Matrix0.value
result = sqMatrix.traceMat()
elif operation == 'inverse':
sqMatrix = SquareMat()
sqMatrix.value = Matrix0.value
MatrixResult = SquareMat()
MatrixResult = sqMatrix.inverse()
finalCLIstring = ''
if dualOperand:
if not scalarOperations:
finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix1_copy, operand2=Matrix2_copy, result=MatrixResult)
else:
finalCLIstring = resultMatrixString(operation=operation, operand1=scalarTokens_copy, operand2=Matrix2_copy, result=MatrixResult)
else:
if nonMatrixResult:
finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix0_copy, nonMatrixResult=True, result=result)
else:
finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix0_copy, result=MatrixResult)
print(finalCLIstring)
|