File size: 12,527 Bytes
389d072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
from visma.functions.structure import Expression
from visma.functions.constant import Constant
from visma.functions.variable import Variable
from visma.functions.operator import Binary, Sqrt
from visma.functions.exponential import Logarithm
from visma.io.checks import isNumber, mathError
from visma.matrix.structure import Matrix
from visma.functions.trigonometry import Trigonometric
def resultLatex(equationTokens, operation, comments, solutionType, simul=False, wrtVar=None):
"""Converts tokens to LaTeX format for displaying in step-by-step solution figure
Arguments:
operation {string} -- operation performed on input
equations {list} -- list of tokens list
comments {list} -- list of comments
Keyword Arguments:
wrtVar {string} -- with respect to variable (default: {None})
Returns:
finalSteps {string} -- final result in LaTeX
"""
equationLatex = []
for eqTokens in equationTokens:
equationLatex.append(tokensToLatex(eqTokens))
finalSteps = ''
if not simul:
if operation in ['combination', 'permutation']:
finalSteps = 'INPUT: ' + '(Combinatorics ' + r'$' + ' tokens)' + r'$' + '\n'
else:
finalSteps = 'INPUT: ' + r'$' + equationLatex[0] + r'$' + '\n'
else:
finalSteps = 'INPUT: ' + '(Multiple ' + r'$' + ' equations)' + r'$' + '\n'
finalSteps += 'OPERATION: ' + operation + '\n'
finalSteps += 'OUTPUT: ' + r'$' + equationLatex[-1] + r'$' + 2*'\n'
for i, _ in enumerate(equationLatex):
if comments[i] != [] and equationLatex[i] != '':
finalSteps += '(' + str(comments[i][0]) + ')' + '\n'
finalSteps += r'$' + equationLatex[i] + r'$' + 2*"\n"
elif comments[i] != [] and equationLatex[i] == '':
finalSteps += '\n' + '[' + str(comments[i][0]) + ']' + '\n'
elif comments[i] == [] and equationLatex[i] != '':
finalSteps += '\n' + r'$' + equationLatex[i] + r'$' + 2*'\n'
if mathError(equationTokens[-1]) and (not simul):
finalSteps += 'Math Error: LHS not equal to RHS' + "\n"
return finalSteps
def resultStringCLI(equationTokens, operation, comments, solutionType, simul=False, mat=False):
"""Converts tokens to final string format for displaying in terminal in CLI
Arguments:
equationTokens {list} -- list of animations or step by step tokens
operation {string} -- operation performed on input
comments {list} -- list of comments
solutionType {string} -- type of solution expression/equation
simul{bool} -- True indicates user has entered simultaneous equation
Returns:
finalSteps {string} -- final result to be displayed in CLI
"""
equationString = []
for x in equationTokens:
equationString.append(tokensToString(x))
commentsString = []
for x in comments:
if not x:
commentsString.append([])
else:
for y in x:
commentsString.append([y.translate({ord(c): None for c in '${\}'})])
finalSteps = ''
finalSteps = 'INPUT: ' + equationString[0] + '\n'
finalSteps += 'OPERATION: ' + operation + '\n'
finalSteps += 'OUTPUT: ' + equationString[-1] + 2*'\n'
finalSteps += 'STEP-BY-STEP SOLUTION: ' + '\n'
for i, _ in enumerate(equationString):
if comments[i] != [] and equationString[i] != '':
finalSteps += '(' + str(commentsString[i][0]) + ')' + '\n'
finalSteps += equationString[i] + 2*"\n"
elif comments[i] != [] and equationString[i] == '':
finalSteps += '\n' + '[' + str(commentsString[i][0]) + ']' + '\n'
elif comments[i] == [] and equationString[i] != '':
finalSteps += '\n' + equationString[i] + 2*'\n'
if mathError(equationTokens[-1]) and (not simul):
finalSteps += 'Math Error: LHS not equal to RHS' + "\n"
return finalSteps
def resultMatrixString(operation=None, operand1=None, operand2=None, nonMatrixResult=False, result=None):
if operation == 'sub':
operation = 'Subtraction'
elif operation == 'add':
operation = 'Addition'
elif operation == 'mult':
operation = 'Multiplication'
elif operation == 'determinant':
operation = 'Determinant'
elif operation == 'trace':
operation = 'Trace: sum of diagonal elements'
elif operation == 'simplify':
operation = 'Simplification'
finalSteps = ''
if operand2 is not None:
finalSteps += 'INPUT: ' + 'Two matrices provided as follows:' + 2*'\n'
finalSteps += '1st Matrix Provided: \n'
finalSteps += operand1.convertMatrixToString(False) + '\n'
finalSteps += '2nd Matrix Provided: \n'
finalSteps += operand2.convertMatrixToString(False) + 2*'\n'
else:
finalSteps += 'INPUT: ' + 'Single matrix provided as follows:' + '\n'
finalSteps += '1st Matrix Provided: \n'
finalSteps += operand1.convertMatrixToString(False) + '\n'
finalSteps += 'OPERATION: ' + operation + 2*'\n'
if not nonMatrixResult:
finalSteps += 'RESULT: Result Matrix calculated as: \n'
finalSteps += result.convertMatrixToString(False) + '\n'
else:
finalSteps += 'RESULT: Result calculated as: \n'
finalSteps += tokensToString(result) + '\n'
return finalSteps
def resultMatrixStringLatex(operation=None, operand1=None, operand2=None, nonMatrixResult=False, result=None):
# TODO: use package /asmath for displaying Matrices in Step By Step figure
if operation == 'sub':
operation = 'Subtraction'
elif operation == 'add':
operation = 'Addition'
elif operation == 'mult':
operation = 'Multiplication'
elif operation == 'determinant':
operation = 'Determinant'
elif operation == 'trace':
operation = 'Trace: sum of diagonal elements'
elif operation == 'simplify':
operation = 'Simplification'
finalSteps = ''
if operand2 is not None:
finalSteps += 'INPUT: ' + 'Two matrices provided as follows:' + 2*'\n'
finalSteps += '1st Matrix Provided: \n'
finalSteps += operand1.convertMatrixToString(True) + '\n'
finalSteps += '2nd Matrix Provided: \n'
finalSteps += operand2.convertMatrixToString(True) + 2*'\n'
else:
finalSteps += 'INPUT: ' + 'Single matrix provided as follows:' + '\n'
finalSteps += '1st Matrix Provided: \n'
finalSteps += operand1.convertMatrixToString(True) + '\n'
finalSteps += 'OPERATION: ' + operation + 2*'\n'
if not nonMatrixResult:
finalSteps += 'RESULT: Result Matrix calculated as: \n'
finalSteps += result.convertMatrixToString(True) + '\n'
else:
finalSteps += 'RESULT: Result calculated as: \n'
finalSteps += tokensToString(result) + '\n'
return finalSteps
def tokensToLatex(eqTokens):
"""Converts tokens to LaTeX string
Arguments:
eqTokens {list} -- list of function tokens
Returns:
eqLatex {string} -- equation string in LaTeX
"""
eqLatex = ""
for token in eqTokens:
if isinstance(token, Matrix):
eqLatex += "\\begin{bmatrix}"
for row in token.value:
for column in row:
for term in column:
eqLatex += term.__str__()
if row.index(column) < len(row) - 1:
eqLatex += '&'
elif row.index(column) == len(row) - 1 and token.value.index(row) < len(token.value) - 1:
eqLatex += '\\\\'
eqLatex += "\\end{bmatrix}"
else:
eqLatex += token.__str__()
return eqLatex
def latexToTerms(terms):
for index, term in enumerate(terms):
if term == 'frac':
terms.remove(terms[index])
if index < len(terms):
terms.remove(terms[index])
j = index
while j < len(terms) and terms[j] != '}':
j += 1
if j < len(terms):
terms.remove(terms[j])
terms.insert(j, '/')
if j+1 < len(terms):
terms.remove(terms[j+1])
while j < len(terms) and terms[j] != '}':
j += 1
if j < len(terms):
terms.remove(terms[j])
return terms
def tokensToString(tokens):
"""Converts tokens to text string
Arguments:
tokens {list} -- list of function tokens
Returns:
tokenString {string} -- equation string
"""
# FIXME: tokensToString method
tokenString = ''
for token in tokens:
if isinstance(token, Constant):
if isinstance(token.value, list):
for j, val in token.value:
if token['power'][j] != 1:
tokenString += (str(val) + '^(' + str(token.power[j]) + ')')
else:
tokenString += str(val)
elif isNumber(token.value):
if token.power != 1:
tokenString += (str(token.value) + '^(' + str(token.power) + ')')
else:
tokenString += str(token.value)
elif isinstance(token, Variable):
if token.coefficient == 1:
pass
elif token.coefficient == -1:
tokenString += '-'
else:
tokenString += str(token.coefficient)
for j, val in enumerate(token.value):
if token.power[j] != 1:
tokenString += (str(val) + '^(' + str(token.power[j]) + ')')
else:
tokenString += str(val)
elif isinstance(token, Binary):
tokenString += ' ' + str(token.value) + ' '
elif isinstance(token, Expression):
if token.coefficient != 1:
tokenString += str(token.coefficient) + '*'
tokenString += '('
tokenString += tokensToString(token.tokens)
tokenString += ')'
if token.power != 1:
tokenString += '^(' + str(token.power) + ')'
elif isinstance(token, Sqrt):
tokenString += 'sqrt['
if isinstance(token.power, Constant):
tokenString += tokensToString([token.power])
elif isinstance(token.power, Variable):
tokenString += tokensToString([token.power])
elif isinstance(token.power, Expression):
tokenString += tokensToString(token.power.tokens)
tokenString += ']('
if isinstance(token.operand, Constant):
tokenString += tokensToString([token.operand])
elif isinstance(token.operand, Variable):
tokenString += tokensToString([token.operand])
elif isinstance(token.operand, Expression):
tokenString += tokensToString(token.operand.tokens)
tokenString += ')'
elif isinstance(token, Logarithm):
if token.coefficient == 1:
pass
elif token.coefficient == -1:
tokenString += '-'
else:
tokenString += str(token.coefficient)
if token.operand is not None:
tokenString += token.value
if token.power != 1:
tokenString += "^" + "(" + str(token.power) + ")"
tokenString += "(" + tokensToString([token.operand]) + ")"
elif isinstance(token, Trigonometric):
if token.coefficient == 1:
pass
elif token.coefficient == -1:
tokenString += '-'
else:
tokenString += str(token.coefficient)
if token.operand is not None:
tokenString += token.value
if token.power != 1:
tokenString += "^" + "(" + str(token.power) + ")"
tokenString += "(" + tokensToString([token.operand]) + ")"
elif isinstance(token, Matrix):
tokenString += "["
for i in range(token.dim[0]):
for j in range(token.dim[1]):
tokenString += tokensToString(token.value[i][j])
tokenString += ","
tokenString = tokenString[:-1] + ";"
tokenString = tokenString[:-1] + "]"
return tokenString
|