File size: 9,022 Bytes
389d072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
'''
Owner: AerospaceResearch.net
About: This module hosts the functions used for finding roots of a quartic equation
Note: Please try to maintain proper documentation
Logic Description:
'''
import math
import copy
from operator import itemgetter
from visma.io.checks import getVariables
from visma.io.parser import tokensToString
from visma.functions.structure import Expression
from visma.functions.constant import Constant, Zero
from visma.functions.variable import Variable
from visma.functions.operator import Binary, Plus, Minus, Sqrt
from visma.simplify.simplify import simplifyEquation, moveRTokensToLTokens
from visma.config.values import ROUNDOFF
from visma.solvers.polynomial.cubic import getRootsCubic
def getRootsQuartic(coeffs):
""" Applies an implementation of Determinant Method (https://en.wikipedia.org/wiki/Cubic_function) on the coefficients
of the Quartic equation to get roots
Arguments:
coeffs {list} -- list of coefficients of the equation
Returns:
roots {list} -- list of roots of quartic equation
(each element of roots {list} is a list of two elements, where 1st one denotes real part & second part shows imaginary part)
animation {list} -- list of equation solving process
comments {list} -- list of comments in equation solving process
"""
from visma.solvers.polynomial.roots import squareRootComplex
roots = []
animations = []
comments = []
a = coeffs[4]
b = coeffs[3]
c = coeffs[2]
d = coeffs[1]
e = coeffs[0]
f = c - (3*(b**2)/8)
g = d + (b**3)/8 - (b*c/2)
h = e - (3*(b**4)/256) + ((b**2)*c/16) - (b*d/4)
animations += [[]]
comments += [['Value of determinants [f, g, h] are ' + str(f) + ', ' + str(g) + ', ' + str(h)]]
reducedCubicEquation = [-(g*g)/64, (f*f - 4*h)/16, (f/2), 1]
rootsReducedCubic, _, _ = getRootsCubic(reducedCubicEquation)
animations += [[]]
comments += [['Can be solved using a cubic equation with coefficients ' + str(1) + ', ' + str((f/2)) + ', ' + str((f*f - 4*h)/16) + ' and ' + str(-(g*g)/64)]]
for i in range(3):
rootsReducedCubic[i][0] = round(rootsReducedCubic[i][0], ROUNDOFF)
rootsReducedCubic[i][1] = round(rootsReducedCubic[i][1], ROUNDOFF)
if (rootsReducedCubic[0][1] == 0 and rootsReducedCubic[1][1] == 0 and rootsReducedCubic[2][1] == 0):
animations += [[]]
comments += [['Depending on imaginary roots exist for cubic, roots are be determined as: ']]
if (rootsReducedCubic[0][0] >= 0 and rootsReducedCubic[1][0] >= 0 and rootsReducedCubic[2][0] >= 0):
rootsReducedCubicSorted = sorted(rootsReducedCubic, key=itemgetter(0))
p = math.sqrt(rootsReducedCubicSorted[1][0])
q = math.sqrt(rootsReducedCubicSorted[2][0])
r = -g/(8*p*q)
s = b/(4*a)
valueRealX1 = p + q + r - s
valueImaginaryX1 = 0
roots.append([valueRealX1, valueImaginaryX1])
valueRealX2 = p - q - r - s
valueImaginaryX2 = 0
roots.append([valueRealX2, valueImaginaryX2])
valueRealX3 = - p + q - r - s
valueImaginaryX3 = 0
roots.append([valueRealX3, valueImaginaryX3])
valueRealX4 = - p - q + r - s
valueImaginaryX4 = 0
roots.append([valueRealX4, valueImaginaryX4])
else:
rootsReducedCubicSorted = []
for x in rootsReducedCubic:
if x[0] < 0:
rootsReducedCubicSorted.append(x)
for x in rootsReducedCubic:
if x[0] > 0:
rootsReducedCubicSorted.append(x)
p = [0, math.sqrt(abs(rootsReducedCubicSorted[0][0]))]
q = [0, math.sqrt(abs(rootsReducedCubicSorted[1][0]))]
pq = -1 * p[1] * q[1]
r = -g/(8*pq)
s = b/(4*a)
valueRealX1 = r - s
valueImaginaryX1 = p[1] + q[1]
roots.append([valueRealX1, valueImaginaryX1])
valueRealX2 = - r - s
valueImaginaryX2 = p[1] - q[1]
roots.append([valueRealX2, valueImaginaryX2])
valueRealX3 = - r - s
valueImaginaryX3 = - p[1] + q[1]
roots.append([valueRealX3, valueImaginaryX3])
valueRealX4 = r - s
valueImaginaryX4 = - p[1] - q[1]
roots.append([valueRealX4, valueImaginaryX4])
else:
# Imaginary part exists in reduced Cubic equation
rootsReducedCubicSorted = []
for x in rootsReducedCubic:
if x[1] != 0:
rootsReducedCubicSorted.append(x)
for x in rootsReducedCubic:
if x[1] == 0:
rootsReducedCubicSorted.append(x)
p = squareRootComplex(rootsReducedCubicSorted[0])
q = squareRootComplex(rootsReducedCubicSorted[1])
if p[1] > 0 and p[0] < 0:
p, q = q, p
pq = p[0]*p[0] + p[1]*p[1]
r = -g/(8*pq)
s = b/(4*a)
valueRealX1 = 2*p[0] + r - s
valueImaginaryX1 = 0
roots.append([valueRealX1, valueImaginaryX1])
valueRealX2 = - r - s
valueImaginaryX2 = 2*p[1]
roots.append([valueRealX2, valueImaginaryX2])
valueRealX3 = - r - s
valueImaginaryX3 = -2*p[1]
roots.append([valueRealX3, valueImaginaryX3])
valueRealX4 = -2*p[0] + r - s
valueImaginaryX4 = 0
roots.append([valueRealX4, valueImaginaryX4])
return roots, animations, comments
def quarticRoots(lTokens, rTokens):
'''Used to get roots of a quartic equation
This functions also translates roots {list} into final result of solution
Argument:
lTokens {list} -- list of LHS tokens
rTokens {list} -- list of RHS tokens
Returns:
lTokens {list} -- list of LHS tokens
rTokens {list} -- list of RHS tokens
{empty list}
token_string {string} -- final result stored in a string
animation {list} -- list of equation solving process
comments {list} -- list of comments in equation solving process
'''
from visma.solvers.polynomial.roots import getCoefficients
animations = []
comments = []
lTokens, rTokens, _, _, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens)
animations.extend(animNew1)
comments.extend(commentNew1)
if len(rTokens) > 0:
lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens)
coeffs = getCoefficients(lTokens, rTokens, 4)
for i, lTok in enumerate(lTokens):
if not isinstance(lTok, Binary):
lTokens[i] /= Constant(coeffs[4])
for i, rTok in enumerate(rTokens):
if not isinstance(rTok, Binary):
rTokens[i] /= Constant(coeffs[4])
coeffs = getCoefficients(lTokens, rTokens, 4)
roots, animNew2, commentnew2 = getRootsQuartic(coeffs)
animations.extend(animNew2)
comments.extend(commentnew2)
var = getVariables(lTokens)
lTokens = []
rTokens = []
for _, root in enumerate(roots):
tokens2 = []
expression2 = Expression(coefficient=1, power=1)
variable = Variable(1, var[0], 1)
tokens2.append(variable)
binary = Binary()
if root[1] == 0:
if root[0] < 0:
root[0] *= -1
binary.value = '+'
else:
binary.value = '-'
tokens2.append(binary)
constant = Constant(round(root[0], ROUNDOFF), 1)
tokens2.append(constant)
else:
binary.value = '-'
tokens2.append(binary)
expressionResult = Expression(coefficient=1, power=1)
tokensResult = []
real = Constant(round(root[0], ROUNDOFF), 1)
tokensResult.append(real)
imaginary = Constant(round(root[1], ROUNDOFF), 1)
if imaginary.value < 0:
tokensResult.append(Minus())
imaginary.value = abs(imaginary.value)
tokensResult.append(imaginary)
else:
tokensResult.append(Plus())
tokensResult.append(imaginary)
tokensResult.append(Binary('*'))
sqrt = Sqrt(Constant(2, 1), Constant(-1, 1))
tokensResult.append(sqrt)
expressionResult.tokens = tokensResult
tokens2.append(expressionResult)
expression2.tokens = tokens2
lTokens.extend([expression2, Binary('*')])
rTokens = [Zero()]
lTokens.pop()
tokenToStringBuilder = copy.deepcopy(lTokens)
tokLen = len(lTokens)
equalTo = Binary()
equalTo.scope = [tokLen]
equalTo.value = '='
tokenToStringBuilder.append(equalTo)
tokenToStringBuilder.extend(rTokens)
token_string = tokensToString(tokenToStringBuilder)
animations.append(copy.deepcopy(tokenToStringBuilder))
comments.append([])
return lTokens, rTokens, [], token_string, animations, comments
|