File size: 4,641 Bytes
389d072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
'''This module hosts the driver functions used for finding roots of an equation & also contains utility
functions used by other files of visma.solvers.polynomial

Note: Please try maintain proper documentation
'''

import copy
import math
from visma.io.checks import evaluateConstant, preprocessCheckPolynomial
from visma.functions.constant import Constant
from visma.functions.variable import Variable
from visma.functions.operator import Binary
from visma.solvers.polynomial.quadratic import quadraticRoots
from visma.solvers.polynomial.cubic import cubicRoots
from visma.solvers.polynomial.quartic import quarticRoots


def rootFinder(lTokens, rTokens):
    '''Main function called by driver modules to calculate roots of equation

    Argument:
        lTokens {list} -- list of left side tokens
        rTokens {list} -- list of right side tokens

    Returns:
        lTokens {list} -- list of left side tokens
        rTokens {list} -- list of right side tokens
        {empty list}
        token_string {string} -- final result stored in a string
        animation {list} -- list of equation solving process
        comments {list} -- list of comments in equation solving process
    '''
    lTokensTemp = copy.deepcopy(lTokens)
    rTokensTemp = copy.deepcopy(rTokens)
    _, polyDegree = preprocessCheckPolynomial(lTokensTemp, rTokensTemp)
    if polyDegree == 2:
        lTokens, rTokens, _, token_string, animation, comments = quadraticRoots(lTokens, rTokens)
    elif polyDegree == 3:
        lTokens, rTokens, _, token_string, animation, comments = cubicRoots(lTokens, rTokens)
    elif polyDegree == 4:
        lTokens, rTokens, _, token_string, animation, comments = quarticRoots(lTokens, rTokens)
    return lTokens, rTokens, [], token_string, animation, comments


def getCoefficients(lTokens, rTokens, degree):
    '''Used by root finder modules to get a list of coefficients of equation

    Argument:
        lTokens {list} -- list of left side tokens
        rTokens {list} -- list of right side tokens
        degree {int} -- degree of equation

    Returns:
        coeffs {list} -- list of coefficients of equation (item at ith index is coefficient of x^i)
    '''
    coeffs = [0] * (degree + 1)
    for i, token in enumerate(lTokens):
        if isinstance(token, Constant):
            cons = evaluateConstant(token)
            if i != 0:
                if isinstance(lTokens[i - 1], Binary):
                    if lTokens[i - 1].value in ['-', '+']:
                        if lTokens[i - 1].value == '-':
                            cons *= -1
            if (i + 1) < len(lTokens):
                if lTokens[i + 1].value not in ['*', '/']:
                    coeffs[0] += cons
                else:
                    return []
            else:
                coeffs[0] += cons
        if isinstance(token, Variable):
            if len(token.value) == 1:
                var = token.coefficient
                if i != 0:
                    if isinstance(lTokens[i - 1], Binary):
                        if lTokens[i - 1].value in ['-', '+']:
                            if lTokens[i - 1].value == '-':
                                var *= -1
                if (i + 1) < len(lTokens):
                    if lTokens[i + 1].value not in ['*', '/']:
                        if token.power[0] in [1, 2, 3, 4]:
                            coeffs[int(token.power[0])] += var
                        else:
                            return []
                    else:
                        return []
                else:
                    if token.power[0] in [1, 2, 3, 4]:
                        coeffs[int(token.power[0])] += var
                    else:
                        return []
            else:
                return []
    return coeffs


def squareRootComplex(value):
    '''Used by root finder modules to get square root of a complex number

    Argument:
        value {list of 2 elements} -- 1st element indicates real part & other element indicates imaginary part

    Returns:
        root {float} -- root of imaginary number
    '''
    a = value[0]
    b = value[1]
    root = 2*[0]
    root[0] = math.sqrt((a + math.sqrt(a*a + b*b))/2)
    root[1] = math.sqrt((math.sqrt(a*a + b*b) - a)/2)
    if b < 0:
        root[1] = -root[1]
    return root


def cubeRoot(value):
    '''Used by root finder modules to get cube root of floats

    Argument:
        value {float} -- whose cube root is to be found

    Returns:
        root {float} -- cube root of "value"
    '''
    if value >= 0:
        return value ** (1./3.)
    else:
        return (-(-value) ** (1./3.))