|
from visma.io.checks import getVariables, areTokensEqual, isTokenInToken |
|
from visma.io.parser import tokensToString, tokensToLatex |
|
from visma.io.tokenize import getTerms, normalize |
|
from visma.functions.operator import Operator, Plus |
|
from visma.functions.structure import Expression |
|
from tests.tester import getTokens |
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_getVariables(): |
|
|
|
varA = getTokens("x") |
|
assert getVariables([varA]) == ['x'] |
|
|
|
varB = getTokens("xy+ xy^2 +yz^3") |
|
assert getVariables(varB) == ['x', 'y', 'z'] |
|
|
|
varC = getTokens("x + sin(x) + cos(y) + tan(2*z)*2 + tanh(z) + e^2") |
|
|
|
|
|
|
|
assert getVariables(varC) == ['x'] |
|
|
|
|
|
def test_areTokensEqual(): |
|
|
|
varA = getTokens("3xy") |
|
varB = getTokens("3yx") |
|
varC = getTokens("3yz") |
|
assert areTokensEqual(varA, varB) |
|
assert not areTokensEqual(varA, varC) |
|
|
|
opA = Operator() |
|
opA.value = '+' |
|
opB = Plus() |
|
assert areTokensEqual(opA, opB) |
|
|
|
|
|
def test_isTokenInToken(): |
|
|
|
varA = getTokens("x^3") |
|
varB = getTokens("xy^2") |
|
varC = Expression(getTokens("1 + w + x")) |
|
varD = Expression(getTokens("w + y")) |
|
assert isTokenInToken(varA, varB) |
|
assert isTokenInToken(varA, varC) |
|
assert not isTokenInToken(varA, varD) |
|
|
|
varA = getTokens("xy^2") |
|
varB = getTokens("x^(2)y^(4)z") |
|
varC = getTokens("yx^0.5") |
|
varD = getTokens("xy^(3)z") |
|
varE = getTokens("2") |
|
assert isTokenInToken(varA, varB) |
|
assert isTokenInToken(varA, varC) |
|
assert not isTokenInToken(varA, varD) |
|
assert not isTokenInToken(varA, varE) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_tokensToString(): |
|
|
|
|
|
mat = getTokens("[1+x, 2; \ |
|
3 , 4]") |
|
assert tokensToString([mat]) == "[1.0 + x,2.0;3.0,4.0]" |
|
|
|
mat = getTokens("[1+x, 2] + [1, y + z^2]") |
|
assert tokensToString(mat) == "[1.0 + x,2.0] + [1.0,y + z^(2.0)]" |
|
|
|
|
|
def test_tokensToLatex(): |
|
|
|
|
|
mat = getTokens("[1+x, 2; \ |
|
3 , 4]") |
|
assert tokensToLatex([mat]) == "\\begin{bmatrix}{1.0}+{x}&{2.0}\\\\{3.0}&{4.0}\\end{bmatrix}" |
|
|
|
mat = getTokens("[1+x, 2] + [1, y + z^2]") |
|
assert tokensToLatex(mat) == "\\begin{bmatrix}{1.0}+{x}&{2.0}\\end{bmatrix}+\\begin{bmatrix}{1.0}&{y}+{z}^{2.0}\\end{bmatrix}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_getTerms(): |
|
|
|
assert getTerms("1 + 2 * 3 - sqrt(2) / 5") == ['1', '+', '2', '*', '3', '-', 'sqrt', '(', '2', ')', '/', '5'] |
|
assert getTerms("x + x^2*y + y^2 + y/z = -z") == ['x', '+', 'x', '^', '2', '*', 'y', '+', 'y', '^', '2', '+', 'y', '/', 'z', '=', '-', 'z'] |
|
|
|
assert getTerms("sin^2(x) + cos^2(x) = 1") == ['sin', '^', '2', '(', 'x', ')', '+', 'cos', '^', '2', '(', 'x', ')', '=', '1'] |
|
assert getTerms("1 + tan^2(x) = sec^2(x)") == ['1', '+', 'tan', '^', '2', '(', 'x', ')', '=', 'sec', '^', '2', '(', 'x', ')'] |
|
assert getTerms("1 + cot^2(x) = csc^2(x)") == ['1', '+', 'cot', '^', '2', '(', 'x', ')', '=', 'csc', '^', '2', '(', 'x', ')'] |
|
|
|
assert getTerms("cosh^2(x)-sinh^2(x)=1") == ['cosh', '^', '2', '(', 'x', ')', '-', 'sinh', '^', '2', '(', 'x', ')', '=', '1'] |
|
assert getTerms("1 - tanh^2(x) = sech^2(x)") == ['1', '-', 'tanh', '^', '2', '(', 'x', ')', '=', 'sech', '^', '2', '(', 'x', ')'] |
|
assert getTerms("coth^2(x)-csch^2(x)=1") == ['coth', '^', '2', '(', 'x', ')', '-', 'csch', '^', '2', '(', 'x', ')', '=', '1'] |
|
|
|
assert getTerms("e = 2.71828") == ['exp', '=', '2.71828'] |
|
assert getTerms("log_10(100) = 2") == ['log_', '10', '(', '100', ')', '=', '2'] |
|
assert getTerms("ln(e) = 1") == ['ln', '(', 'exp', ')', '=', '1'] |
|
assert getTerms("e^(i*pi)=1") == ['exp', '^', '(', 'iota', '*', 'pi', ')', '=', '1'] |
|
|
|
assert getTerms("a = b") == ['a', '=', 'b'] |
|
assert getTerms("a < b") == ['a', '<', 'b'] |
|
assert getTerms("a > b") == ['a', '>', 'b'] |
|
assert getTerms("a <= b") == ['a', '<=', 'b'] |
|
assert getTerms("a >= b") == ['a', '>=', 'b'] |
|
|
|
assert getTerms("[1,0;0,1]") == ['[', '1', ',', '0', ';', '0', ',', '1', ']'] |
|
assert getTerms("2*[2,3;2,3]+[1,2;1,2]") == ['2', '*', '[', '2', ',', '3', ';', '2', ',', '3', ']', '+', '[', '1', ',', '2', ';', '1', ',', '2', ']'] |
|
|
|
assert getTerms(r"$\frac {3}{x}-\frac{x}{y}$") == ['$', 'frac', '{', '3', '}', '{', 'x', '}', '-', 'frac', '{', 'x', '}', '{', 'y', '}', '$'] |
|
|
|
|
|
def test_normalize(): |
|
|
|
assert normalize(['$', 'frac', '{', '3', '}', '{', 'x', '}', '-', 'frac', '{', 'x', '}', '{', 'y', '}', '$']) == ['$', '3', '/', 'x', '-', 'x', '/', 'y', '$'] |
|
|