|
'''This module is supposed to contain all the combinatorics related stuff which can be performed by VisualMath (VisMa) |
|
|
|
Note: Please try to maintain proper documentation |
|
''' |
|
|
|
from visma.io.tokenize import tokenizer |
|
from visma.simplify.simplify import simplify |
|
from visma.io.parser import tokensToString |
|
from visma.functions.constant import Constant |
|
|
|
|
|
def factorial(tokens): |
|
'''Used to get factorial of tokens provided |
|
|
|
Argument: |
|
tokens {list} -- list of tokens |
|
|
|
Returns: |
|
result {list} -- list of result tokens |
|
{empty list} |
|
token_string {string} -- final result stored in a string |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
''' |
|
tokens, _, _, _, _ = simplify(tokens) |
|
animation = [] |
|
comments = [] |
|
if (isinstance(tokens[0], Constant) & len(tokens) == 1): |
|
value = int(tokens[0].calculate()) |
|
if value == 0: |
|
result = [Constant(1)] |
|
comments += [['Factorial of ZERO is defined to be 1']] |
|
animation += [tokenizer('f = ' + str(1))] |
|
else: |
|
resultString = '' |
|
for i in range(1, value + 1): |
|
resultString += (str(i) + '*') |
|
resultString = resultString[:-1] |
|
resultTokens = tokenizer(resultString) |
|
comments += [['Expanding the factorial as']] |
|
animation += [resultTokens] |
|
result, _, _, _, _ = simplify(resultTokens) |
|
token_string = tokensToString(result) |
|
comments += [['Hence result: ']] |
|
animation += [tokenizer('f = ' + token_string)] |
|
return result, [], token_string, animation, comments |
|
|
|
|
|
def permutation(nTokens, rTokens): |
|
'''Used to get Permutation (nPr) |
|
|
|
Argument: |
|
nTokens {list} -- list of tokens of "n" in nPr |
|
rTokens {list} -- list of tokens of "r" in nPr |
|
|
|
Returns: |
|
result {list} -- list of result tokens |
|
{empty list} |
|
token_string {string} -- final result stored in a string |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
''' |
|
nTokens, _, _, _, _ = simplify(nTokens) |
|
rTokens, _, _, _, _ = simplify(rTokens) |
|
animation = [] |
|
comments = [] |
|
if (isinstance(nTokens[0], Constant) & len(nTokens) == 1) & (isinstance(rTokens[0], Constant) & len(rTokens) == 1): |
|
comments += [['nCr is defined as (n!)/(r!)*(n-r)!']] |
|
animation += [[]] |
|
comments += [['Solving for n!']] |
|
animation += [[]] |
|
numerator, _, _, animNew1, commentNew1 = factorial(nTokens) |
|
commentNew1[1] = ['(n)! is thus solved as: '] |
|
animation.extend(animNew1) |
|
comments.extend(commentNew1) |
|
denominator = nTokens[0] - rTokens[0] |
|
comments += [['Solving for (n - r)!']] |
|
animation += [[]] |
|
denominator, _, _, animNew2, commentNew2 = factorial([denominator]) |
|
commentNew2[1] = ['(n - r)! is thus solved as: '] |
|
comments.extend(commentNew2) |
|
animation.extend(animNew2) |
|
result = [numerator[0] / denominator[0]] |
|
comments += [['On placing values in (n!)/(n-r)!']] |
|
animation += [tokenizer('r = ' + tokensToString(result))] |
|
token_string = tokensToString(result) |
|
return result, [], token_string, animation, comments |
|
|
|
|
|
def combination(nTokens, rTokens): |
|
'''Used to get Combination (nCr) |
|
|
|
Argument: |
|
nTokens {list} -- list of tokens of "n" in nCr |
|
rTokens {list} -- list of tokens of "r" in nCr |
|
|
|
Returns: |
|
result {list} -- list of result tokens |
|
{empty list} |
|
token_string {string} -- final result stored in a string |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
''' |
|
nTokens, _, _, _, _ = simplify(nTokens) |
|
rTokens, _, _, _, _ = simplify(rTokens) |
|
animation = [] |
|
comments = [] |
|
if (isinstance(nTokens[0], Constant) & len(nTokens) == 1) & (isinstance(rTokens[0], Constant) & len(rTokens) == 1): |
|
comments += [['nCr is defined as (n!)/(r!)*(n-r)!']] |
|
animation += [[]] |
|
comments += [['Solving for n!']] |
|
animation += [[]] |
|
numerator, _, _, animNew1, commentNew1 = factorial(nTokens) |
|
commentNew1[1] = ['(n)! is thus solved as: '] |
|
animation.extend(animNew1) |
|
comments.extend(commentNew1) |
|
denominator1 = nTokens[0] - rTokens[0] |
|
comments += [['Solving for (n - r)!']] |
|
animation += [[]] |
|
denominator1, _, _, animNew2, commentNew2 = factorial([denominator1]) |
|
commentNew2[1] = ['(n - r)! is thus solved as: '] |
|
comments.extend(commentNew2) |
|
animation.extend(animNew2) |
|
comments += [['Solving for r!']] |
|
animation += [[]] |
|
denominator2, _, _, animNew3, commentNew3 = factorial([rTokens[0]]) |
|
commentNew3[1] = ['r! is thus solved as: '] |
|
comments.extend(commentNew3) |
|
animation.extend(animNew3) |
|
denominator = denominator1[0] * denominator2[0] |
|
result = [numerator[0] / denominator] |
|
comments += [['On placing values in (n!)/(r!)*(n-r)!']] |
|
animation += [tokenizer('r = ' + tokensToString(result))] |
|
token_string = tokensToString(result) |
|
return result, [], token_string, animation, comments |
|
|