|
from visma.io.tokenize import tokenizer |
|
from visma.matrix.structure import SquareMat |
|
|
|
|
|
def cramerMatrices(coefficients): |
|
''' |
|
Arguments: |
|
coefficients -- 3 X 4 list -- each each row contains coefficients for x, y, z and constant term respectively |
|
|
|
Returns: |
|
Dx, Dy, Dz, D -- 3 X 4 list -- Cramer's Matrices for implementing Cramer's Rule. |
|
''' |
|
D = [[0] * 3 for _ in range(3)] |
|
Dx = [[0] * 3 for _ in range(3)] |
|
Dy = [[0] * 3 for _ in range(3)] |
|
Dz = [[0] * 3 for _ in range(3)] |
|
for i in range(3): |
|
for j in range(3): |
|
D[i][j] = coefficients[i][j] |
|
Dx[i][j] = coefficients[i][j] |
|
Dy[i][j] = coefficients[i][j] |
|
Dz[i][j] = coefficients[i][j] |
|
for k in range(3): |
|
Dx[k][0] = coefficients[k][3] |
|
Dy[k][1] = coefficients[k][3] |
|
Dz[k][2] = coefficients[k][3] |
|
for i in range(3): |
|
for j in range(3): |
|
D[i][j] = tokenizer(str(D[i][j])) |
|
Dx[i][j] = tokenizer(str(Dx[i][j])) |
|
Dy[i][j] = tokenizer(str(Dy[i][j])) |
|
Dz[i][j] = tokenizer(str(Dz[i][j])) |
|
matD = SquareMat() |
|
matD.value = D |
|
matDx = SquareMat() |
|
matDx.value = Dx |
|
matDy = SquareMat() |
|
matDy.value = Dy |
|
matDz = SquareMat() |
|
matDz.value = Dz |
|
return matD, matDx, matDy, matDz |
|
|