|
from visma.functions.constant import Constant |
|
from visma.functions.operator import Multiply |
|
from visma.functions.operator import Minus |
|
from visma.functions.operator import Plus |
|
from visma.functions.constant import Zero |
|
from visma.functions.structure import Expression |
|
import numpy as np |
|
from visma.functions.operator import Binary |
|
|
|
|
|
class Matrix(object): |
|
"""Class for matrix type |
|
|
|
The elements in the matrix are function tokens. |
|
|
|
Example: |
|
[ 1 , 2xy^2 ; |
|
4xy , x+y ] |
|
is tokenized to |
|
[[ [Constant] , [Variable] ], |
|
[ [Variable] , [Variable, Binary, Variable]]] |
|
and stored in matrix.value. |
|
""" |
|
|
|
def __init__(self, value=None, coefficient=None, power=None, dim=None, scope=None): |
|
self.scope = None |
|
if value is not None: |
|
self.value = value |
|
else: |
|
self.value = [] |
|
if coefficient is not None: |
|
self.coefficient = coefficient |
|
else: |
|
self.coefficient = 1 |
|
if power is not None: |
|
self.power = power |
|
else: |
|
self.power = 1 |
|
if dim is not None: |
|
self.dim = dim |
|
else: |
|
self.dim = [0, 0] |
|
|
|
def convertMatrixToString(self, Latex=False): |
|
from visma.io.parser import tokensToString |
|
MatrixString = '' |
|
self.dim[0] = len(self.value) |
|
self.dim[1] = len(self.value[0]) |
|
for i in range(self.dim[0]): |
|
for j in range(self.dim[1]): |
|
if not Latex: |
|
MatrixString += tokensToString(self.value[i][j]) + '\t' |
|
else: |
|
MatrixString += tokensToString(self.value[i][j]) + ' ' |
|
MatrixString += '\n' |
|
return MatrixString |
|
|
|
def __add__(self, other): |
|
"""Adds two matrices |
|
Arguments: |
|
self {visma.matrix.structure.Matrix} -- matrix token |
|
other {visma.matrix.structure.Matrix} -- matrix token |
|
Returns: |
|
matSum {visma.matrix.structure.Matrix} -- sum matrix token |
|
Note: |
|
Make dimCheck before calling addMatrix |
|
""" |
|
matSum = Matrix() |
|
matSum.empty(self.dim) |
|
for i in range(self.dim[0]): |
|
for j in range(self.dim[1]): |
|
matSum.value[i][j].extend(self.value[i][j]) |
|
matSum.value[i][j].append(Binary('+')) |
|
matSum.value[i][j].extend(other.value[i][j]) |
|
from visma.matrix.operations import simplifyMatrix |
|
matSum = simplifyMatrix(matSum) |
|
return matSum |
|
|
|
def __sub__(self, other): |
|
"""Subtracts two matrices |
|
Arguments: |
|
self {visma.matrix.structure.Matrix} -- matrix token |
|
other {visma.matrix.structure.Matrix} -- matrix token |
|
Returns: |
|
matSub {visma.matrix.structure.Matrix} -- subtracted matrix token |
|
Note: |
|
Make dimCheck before calling subMatrix |
|
""" |
|
matSub = Matrix() |
|
matSub.empty(self.dim) |
|
for i in range(self.dim[0]): |
|
for j in range(self.dim[1]): |
|
matSub.value[i][j].extend(self.value[i][j]) |
|
matSub.value[i][j].append(Binary('-')) |
|
matSub.value[i][j].extend(other.value[i][j]) |
|
from visma.matrix.operations import simplifyMatrix |
|
matSub = simplifyMatrix(matSub) |
|
return matSub |
|
|
|
def __mul__(self, other): |
|
"""Multiplies two matrices |
|
Arguments: |
|
self {visma.matrix.structure.Matrix} -- matrix token |
|
other {visma.matrix.structure.Matrix} -- matrix token |
|
Returns: |
|
matPro {visma.matrix.structure.Matrix} -- product matrix token |
|
Note: |
|
Make mulitplyCheck before calling multiplyMatrix |
|
Not commutative |
|
""" |
|
matPro = Matrix() |
|
matPro.empty([self.dim[0], other.dim[1]]) |
|
for i in range(self.dim[0]): |
|
for j in range(other.dim[1]): |
|
for k in range(self.dim[1]): |
|
if matPro.value[i][j] != []: |
|
matPro.value[i][j].append(Binary('+')) |
|
if len(self.value[i][k]) != 1: |
|
matPro.value[i][j].append(Expression(self.value[i][k])) |
|
else: |
|
matPro.value[i][j].extend(self.value[i][k]) |
|
matPro.value[i][j].append(Binary('*')) |
|
if len(other.value[k][j]) != 1: |
|
matPro.value[i][j].append(Expression(other.value[k][j])) |
|
else: |
|
matPro.value[i][j].extend(other.value[k][j]) |
|
from visma.matrix.operations import simplifyMatrix |
|
matPro = simplifyMatrix(matPro) |
|
return matPro |
|
|
|
def __str__(self): |
|
represent = "[" |
|
for i in range(self.dim[0]): |
|
for j in range(self.dim[1]): |
|
for tok in self.value[i][j]: |
|
represent += tok.__str__() |
|
represent += "," |
|
represent = represent[:-1] + ";" |
|
represent = represent[:-1] + "]" |
|
return represent |
|
|
|
def empty(self, dim=None): |
|
"""Empties the matrix into a matrix of dimension dim |
|
|
|
Keyword Arguments: |
|
dim {list} -- dimension of matrix (default: {None}) |
|
""" |
|
if dim is not None: |
|
self.dim = dim |
|
self.value = [[[] for _ in range(self.dim[1])] for _ in range(self.dim[0])] |
|
|
|
def prop(self, scope=None, value=None, coeff=None, power=None, operand=None, operator=None): |
|
if scope is not None: |
|
self.scope = scope |
|
if value is not None: |
|
self.value = value |
|
if coeff is not None: |
|
self.coefficient = coeff |
|
if power is not None: |
|
self.power = power |
|
|
|
def isSquare(self): |
|
"""Checks if matrix is square |
|
|
|
Returns: |
|
bool -- if square matrix or not |
|
""" |
|
if self.dim[0] == self.dim[1]: |
|
self.__class__ = SquareMat |
|
return True |
|
else: |
|
return False |
|
|
|
def isIdentity(self): |
|
"""Checks if matrix is identity |
|
|
|
Returns: |
|
bool -- if identity matrix or not |
|
""" |
|
if self.isDiagonal(): |
|
for i in range(0, self.dim[0]): |
|
if self.value[i][i][0].value != 1: |
|
return False |
|
self.__class__ = IdenMat |
|
return True |
|
else: |
|
return False |
|
|
|
def isDiagonal(self): |
|
"""Checks if matrix is diagonal |
|
|
|
Returns: |
|
bool -- if diagonal matrix or not |
|
""" |
|
if self.isSquare(): |
|
for i in range(0, self.dim[0]): |
|
for j in range(0, self.dim[1]): |
|
if i != j and (self.value[i][j][0].value != 0 or len(self.value[i][j]) > 1): |
|
return False |
|
self.__class__ = DiagMat |
|
return True |
|
else: |
|
return False |
|
|
|
def dimension(self): |
|
"""Gets the dimension of the matrix |
|
|
|
dim[0] -- number of rows |
|
dim[1] -- number of columns |
|
""" |
|
self.dim[0] = len(self.value) |
|
self.dim[1] = len(self.value[0]) |
|
|
|
def transposeMat(self): |
|
"""Returns Transpose of Matrix |
|
|
|
Returns: |
|
matRes {visma.matrix.structure.Matrix} -- result matrix token |
|
""" |
|
matRes = Matrix() |
|
matRes.empty([self.dim[1], self.dim[0]]) |
|
for i in range(self.dim[0]): |
|
for j in range(self.dim[1]): |
|
matRes.value[j][i] = self.value[i][j] |
|
return matRes |
|
|
|
|
|
class SquareMat(Matrix): |
|
"""Class for Square matrix |
|
|
|
Square matrix is a matrix with equal dimensions. |
|
|
|
Extends: |
|
Matrix |
|
""" |
|
|
|
def determinant(self, mat=None): |
|
"""Calculates square matrices' determinant |
|
|
|
Returns: |
|
list of tokens forming the determinant |
|
""" |
|
from visma.simplify.simplify import simplify |
|
|
|
if mat is None: |
|
self.dimension() |
|
mat = np.array(self.value) |
|
if(mat.shape[0] > 2): |
|
ans = [] |
|
for i in range(mat.shape[0]): |
|
mat1 = SquareMat() |
|
mat1.value = np.concatenate((mat[1:, :i], mat[1:, i+1:]), axis=1).tolist() |
|
a, _, _, _, _ = simplify(mat1.determinant()) |
|
if(a[0].value != 0 and a != []): |
|
a, _, _, _, _ = simplify(a + [Multiply()] + mat[0][i].tolist()) |
|
if(i % 2 == 0): |
|
if(ans != []): |
|
ans, _, _, _, _ = simplify(ans + [Plus()] + a) |
|
else: |
|
ans = a |
|
else: |
|
ans, _, _, _, _ = simplify(ans + [Minus()] + a) |
|
elif(mat.shape[0] == 2): |
|
a = Multiply() |
|
b = Minus() |
|
mat = mat.tolist() |
|
a1, _, _, _, _ = simplify(mat[0][0] + [a] + mat[1][1]) |
|
a2, _, _, _, _ = simplify(mat[0][1] + [a] + mat[1][0]) |
|
ans, _, _, _, _ = simplify([a1[0], b, a2[0]]) |
|
if (isinstance(ans[0], Minus) or isinstance(ans[0], Plus)) and ans[0].value not in ['+', '-']: |
|
ans[0] = Constant(ans[0].value) |
|
else: |
|
ans, _, _, _, _ = simplify(mat[0][0]) |
|
if not ans: |
|
ans = Zero() |
|
return ans |
|
|
|
def traceMat(self): |
|
"""Returns the trace of a square matrix (sum of diagonal elements) |
|
|
|
Arguments: |
|
mat {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
trace {visma.matrix.structure.Matrix} -- string token |
|
""" |
|
from visma.simplify.simplify import simplify |
|
trace = [] |
|
self.dim[0] = len(self.value) |
|
self.dim[1] = len(self.value[0]) |
|
for i in range(self.dim[0]): |
|
trace.extend(self.value[i][i]) |
|
trace.append(Binary('+')) |
|
trace.pop() |
|
trace, _, _, _, _ = simplify(trace) |
|
return trace |
|
|
|
def inverse(self): |
|
"""Calculates the inverse of the matrix using Gauss-Jordan Elimination |
|
|
|
Arguments: |
|
matrix {visma.matrix.structure.Matrix} -- matrix token |
|
|
|
Returns: |
|
inv {visma.matrix.structure.Matrix} -- result matrix token |
|
""" |
|
from visma.simplify.simplify import simplify |
|
from visma.io.tokenize import tokenizer |
|
from visma.io.parser import tokensToString |
|
|
|
if tokensToString(self.determinant()) == "0": |
|
return -1 |
|
self.dim[0] = len(self.value) |
|
self.dim[1] = len(self.value[0]) |
|
n = self.dim[0] |
|
mat = Matrix() |
|
mat.empty([n, 2*n]) |
|
for i in range(0, n): |
|
for j in range(0, 2*n): |
|
if j < n: |
|
mat.value[i][j] = self.value[i][j] |
|
else: |
|
mat.value[i][j] = [] |
|
|
|
for i in range(0, n): |
|
for j in range(n, 2*n): |
|
if j == (i + n): |
|
mat.value[i][j].extend(tokenizer('1')) |
|
else: |
|
mat.value[i][j].extend(tokenizer("0")) |
|
|
|
for i in range(n-1, 0, -1): |
|
if mat.value[i-1][0][0].value < mat.value[i][0][0].value: |
|
for j in range(0, 2*n): |
|
temp = mat.value[i][j] |
|
mat.value[i][j] = mat.value[i-1][j] |
|
mat.value[i-1][j] = temp |
|
|
|
for i in range(0, n): |
|
for j in range(0, n): |
|
if j != i: |
|
temp = [] |
|
if len(mat.value[j][i]) != 1: |
|
temp.append(Expression(mat.value[j][i])) |
|
else: |
|
temp.extend(mat.value[j][i]) |
|
temp.append(Binary('/')) |
|
if len(mat.value[i][i]) != 1: |
|
temp.append(Expression(mat.value[i][i])) |
|
else: |
|
temp.extend(mat.value[i][i]) |
|
temp, _, _, _, _ = simplify(temp) |
|
|
|
for k in range(0, 2*n): |
|
t = [] |
|
if mat.value[i][k][0].value != 0: |
|
if len(mat.value[i][k]) != 1: |
|
t.append(Expression(mat.value[i][k])) |
|
else: |
|
t.extend(mat.value[i][k]) |
|
t.append(Binary('*')) |
|
if len(temp) != 1: |
|
t.append(Expression(temp)) |
|
else: |
|
t.extend(temp) |
|
t, _, _, _, _ = simplify(t) |
|
mat.value[j][k].append(Binary('-')) |
|
if len(t) != 1: |
|
mat.value[j][k].append(Expression(t)) |
|
else: |
|
mat.value[j][k].extend(t) |
|
mat.value[j][k], _, _, _, _ = simplify(mat.value[j][k]) |
|
|
|
for i in range(0, n): |
|
temp = [] |
|
temp.extend(mat.value[i][i]) |
|
for j in range(0, 2*n): |
|
if mat.value[i][j][0].value != 0: |
|
mat.value[i][j].append(Binary('/')) |
|
mat.value[i][j].extend(temp) |
|
mat.value[i][j], _, _, _, _ = simplify(mat.value[i][j]) |
|
|
|
inv = SquareMat() |
|
inv.empty([n, n]) |
|
for i in range(0, n): |
|
for j in range(n, 2*n): |
|
inv.value[i][j-n] = mat.value[i][j] |
|
return inv |
|
|
|
def cofactor(self): |
|
"""Calculates cofactors matrix of the Square Matrix |
|
|
|
Returns: |
|
An object of type SquareMat |
|
""" |
|
mat1 = SquareMat() |
|
mat1.value = [] |
|
for i in range(self.dim[0]): |
|
if(i % 2 == 0): |
|
coeff = -1 |
|
else: |
|
coeff = 1 |
|
mat1.value.append([]) |
|
for j in range(self.dim[1]): |
|
coeff *= -1 |
|
mat = SquareMat() |
|
temp = np.array(self.value) |
|
mat.value = np.concatenate((np.concatenate((temp[:i, :j], temp[i+1:, :j])), np.concatenate((temp[:i, j+1:], temp[i+1:, j+1:]))), axis=1).tolist() |
|
val = mat.determinant()[0] |
|
val.value *= coeff |
|
mat1.value[i].append([val]) |
|
mat1.dimension() |
|
return mat1 |
|
|
|
|
|
class DiagMat(SquareMat): |
|
"""Class for Diagonal matrix |
|
|
|
Diagonal matrix is a square matrix with all elements as 0 except for the diagonal elements. |
|
|
|
Extends: |
|
SquareMat |
|
""" |
|
|
|
def __init__(self, dim, diagElem): |
|
""" |
|
dim {list} -- dimension of matrix |
|
diagElem {list} -- list of tokens list |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
for i in range(0, dim[0]): |
|
row = [] |
|
for j in range(0, dim[1]): |
|
if i == j: |
|
row.append(diagElem[i]) |
|
else: |
|
row.append([Constant(0)]) |
|
self.value.append(row) |
|
|
|
|
|
class IdenMat(DiagMat): |
|
"""Class for identity matrix |
|
|
|
Identity matrix is a diagonal matrix with all elements as 0 except for the diagonal elements which are 1. |
|
|
|
Extends: |
|
DiagMat |
|
""" |
|
|
|
def __init__(self, dim): |
|
super().__init__(dim, [[Constant(1)]]*dim[0]) |
|
for i in range(0, dim[0]): |
|
self.value[i][i] = Constant(1) |
|
|