|
from visma.io.parser import tokensToString |
|
from visma.functions.structure import Expression |
|
from visma.functions.constant import Constant |
|
from visma.functions.variable import Variable |
|
from visma.functions.operator import Plus, Minus, Multiply |
|
from visma.simplify.simplify import simplify |
|
from visma.utils.integers import gcd, factors |
|
from visma.utils.polynomials import syntheticDivision |
|
|
|
|
|
def factorize(tokens): |
|
|
|
tokens, availableOperations, token_string, animation, comments = simplify(tokens) |
|
|
|
tokens, animNew, commentsNew = (factorizeTokens(tokens)) |
|
|
|
animation.extend(animNew) |
|
comments.append(commentsNew) |
|
token_string = tokensToString(tokens) |
|
|
|
return tokens, availableOperations, token_string, animation, comments |
|
|
|
|
|
def factorizeTokens(tokens): |
|
|
|
coeffs, var = getPolyCoeffs(tokens) |
|
gcf, roots, polynomial = factor(coeffs) |
|
if roots != []: |
|
tokens = [] |
|
comment = "The real roots of the above polynomial are " |
|
for root in roots: |
|
comment += r"$" + str(root) + r"\ ,\ " + r"$" |
|
if gcf != 1: |
|
tokens.append(Constant(float(gcf))) |
|
tokens.append(Multiply()) |
|
for root in roots: |
|
expression = Expression() |
|
expression.tokens.append(Variable(1, var, 1)) |
|
if root > 0: |
|
expression.tokens.append(Minus()) |
|
expression.tokens.append(Constant(float(root))) |
|
elif root < 0: |
|
expression.tokens.append(Plus()) |
|
expression.tokens.append(Constant(float(-root))) |
|
tokens.append(expression) |
|
tokens.append(Multiply()) |
|
if polynomial != [1]: |
|
expression = Expression() |
|
degree = len(polynomial) - 1 |
|
for i, coeff in enumerate(polynomial): |
|
if i == degree: |
|
if coeff > 0: |
|
expression.tokens.append(Plus()) |
|
expression.tokens.append(Constant(float(coeff))) |
|
elif coeff < 0: |
|
expression.tokens.append(Minus()) |
|
expression.tokens.append(Constant(float(-coeff))) |
|
elif coeff > 0: |
|
expression.tokens.append(Plus()) |
|
expression.tokens.append(Variable(coeff, var, degree - i)) |
|
elif coeff < 0: |
|
expression.tokens.append(Minus()) |
|
expression.tokens.append(Variable(-coeff, var, degree - i)) |
|
if isinstance(expression.tokens[0], Plus): |
|
expression.tokens.pop(0) |
|
tokens.append(expression) |
|
else: |
|
tokens.pop() |
|
else: |
|
comment = None |
|
animation = [tokens] |
|
comments = [comment] |
|
return tokens, animation, comments |
|
|
|
|
|
def getPolyCoeffs(tokens): |
|
degree = 0 |
|
for token in tokens: |
|
if isinstance(token, Variable) and token.power[0] > degree: |
|
degree = token.power[0] |
|
var = token.value[0] |
|
|
|
coeffs = [0]*int(degree + 1) |
|
for i, token in enumerate(tokens): |
|
if isinstance(token, Variable): |
|
coeffs[int(degree - token.power[0])] = int(token.coefficient) |
|
if tokens[i-1].value == '-': |
|
coeffs[int(degree - token.power[0])] *= -1 |
|
elif isinstance(token, Constant): |
|
coeffs[int(degree)] = int(token.value) |
|
if tokens[i-1].value == '-': |
|
coeffs[int(degree)] *= -1 |
|
return coeffs, var |
|
|
|
|
|
def factor(coefficients): |
|
gcf = gcd(coefficients) |
|
coefficients = [coefficient / gcf for coefficient in coefficients] |
|
polynomial = coefficients |
|
roots = [] |
|
while extractRoots(polynomial) is not False: |
|
root, quotient = extractRoots(polynomial) |
|
roots.append(root) |
|
polynomial = quotient |
|
polynomial = [int(term) for term in polynomial] |
|
roots.sort() |
|
return gcf, roots, polynomial |
|
|
|
|
|
def extractRoots(coefficients): |
|
factorsLeading = factors(coefficients[0]) |
|
factorsConstant = factors(coefficients[-1]) |
|
roots = possibleRoots(factorsConstant, factorsLeading) |
|
for root in roots: |
|
quotient, remainder = syntheticDivision(coefficients, root) |
|
if remainder == 0: |
|
return root, quotient |
|
return False |
|
|
|
|
|
def possibleRoots(listA, listB): |
|
roots = [] |
|
listA = [float(i) for i in listA] |
|
listB = [float(i) for i in listB] |
|
for i in listA: |
|
for j in listB: |
|
roots.extend([i / j, -i / j]) |
|
roots = removeDuplicates(roots) |
|
return roots |
|
|
|
|
|
def removeDuplicates(extraRoots): |
|
roots = [] |
|
for x in extraRoots: |
|
if x not in roots: |
|
roots.append(x) |
|
return roots |
|
|