File size: 13,240 Bytes
33871a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import json
from shutil import copy
import pandas as pd
from pathlib import Path
from PIL import Image, ImageDraw
import cv2
import numpy as np
import re
import datasets
from datasets import Value
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches

def create_directories_and_copy_files(images_dir, coco_data, image_data, k):
    base_dir = os.path.join(images_dir, f'mskf_{k}')
    os.makedirs(base_dir, exist_ok=True)

    for split in np.unique(image_data['SPLIT']):
        split_dir = os.path.join(base_dir, split)
        os.makedirs(split_dir, exist_ok=True)

        # Filter the annotations
        split_ids = image_data[image_data['SPLIT'] == split]['IMADE_ID'].tolist()
        annotations = {
            'images': [img for img in coco_data['images'] if img['id'] in split_ids],
            'annotations': [ann for ann in coco_data['annotations'] if ann['image_id'] in split_ids],
            'categories': coco_data['categories']
        }
            
        # Write the filtered annotations to a file
        with open(os.path.join(split_dir, '_annotations.coco.json'), 'w') as f:
            json.dump(annotations, f, indent=4)
        
        # Copy the images
        split_data = image_data[image_data['SPLIT'] == split]
        for _, row in split_data.iterrows():
            source = row['IMAGE_PATH']
            destination = os.path.join(split_dir, os.path.basename(source))
            copy(source, destination)
            
    print(f'Dataset split for mskf_{k} was successful.')

def split_to_df(dataset_dir, split):
    annotations_path = Path(dataset_dir+split+'/_annotations.coco.json')
    
    with annotations_path.open('r') as f:
        coco_data = json.load(f)
    
    def image_from_path(file_path):
        image = cv2.imread(file_path)
        return image
    
    def gen_segmentation(segmentation, width, height):
        mask_img = np.zeros((height, width, 3), dtype=np.uint8)
        for segment in segmentation:
            pts = np.array(segment, np.int32).reshape((-1, 1, 2))
            cv2.fillPoly(mask_img, [pts], (255, 255, 255))  # Fill color in BGR
        
        return mask_img
        
    images_df = pd.DataFrame(coco_data['images'][5:25], columns=['id', 'file_name', 'width', 'height'])
    annotations_df = pd.DataFrame(coco_data['annotations'])
    df = pd.merge(annotations_df, images_df, left_on='image_id', right_on='id')
    image_folder = annotations_path.parent 
    df['file_path'] = df['file_name'].apply(lambda x: str(image_folder / x))
    df['observation'] = df['file_name'].apply(lambda x: x.split('.')[0].replace('_png', ''))
    df['image'] = df['file_path'].apply(image_from_path)
    df['segmentation'] = df.apply(lambda row: gen_segmentation(row['segmentation'], row['width'], row['height']), axis=1)
    df = df.drop('file_path', axis=1)
    df = df.drop('file_name', axis=1)
    df['annot_id'] = df['id_x'] 
    df = df.drop('id_x', axis=1)
    df = df.drop('id_y', axis=1)
    
    # take image fro df, and the corresponging annotations and plot them on image
    # for i in range(5):
    #     img = df['image'][i]
    #     annot_id = df['annot_id'][i]
    #     # plot the image with the annotation using plt
    #     if img.dtype != np.uint8:
    #         img = img.astype(np.uint8)
    #     # plot
    #     segm_polygon = df['segmentation'][i]
    #     plt.imshow(segm_polygon)
    #     plt.axis('off')
    #     plt.show()
    #     plt.close()
    
    return df, coco_data
	
def df_to_dataset_dict(df, coco_data, cats_to_colours):

    def annot_on_image(annot_id, img_array, cat_id, annot_type='segm'):
        if img_array.dtype != np.uint8:
            img_array = img_array.astype(np.uint8)
    
        pil_image = Image.fromarray(img_array)
        draw = ImageDraw.Draw(pil_image)
        if annot_type=='bbox':
            bbox = [annot for annot in coco_data['annotations'] if annot['id'] == annot_id][0]['bbox']
            x_min, y_min, width, height = bbox
            top_left = (x_min, y_min)
            bottom_right = (x_min + width, y_min + height)
            
            draw.rectangle([top_left, bottom_right], outline=cats_to_colours[cat_id][1], width=2)
        else:
            # look for the annotation in coco_data that corresponds to the annot_id
            segm_polygon = [annot for annot in coco_data['annotations'] if annot['id'] == annot_id][0]['segmentation'][0]
            polygon = [(segm_polygon[i], segm_polygon[i+1]) for i in range(0, len(segm_polygon), 2)]
            draw.polygon(polygon, outline=cats_to_colours[cat_id][1], width=2)  
         
        # plt.imshow(pil_image)
        # plt.axis('off')
        # plt.show()
        # plt.close()
           
        byte_io = BytesIO()
        pil_image.save(byte_io, 'PNG')
        byte_io.seek(0)
        png_image = Image.open(byte_io)
    
        return png_image
    
    dictionary = df.to_dict(orient='list')
    feats=datasets.Features({"observation id":Value(dtype='string'), \
                             'segmentation': datasets.Image(), \
                             'bbox':datasets.Image() , \
                             'label': Value(dtype='string'),\
                             'area':Value(dtype='string'), 
                             'image shape':Value(dtype='string')})
    
    dataset_data = {"observation id":dictionary['observation'],  \
                  'segmentation': [annot_on_image(dictionary['annot_id'][i], dictionary['image'][i], dictionary['category_id'][i]) \
                      for i in range(len(dictionary['segmentation']))], \
                  'bbox': [annot_on_image(dictionary['annot_id'][i], dictionary['image'][i], dictionary['category_id'][i], annot_type='bbox') \
                      for i in range(len(dictionary['bbox']))], \
                  'label': [cats_to_colours[cat][0] for cat in dictionary['category_id']],\
                  'area':['%.3f'%(value) for value in dictionary['area']], \
                  'image shape':[f"({dictionary['width'][i]}, {dictionary['height'][i]})" for i in range(len(dictionary['width']))]}
    the_dataset=datasets.Dataset.from_dict(dataset_data,features=feats)

    return the_dataset

def merge_coco_jsons(first_json, second_json, output_path):
        
    # Load the first JSON file
    with open(first_json) as f:
        coco1 = json.load(f)

    # Load the second JSON file
    with open(second_json) as f:
        coco2 = json.load(f)

    # Update IDs in coco2 to ensure they are unique and do not overlap with coco1
    max_image_id = max(image['id'] for image in coco1['images'])
    max_annotation_id = max(annotation['id'] for annotation in coco1['annotations'])
    max_category_id = max(category['id'] for category in coco1['categories'])

    # Add an offset to the second coco IDs
    image_id_offset = max_image_id + 1
    annotation_id_offset = max_annotation_id + 1
    # category_id_offset = max_category_id + 1

    # Apply offset to images, annotations, and categories in the second JSON
    for image in coco2['images']:
        image['id'] += image_id_offset

    for annotation in coco2['annotations']:
        annotation['id'] += annotation_id_offset
        annotation['image_id'] += image_id_offset  # Update the image_id reference

    # Merge the two datasets
    merged_coco = {
        'images': coco1['images'] + coco2['images'],
        'annotations': coco1['annotations'] + coco2['annotations'],
        'categories': coco1['categories']  # If categories are the same; otherwise, merge as needed
    }

    # Save the merged annotations to a new JSON file
    with open(output_path, 'w') as f:
        json.dump(merged_coco, f)

def percentages(n_splits, image_ids, labels):
    labels_percentages = {}
    for i in range(n_splits):
        train_k, valid_k = 0, 0
        train_labels_counts = {'0':0, '1':0, '2':0, '3':0, '4':0, '5':0}
        valid_labels_counts = {'0':0, '1':0, '2':0, '3':0, '4':0, '5':0}
        for j in range(len(image_ids[i]['train'])):
            for cat in list(labels[i]['train'][j]):
                train_labels_counts[cat] += 1
                train_k+=1
        
        for j in range(len(image_ids[i]['valid'])):
            for cat in list(labels[i]['valid'][j]):
                valid_labels_counts[cat] += 1
                valid_k+=1
    
        train_labels_counts = {cat:counts * 1.0/train_k for cat, counts in train_labels_counts.items()}
        valid_labels_counts = {cat:counts * 1.0/valid_k for cat, counts in valid_labels_counts.items()}
                
        labels_percentages[i] = {'train':train_labels_counts, 'valid':  valid_labels_counts}
        
    return labels_percentages

def make_split(data_in, train_index, valid_index):
    
    data_in_train = data_in.copy()
    data_in_valid = data_in.copy()
    
    data_in_train['images'] = [data_in['images'][train_index[i][0]] for i in range(len(train_index))]
    data_in_valid['images'] = [data_in['images'][valid_index[i][0]] for i in range(len(valid_index))]
    train_annot_ids, valid_annot_ids = [], []
    
    for img_i in data_in_train['images']:
        annotation_ids = [annot['id'] for annot in data_in_train['annotations'] if annot['image_id'] == img_i['id']]
        train_annot_ids +=annotation_ids
        
    for img_i in data_in_valid['images']:
        annotation_ids = [annot['id'] for annot in data_in_valid['annotations'] if annot['image_id'] == img_i['id']]
        valid_annot_ids +=annotation_ids
        
    data_in_train['annotations'] = [data_in_train['annotations'][id] for id in train_annot_ids]
    data_in_valid['annotations'] = [data_in_valid['annotations'][id] for id in valid_annot_ids]
    
    print(len(data_in_train['images']), len(data_in_valid['images']))
    return data_in_train, data_in_valid

def correct_bboxes(annotations):
        for ann in annotations:
            # If the segmentation is in polygon format (COCO polygon)
            if isinstance(ann['segmentation'], list):
    
                points = np.array(ann['segmentation']).reshape(-1, 2)
                x_min, y_min = np.inf, np.inf
                x_max, y_max = -np.inf, -np.inf
                x_min = min(x_min, points[:, 0].min())
                y_min = min(y_min, points[:, 1].min())
                x_max = max(x_max, points[:, 0].max())
                y_max = max(y_max, points[:, 1].max())
        
                width = x_max - x_min
                height = y_max - y_min
            
                # The bbox in COCO format [x_min, y_min, width, height]
                bbox = [x_min, y_min, width, height]
                x, y, w, h = map(int, bbox)
                ann['bbox'] = [x, y, w, h]
    
        return annotations
    
def highlight_max(s):
    is_max = s == s.max()
    return ['background-color: yellow' if v else '' for v in is_max]

def highlight_max_str(s):
    
    cats = []
    for cat in s:
        cats.append([float(match) for match in re.findall(r"[-+]?[0-9]*\.?[0-9]+", cat)][0])
        
    is_max = cats == np.max(cats)
    return ['background-color: yellow' if v else '' for v in is_max]

def read_yolo_annotations(annotation_file):
    with open(annotation_file, 'r') as file:
        lines = file.readlines()

    annotations = []
    for line in lines:
        parts = line.strip().split()
        class_id = int(parts[0])
        points = list(map(float, parts[1:]))
        annotations.append((class_id, points))
    
    return annotations

def display_image_with_annotations(coco, cat_names, image_id):
    img = coco.loadImgs(image_id)[0]
    image_path = os.path.join('./mskf_0/train/', img['file_name'])
    I = Image.open(image_path)
    plt.imshow(I); plt.axis('off')
    ann_ids = coco.getAnnIds(imgIds=img['id'], iscrowd=None)
    anns = coco.loadAnns(ann_ids)
    ax = plt.gca()
    
    for ann in anns:
        bbox = ann['bbox']
        rect = patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3],
                                 linewidth=2, edgecolor='b', facecolor='none')
        ax.add_patch(rect)
        ax.text(bbox[0], bbox[1] - 5, cat_names[ann['category_id']],
                color='blue', fontsize=12, bbox=dict(facecolor='white', alpha=0.5))

    plt.show()

def plot_segmentations(image_path, annotations, category_mapping):
    image = Image.open(image_path)
    width, height = image.size
    draw = ImageDraw.Draw(image)

    try:
        font = ImageFont.truetype("DejaVuSans.ttf", 16)  # Load a font
    except IOError:
        font = ImageFont.load_default()

    for class_id, points in annotations:
        # Scale points from normalized coordinates to image dimensions
        scaled_points = [(p[0] * width, p[1] * height) for p in zip(points[0::2], points[1::2])]
        draw.polygon(scaled_points, outline='green', fill=None)  

        category_name = category_mapping[class_id][0]
        centroid_x = sum([p[0] for p in scaled_points]) / len(scaled_points)
        centroid_y = sum([p[1] for p in scaled_points]) / len(scaled_points)
        draw.text((centroid_x, centroid_y), category_name, fill='red', font=font, anchor='ms')

    plt.imshow(image)
    plt.axis('off')
    plt.show()