id
stringlengths
14
16
text
stringlengths
45
2.05k
source
stringlengths
53
111
3f6a6ee9618d-12
theorem for projective orbifolds ([11]). When p = d + 1 − s the proof relies on the Cayley trick, a trick which associates to X a quasi-smooth hypersurface Y in a projective vector bundle, and the Cayley Proposition (4.3) which gives an isomorphism of some primitive cohomologies (4.2) of X and Y . The Cayley trick, following the philosophy of Mavlyutov in [7], reduces results known for quasi-smooth hypersurfaces to quasi-smooth intersection subvarieties. The idea in this paper goes the other way around, we translate some results for quasi-smooth intersection subvarieties to\n\nAcknowledgement. I thank Prof. Ugo Bruzzo and Tiago Fonseca for useful discus- sions. I also acknowledge support from FAPESP postdoctoral grant No. 2019/23499-7.\n\nLet M be a free abelian group of rank d , let N = Hom ( M, Z ) , and N R = N ⊗ Z R .\n\nif there exist k
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-13
N ⊗ Z R .\n\nif there exist k linearly independent primitive elements e\n\n, . . . , e k ∈ N such that σ = { µ\n\ne\n\n+ ⋯ + µ k e k } . • The generators e i are integral if for every i and any nonnegative rational number µ the product µe i is in N only if µ is an integer. • Given two rational simplicial cones σ , σ ′ one says that σ ′ is a face of σ ( σ ′ < σ ) if the set of integral generators of σ ′ is a subset of the set of integral generators of σ . • A finite set Σ = { σ\n\n, . . . , σ t } of rational simplicial cones is called a rational simplicial complete d -dimensional fan if:\n\nall faces of cones in Σ are in Σ ;\n\nif σ, σ ′ ∈ Σ then σ ∩ σ ′ < σ and σ ∩ σ ′ < σ ′
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-14
< σ and σ ∩ σ ′ < σ ′ ;\n\nN R = σ\n\n∪ ⋅ ⋅ ⋅ ∪ σ t .\n\nA rational simplicial complete d -dimensional fan Σ defines a d -dimensional toric variety P d Σ having only orbifold singularities which we assume to be projective. Moreover, T ∶ = N ⊗ Z C ∗ ≃ ( C ∗ ) d is the torus action on P d Σ . We denote by Σ ( i ) the i -dimensional cones\n\nFor a cone σ ∈ Σ, ˆ σ is the set of 1-dimensional cone in Σ that are not contained in σ\n\nand x ˆ σ ∶ = ∏ ρ ∈ ˆ σ x ρ is the associated monomial in S .\n\nDefinition 2.2. The irrelevant ideal of P d Σ is the monomial ideal B Σ ∶ =< x ˆ σ ∣ σ ∈ Σ > and the zero locus Z ( Σ ) ∶ = V (
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-15
locus Z ( Σ ) ∶ = V ( B Σ ) in the affine space A d ∶ = Spec ( S ) is the irrelevant locus.\n\nProposition 2.3 (Theorem 5.1.11 [5]) . The toric variety P d Σ is a categorical quotient A d ∖ Z ( Σ ) by the group Hom ( Cl ( Σ ) , C ∗ ) and the group action is induced by the Cl ( Σ ) - grading of S .\n\nNow we give a brief introduction to complex orbifolds and we mention the needed theorems for the next section. Namely: de Rham theorem and Dolbeault theorem for complex orbifolds.\n\nDefinition 2.4. A complex orbifold of complex dimension d is a singular complex space whose singularities are locally isomorphic to quotient singularities C d / G , for finite sub- groups G ⊂ Gl ( d, C ) .\n\nDefinition 2.5. A differential form on a complex orbifold
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-16
A differential form on a complex orbifold Z is defined locally at z ∈ Z as a G -invariant differential form on C d where G ⊂ Gl ( d, C ) and Z is locally isomorphic to d\n\nRoughly speaking the local geometry of orbifolds reduces to local G -invariant geometry.\n\nWe have a complex of differential forms ( A ● ( Z ) , d ) and a double complex ( A ● , ● ( Z ) , ∂, ¯ ∂ ) of bigraded differential forms which define the de Rham and the Dolbeault cohomology groups (for a fixed p ∈ N ) respectively:\n\n(1,1)-Lefschetz theorem for projective toric orbifolds\n\nDefinition 3.1. A subvariety X ⊂ P d Σ is quasi-smooth if V ( I X ) ⊂ A #Σ ( 1 ) is smooth outside\n\nExample 3.2 . Quasi-smooth hypersurfaces or more generally
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-17
. Quasi-smooth hypersurfaces or more generally quasi-smooth intersection sub-\n\nExample 3.2 . Quasi-smooth hypersurfaces or more generally quasi-smooth intersection sub- varieties are quasi-smooth subvarieties (see [2] or [7] for more details).\n\nRemark 3.3 . Quasi-smooth subvarieties are suborbifolds of P d Σ in the sense of Satake in [8]. Intuitively speaking they are subvarieties whose only singularities come from the ambient\n\nProof. From the exponential short exact sequence\n\nwe have a long exact sequence in cohomology\n\nH 1 (O ∗ X ) → H 2 ( X, Z ) → H 2 (O X ) ≃ H 0 , 2 ( X )\n\nwhere the last isomorphisms is due to Steenbrink in [9]. Now, it is enough to prove the commutativity of the next diagram\n\nwhere the last isomorphisms is due to Steenbrink in [9]. Now,\n\nH 2 ( X, Z ) / / H 2 ( X, O X ) ≃
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-18
/ H 2 ( X, O X ) ≃ Dolbeault H 2 ( X, C ) deRham ≃ H 2 dR ( X, C ) / / H 0 , 2 ¯ ∂ ( X )\n\nof the proof follows as the ( 1 , 1 ) -Lefschetz theorem in [6].\n\nRemark 3.5 . For k = 1 and P d Σ as the projective space, we recover the classical ( 1 , 1 ) - Lefschetz theorem.\n\nBy the Hard Lefschetz Theorem for projective orbifolds (see [11] for details) we\n\nBy the Hard Lefschetz Theorem for projective orbifolds (see [11] for details) we get an isomorphism of cohomologies :\n\ngiven by the Lefschetz morphism and since it is a morphism of Hodge structures, we have:\n\nH 1 , 1 ( X, Q ) ≃ H dim X − 1 , dim X − 1 ( X, Q )\n\nCorollary 3.6. If the dimension of X is 1 , 2 or
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-19
If the dimension of X is 1 , 2 or 3 . The Hodge conjecture holds on X\n\nProof. If the dim C X = 1 the result is clear by the Hard Lefschetz theorem for projective orbifolds. The dimension 2 and 3 cases are covered by Theorem 3.5 and the Hard Lefschetz.\n\nCayley trick and Cayley proposition\n\nThe Cayley trick is a way to associate to a quasi-smooth intersection subvariety a quasi- smooth hypersurface. Let L 1 , . . . , L s be line bundles on P d Σ and let π ∶ P ( E ) → P d Σ be the projective space bundle associated to the vector bundle E = L 1 ⊕ ⋯ ⊕ L s . It is known that P ( E ) is a ( d + s − 1 ) -dimensional simplicial toric variety whose fan depends on the degrees of the line bundles and the fan Σ. Furthermore, if the Cox ring, without considering the grading, of P
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-20
Cox ring, without considering the grading, of P d Σ is C [ x 1 , . . . , x m ] then the Cox ring of P ( E ) is\n\nMoreover for X a quasi-smooth intersection subvariety cut off by f 1 , . . . , f s with deg ( f i ) = [ L i ] we relate the hypersurface Y cut off by F = y 1 f 1 + ⋅ ⋅ ⋅ + y s f s which turns out to be quasi-smooth. For more details see Section 2 in [7].\n\nWe will denote P ( E ) as P d + s − 1 Σ ,X to keep track of its relation with X and P d Σ .\n\nThe following is a key remark.\n\nRemark 4.1 . There is a morphism ι ∶ X → Y ⊂ P d + s − 1 Σ ,X . Moreover every point z ∶ = ( x, y ) ∈ Y with y ≠ 0 has
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-21
y ) ∈ Y with y ≠ 0 has a preimage. Hence for any subvariety W = V ( I W ) ⊂ X ⊂ P d Σ there exists W ′ ⊂ Y ⊂ P d + s − 1 Σ ,X such that π ( W ′ ) = W , i.e., W ′ = { z = ( x, y ) ∣ x ∈ W } .\n\nFor X ⊂ P d Σ a quasi-smooth intersection variety the morphism in cohomology induced by the inclusion i ∗ ∶ H d − s ( P d Σ , C ) → H d − s ( X, C ) is injective by Proposition 1.4 in [7].\n\nDefinition 4.2. The primitive cohomology of H d − s prim ( X ) is the quotient H d − s ( X, C )/ i ∗ ( H d − s ( P d Σ , C )) and H d − s prim ( X, Q ) with rational
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-22
− s prim ( X, Q ) with rational coefficients.\n\nH d − s ( P d Σ , C ) and H d − s ( X, C ) have pure Hodge structures, and the morphism i ∗ is com- patible with them, so that H d − s prim ( X ) gets a pure Hodge structure.\n\nThe next Proposition is the Cayley proposition.\n\nProposition 4.3. [Proposition 2.3 in [3] ] Let X = X 1 ∩⋅ ⋅ ⋅∩ X s be a quasi-smooth intersec- tion subvariety in P d Σ cut off by homogeneous polynomials f 1 . . . f s . Then for p ≠ d + s − 1 2 , d + s − 3 2\n\nRemark 4.5 . The above isomorphisms are also true with rational coefficients since H ● ( X, C ) = H ● ( X, Q ) ⊗ Q C . See the beginning of Section 7.1 in
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-23
C . See the beginning of Section 7.1 in [10] for more details.\n\nTheorem 5.1. Let Y = { F = y 1 f 1 + ⋯ + y k f k = 0 } ⊂ P 2 k + 1 Σ ,X be the quasi-smooth hypersurface associated to the quasi-smooth intersection surface X = X f 1 ∩ ⋅ ⋅ ⋅ ∩ X f k ⊂ P k + 2 Σ . Then on Y the Hodge conjecture holds.\n\nthe Hodge conjecture holds.\n\nProof. If H k,k prim ( X, Q ) = 0 we are done. So let us assume H k,k prim ( X, Q ) ≠ 0. By the Cayley proposition H k,k prim ( Y, Q ) ≃ H 1 , 1 prim ( X, Q ) and by the ( 1 , 1 ) -Lefschetz theorem for projective\n\ntoric orbifolds there is a non-zero algebraic basis λ C 1 , . . . , λ C n with
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-24
1 , . . . , λ C n with rational coefficients of H 1 , 1 prim ( X, Q ) , that is, there are n ∶ = h 1 , 1 prim ( X, Q ) algebraic curves C 1 , . . . , C n in X such that under the Poincar´e duality the class in homology [ C i ] goes to λ C i , [ C i ] ↦ λ C i . Recall that the Cox ring of P k + 2 is contained in the Cox ring of P 2 k + 1 Σ ,X without considering the grading. Considering the grading we have that if α ∈ Cl ( P k + 2 Σ ) then ( α, 0 ) ∈ Cl ( P 2 k + 1 Σ ,X ) . So the polynomials defining C i ⊂ P k + 2 Σ can be interpreted in P 2 k + 1 X, Σ but with different degree. Moreover, by Remark 4.1 each
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-25
degree. Moreover, by Remark 4.1 each C i is contained in Y = { F = y 1 f 1 + ⋯ + y k f k = 0 } and\n\nfurthermore it has codimension k .\n\nClaim: { C i } ni = 1 is a basis of prim ( ) . It is enough to prove that λ C i is different from zero in H k,k prim ( Y, Q ) or equivalently that the cohomology classes { λ C i } ni = 1 do not come from the ambient space. By contradiction, let us assume that there exists a j and C ⊂ P 2 k + 1 Σ ,X such that λ C ∈ H k,k ( P 2 k + 1 Σ ,X , Q ) with i ∗ ( λ C ) = λ C j or in terms of homology there exists a ( k + 2 ) -dimensional algebraic subvariety V ⊂ P 2 k + 1 Σ ,X such that V ∩ Y = C j so
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-26
,X such that V ∩ Y = C j so they are equal as a homology class of P 2 k + 1 Σ ,X ,i.e., [ V ∩ Y ] = [ C j ] . It is easy to check that π ( V ) ∩ X = C j as a subvariety of P k + 2 Σ where π ∶ ( x, y ) ↦ x . Hence [ π ( V ) ∩ X ] = [ C j ] which is equivalent to say that λ C j comes from P k + 2 Σ which contradicts the choice of [ C j ] .\n\nRemark 5.2 . Into the proof of the previous theorem, the key fact was that on X the Hodge conjecture holds and we translate it to Y by contradiction. So, using an analogous argument we have:\n\nargument we have:\n\nProposition 5.3. Let Y = { F = y 1 f s +⋯+ y s f s = 0 } ⊂ P 2 k + 1 Σ
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-27
0 } ⊂ P 2 k + 1 Σ ,X be the quasi-smooth hypersurface associated to a quasi-smooth intersection subvariety X = X f 1 ∩ ⋅ ⋅ ⋅ ∩ X f s ⊂ P d Σ such that d + s = 2 ( k + 1 ) . If the Hodge conjecture holds on X then it holds as well on Y .\n\nCorollary 5.4. If the dimension of Y is 2 s − 1 , 2 s or 2 s + 1 then the Hodge conjecture holds on Y .\n\nProof. By Proposition 5.3 and Corollary 3.6.\n\n[\n\n] Angella, D. Cohomologies of certain orbifolds. Journal of Geometry and Physics\n\n(\n\n),\n\n–\n\n[\n\n] Batyrev, V. V., and Cox, D. A. On the Hodge structure of projective hypersur- faces in toric varieties. Duke Mathematical Journal\n\n,\n\n(Aug\n\n). [\n\n] Bruzzo, U., and Montoya, W. On the Hodge
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-28
U., and Montoya, W. On the Hodge conjecture for quasi-smooth in- tersections in toric varieties. S˜ao Paulo J. Math. Sci. Special Section: Geometry in Algebra and Algebra in Geometry (\n\n). [\n\n] Caramello Jr, F. C. Introduction to orbifolds. a\n\niv:\n\nv\n\n(\n\n). [\n\n] Cox, D., Little, J., and Schenck, H. Toric varieties, vol.\n\nAmerican Math- ematical Soc.,\n\n[\n\n] Griffiths, P., and Harris, J. Principles of Algebraic Geometry. John Wiley & Sons, Ltd,\n\n[\n\n] Mavlyutov, A. R. Cohomology of complete intersections in toric varieties. Pub- lished in Pacific J. of Math.\n\nNo.\n\n(\n\n),\n\n–\n\n[\n\n] Satake, I. On a Generalization of the Notion of Manifold. Proceedings of the National Academy of Sciences of the United States of America\n\n,\n\n(\n\n),\n\n–\n\n[\n\n] Steenbrink,
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-29
Steenbrink, J. H. M. Intersection form for quasi-homogeneous singularities. Com- positio Mathematica\n\n,\n\n(\n\n),\n\n–\n\n[\n\n] Voisin, C. Hodge Theory and Complex Algebraic Geometry I, vol.\n\nof Cambridge Studies in Advanced Mathematics . Cambridge University Press,\n\n[\n\n] Wang, Z. Z., and Zaffran, D. A remark on the Hard Lefschetz theorem for K¨ahler orbifolds. Proceedings of the American Mathematical Society\n\n,\n\n(Aug\n\n).\n\n[2] Batyrev, V. V., and Cox, D. A. On the Hodge structure of projective hypersur- faces in toric varieties. Duke Mathematical Journal 75, 2 (Aug 1994).\n\n[\n\n] Bruzzo, U., and Montoya, W. On the Hodge conjecture for quasi-smooth in- tersections in toric varieties. S˜ao Paulo J. Math. Sci. Special Section: Geometry in Algebra and Algebra in Geometry (\n\n).\n\n[3] Bruzzo, U., and Montoya, W. On the Hodge
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-30
U., and Montoya, W. On the Hodge conjecture for quasi-smooth in- tersections in toric varieties. S˜ao Paulo J. Math. Sci. Special Section: Geometry in Algebra and Algebra in Geometry (2021).\n\nA. R. Cohomology of complete intersections in toric varieties. Pub-', lookup_str='', metadata={'source': '/var/folders/ph/hhm7_zyx4l13k3v8z02dwp1w0000gn/T/tmpgq0ckaja/online_file.pdf'}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-31
Using PDFMiner# from langchain.document_loaders import PDFMinerLoader loader = PDFMinerLoader("example_data/layout-parser-paper.pdf") data = loader.load() Using PyMuPDF# This is the fastest of the PDF parsing options, and contains detailed metadata about the PDF and its pages, as well as returns one document per page. from langchain.document_loaders import PyMuPDFLoader loader = PyMuPDFLoader("example_data/layout-parser-paper.pdf") data = loader.load() data[0]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-32
Document(page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1 (�), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1 Allen Institute for AI\[email protected]\n2 Brown University\nruochen [email protected]\n3 Harvard University\n{melissadell,jacob carlson}@fas.harvard.edu\n4 University of Washington\[email protected]\n5 University of Waterloo\[email protected]\nAbstract. Recent advances in document image analysis (DIA) have been\nprimarily driven by the application of neural networks. Ideally, research\noutcomes could be easily deployed in production and extended for further\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model configurations complicate the easy reuse of im-\nportant innovations by a wide audience. Though there have been on-going\nefforts to improve reusability and simplify deep learning (DL) model\ndevelopment in disciplines like natural language processing and computer\nvision, none of them are optimized for
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-33
processing and computer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademic research across a wide range of disciplines in the social sciences\nand humanities. This paper introduces LayoutParser, an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitive interfaces for applying and customizing DL models for layout de-\ntection, character recognition, and many other document processing tasks.\nTo promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io.\nKeywords: Document Image Analysis · Deep Learning · Layout Analysis\n· Character Recognition · Open Source library · Toolkit.\n1\nIntroduction\nDeep Learning(DL)-based approaches are the state-of-the-art
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-34
Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocument image analysis (DIA) tasks including document image classification [11,\narXiv:2103.15348v2 [cs.CV] 21 Jun 2021\n', lookup_str='', metadata={'file_path': 'example_data/layout-parser-paper.pdf', 'page_number': 1, 'total_pages': 16, 'format': 'PDF 1.5', 'title': '', 'author': '', 'subject': '', 'keywords': '', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.21', 'creationDate': 'D:20210622012710Z', 'modDate': 'D:20210622012710Z', 'trapped': '', 'encryption': None}, lookup_index=0)
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
3f6a6ee9618d-35
Additionally, you can pass along any of the options from the PyMuPDF documentation as keyword arguments in the load call, and it will be pass along to the get_text() call. previous Obsidian next PowerPoint Contents Using PyPDF Using Unstructured Retain Elements Fetching remote PDFs using Unstructured Using PDFMiner Using PyMuPDF By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/pdf.html
956fdfda27ab-0
.ipynb .pdf Telegram Telegram# This notebook covers how to load data from Telegram into a format that can be ingested into LangChain. from langchain.document_loaders import TelegramChatLoader loader = TelegramChatLoader("example_data/telegram.json") loader.load() [Document(page_content="Henry on 2020-01-01T00:00:02: It's 2020...\n\nHenry on 2020-01-01T00:00:04: Fireworks!\n\nGrace 🧤 ðŸ\x8d’ on 2020-01-01T00:00:05: You're a minute late!\n\n", lookup_str='', metadata={'source': 'example_data/telegram.json'}, lookup_index=0)] previous Subtitle Files next Unstructured File Loader By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/telegram.html
8f96999f63be-0
.ipynb .pdf Microsoft Word Contents Retain Elements Microsoft Word# This notebook shows how to load text from Microsoft word documents. from langchain.document_loaders import UnstructuredDocxLoader loader = UnstructuredDocxLoader('example_data/fake.docx') data = loader.load() data [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'example_data/fake.docx'}, lookup_index=0)] Retain Elements# Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements". loader = UnstructuredDocxLoader('example_data/fake.docx', mode="elements") data = loader.load() data [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'example_data/fake.docx'}, lookup_index=0)] previous Markdown next Notebook Contents Retain Elements By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/microsoft_word.html
fffdedd70dd7-0
.ipynb .pdf Obsidian Obsidian# This notebook covers how to load documents from an Obsidian database. Since Obsidian is just stored on disk as a folder of Markdown files, the loader just takes a path to this directory. from langchain.document_loaders import ObsidianLoader loader = ObsidianLoader("<path-to-obsidian>") docs = loader.load() previous Notion next PDF By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/obsidian.html
6e9466a265dc-0
.ipynb .pdf YouTube Contents Add video info YouTube loader from Google Cloud Prerequisites 🧑 Instructions for ingesting your Google Docs data YouTube# How to load documents from YouTube transcripts. from langchain.document_loaders import YoutubeLoader # !pip install youtube-transcript-api loader = YoutubeLoader.from_youtube_url("https://www.youtube.com/watch?v=QsYGlZkevEg", add_video_info=True) loader.load() Add video info# # ! pip install pytube loader = YoutubeLoader.from_youtube_url("https://www.youtube.com/watch?v=QsYGlZkevEg", add_video_info=True) loader.load() YouTube loader from Google Cloud# Prerequisites# Create a Google Cloud project or use an existing project Enable the Youtube Api Authorize credentials for desktop app pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib youtube-transcript-api 🧑 Instructions for ingesting your Google Docs data# By default, the GoogleDriveLoader expects the credentials.json file to be ~/.credentials/credentials.json, but this is configurable using the credentials_file keyword argument. Same thing with token.json. Note that token.json will be created automatically the first time you use the loader. GoogleApiYoutubeLoader can load from a list of Google Docs document ids or a folder id. You can obtain your folder and document id from the URL: Note depending on your set up, the service_account_path needs to be set up. See here for more details. from langchain.document_loaders import GoogleApiClient, GoogleApiYoutubeLoader # Init the GoogleApiClient from pathlib import Path google_api_client = GoogleApiClient(credentials_path=Path("your_path_creds.json")) # Use a Channel
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/youtube.html
6e9466a265dc-1
# Use a Channel youtube_loader_channel = GoogleApiYoutubeLoader(google_api_client=google_api_client, channel_name="Reducible",captions_language="en") # Use Youtube Ids youtube_loader_ids = GoogleApiYoutubeLoader(google_api_client=google_api_client, video_ids=["TrdevFK_am4"], add_video_info=True) # returns a list of Documents youtube_loader_channel.load() previous Word Documents next Utils Contents Add video info YouTube loader from Google Cloud Prerequisites 🧑 Instructions for ingesting your Google Docs data By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/youtube.html
87d8a1b00764-0
.ipynb .pdf Notebook Notebook# This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain. from langchain.document_loaders import NotebookLoader loader = NotebookLoader("example_data/notebook.ipynb", include_outputs=True, max_output_length=20, remove_newline=True) NotebookLoader.load() loads the .ipynb notebook file into a Document object. Parameters: include_outputs (bool): whether to include cell outputs in the resulting document (default is False). max_output_length (int): the maximum number of characters to include from each cell output (default is 10). remove_newline (bool): whether to remove newline characters from the cell sources and outputs (default is False). traceback (bool): whether to include full traceback (default is False). loader.load()
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/notebook.html
87d8a1b00764-1
traceback (bool): whether to include full traceback (default is False). loader.load() [Document(page_content='\'markdown\' cell: \'[\'# Notebook\', \'\', \'This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.\']\'\n\n \'code\' cell: \'[\'from langchain.document_loaders import NotebookLoader\']\'\n\n \'code\' cell: \'[\'loader = NotebookLoader("example_data/notebook.ipynb")\']\'\n\n \'markdown\' cell: \'[\'`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\', \'\', \'**Parameters**:\', \'\', \'* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\', \'* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\', \'* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\', \'* `traceback` (bool): whether to include full traceback (default is False).\']\'\n\n \'code\' cell: \'[\'loader.load(include_outputs=True, max_output_length=20, remove_newline=True)\']\'\n\n', lookup_str='', metadata={'source': 'example_data/notebook.ipynb'}, lookup_index=0)] previous Microsoft Word next Notion By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/notebook.html
a708430d9b9c-0
.ipynb .pdf ReadTheDocs Documentation ReadTheDocs Documentation# This notebook covers how to load content from html that was generated as part of a Read-The-Docs build. For an example of this in the wild, see here. This assumes that the html has already been scraped into a folder. This can be done by uncommenting and running the following command #!wget -r -A.html -P rtdocs https://langchain.readthedocs.io/en/latest/ from langchain.document_loaders import ReadTheDocsLoader loader = ReadTheDocsLoader("rtdocs") docs = loader.load() previous PowerPoint next Roam By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/readthedocs_documentation.html
ced72c30d15c-0
.ipynb .pdf Blackboard Blackboard# This covers how to load data from a Blackboard Learn instance. from langchain.document_loaders import BlackboardLoader loader = BlackboardLoader( blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1", bbrouter="expires:12345...", load_all_recursively=True, ) documents = loader.load() previous AZLyrics next College Confidential By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/blackboard.html
7beb74105a01-0
.ipynb .pdf CoNLL-U CoNLL-U# This is an example of how to load a file in CoNLL-U format. The whole file is treated as one document. The example data (conllu.conllu) is based on one of the standard UD/CoNLL-U examples. from langchain.document_loaders import CoNLLULoader loader = CoNLLULoader("example_data/conllu.conllu") document = loader.load() document previous How To Guides next Airbyte JSON By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/CoNLL-U.html
64921e23d7aa-0
.ipynb .pdf s3 File s3 File# This covers how to load document objects from an s3 file object. from langchain.document_loaders import S3FileLoader #!pip install boto3 loader = S3FileLoader("testing-hwc", "fake.docx") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpxvave6wl/fake.docx'}, lookup_index=0)] previous s3 Directory next Subtitle Files By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/s3_file.html
7567bbaed137-0
.ipynb .pdf Google Drive Contents Prerequisites 🧑 Instructions for ingesting your Google Docs data Google Drive# This notebook covers how to load documents from Google Drive. Currently, only Google Docs are supported. Prerequisites# Create a Google Cloud project or use an existing project Enable the Google Drive API Authorize credentials for desktop app pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib 🧑 Instructions for ingesting your Google Docs data# By default, the GoogleDriveLoader expects the credentials.json file to be ~/.credentials/credentials.json, but this is configurable using the credentials_file keyword argument. Same thing with token.json. Note that token.json will be created automatically the first time you use the loader. GoogleDriveLoader can load from a list of Google Docs document ids or a folder id. You can obtain your folder and document id from the URL: Folder: https://drive.google.com/drive/u/0/folders/1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5 -> folder id is "1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5" Document: https://docs.google.com/document/d/1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw/edit -> document id is "1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw" from langchain.document_loaders import GoogleDriveLoader loader = GoogleDriveLoader(folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5") docs = loader.load() previous GitBook next Gutenberg Contents
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/googledrive.html
7567bbaed137-1
docs = loader.load() previous GitBook next Gutenberg Contents Prerequisites 🧑 Instructions for ingesting your Google Docs data By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/googledrive.html
bfde6c2c3ac5-0
.ipynb .pdf Markdown Contents Retain Elements Markdown# This covers how to load markdown documents into a document format that we can use downstream. from langchain.document_loaders import UnstructuredMarkdownLoader loader = UnstructuredMarkdownLoader("../../../../README.md") data = loader.load() data
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/markdown.html
bfde6c2c3ac5-1
[Document(page_content="ð\x9f¦\x9cï¸\x8fð\x9f”\x97 LangChain\n\nâ\x9a¡ Building applications with LLMs through composability â\x9a¡\n\nProduction Support: As you move your LangChains into production, we'd love to offer more comprehensive support.\nPlease fill out this form and we'll set up a dedicated support Slack channel.\n\nQuick Install\n\npip install langchain\n\nð\x9f¤” What is this?\n\nLarge language models (LLMs) are emerging as a transformative technology, enabling\ndevelopers to build applications that they previously could not.\nBut using these LLMs in isolation is often not enough to\ncreate a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.\n\nThis library is aimed at assisting in the development of those types of applications. Common examples of these types of applications include:\n\nâ\x9d“ Question Answering over specific documents\n\nDocumentation\n\nEnd-to-end Example: Question Answering over Notion Database\n\nð\x9f’¬ Chatbots\n\nDocumentation\n\nEnd-to-end Example:
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/markdown.html
bfde6c2c3ac5-2
Chatbots\n\nDocumentation\n\nEnd-to-end Example: Chat-LangChain\n\nð\x9f¤\x96 Agents\n\nDocumentation\n\nEnd-to-end Example: GPT+WolframAlpha\n\nð\x9f“\x96 Documentation\n\nPlease see here for full documentation on:\n\nGetting started (installation, setting up the environment, simple examples)\n\nHow-To examples (demos, integrations, helper functions)\n\nReference (full API docs)\n Resources (high-level explanation of core concepts)\n\nð\x9f\x9a\x80 What can this help with?\n\nThere are six main areas that LangChain is designed to help with.\nThese are, in increasing order of complexity:\n\nð\x9f“\x83 LLMs and Prompts:\n\nThis includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.\n\nð\x9f”\x97 Chains:\n\nChains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\n\nð\x9f“\x9a
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/markdown.html
bfde6c2c3ac5-3
chains for common applications.\n\nð\x9f“\x9a Data Augmented Generation:\n\nData Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.\n\nð\x9f¤\x96 Agents:\n\nAgents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.\n\nð\x9f§\xa0 Memory:\n\nMemory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\n\nð\x9f§\x90 Evaluation:\n\n[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/markdown.html
bfde6c2c3ac5-4
is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\n\nFor more information on these concepts, please see our full documentation.\n\nð\x9f’\x81 Contributing\n\nAs an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.\n\nFor detailed information on how to contribute, see here.", lookup_str='', metadata={'source': '../../../../README.md'}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/markdown.html
bfde6c2c3ac5-5
Retain Elements# Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements". loader = UnstructuredMarkdownLoader("../../../../README.md", mode="elements") data = loader.load() data[0] Document(page_content='ð\x9f¦\x9cï¸\x8fð\x9f”\x97 LangChain', lookup_str='', metadata={'source': '../../../../README.md', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0) previous IMSDb next Microsoft Word Contents Retain Elements By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/markdown.html
a7ae607d61f9-0
.ipynb .pdf Facebook Chat Facebook Chat# This notebook covers how to load data from the Facebook Chats into a format that can be ingested into LangChain. from langchain.document_loaders import FacebookChatLoader loader = FacebookChatLoader("example_data/facebook_chat.json") loader.load() [Document(page_content='User 2 on 2023-02-05 12:46:11: Bye!\n\nUser 1 on 2023-02-05 12:43:55: Oh no worries! Bye\n\nUser 2 on 2023-02-05 12:24:37: No Im sorry it was my mistake, the blue one is not for sale\n\nUser 1 on 2023-02-05 12:05:40: I thought you were selling the blue one!\n\nUser 1 on 2023-02-05 12:05:09: Im not interested in this bag. Im interested in the blue one!\n\nUser 2 on 2023-02-05 12:04:28: Here is $129\n\nUser 2 on 2023-02-05 12:04:05: Online is at least $100\n\nUser 1 on 2023-02-05 11:59:59: How much do you want?\n\nUser 2 on 2023-02-05 07:17:56: Goodmorning! $50 is too low.\n\nUser 1 on 2023-02-04 23:17:02: Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!\n\n', lookup_str='', metadata={'source': 'docs/modules/document_loaders/examples/example_data/facebook_chat.json'}, lookup_index=0)] previous EverNote next
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/facebook_chat.html
a7ae607d61f9-1
previous EverNote next GCS Directory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/facebook_chat.html
29efb211805c-0
.ipynb .pdf GitBook Contents Load from single GitBook page Load from all paths in a given GitBook GitBook# How to pull page data from any GitBook. from langchain.document_loaders import GitbookLoader loader = GitbookLoader("https://docs.gitbook.com") Load from single GitBook page# page_data = loader.load() page_data [Document(page_content='Introduction to GitBook\nGitBook is a modern documentation platform where teams can document everything from products to internal knowledge bases and APIs.\nWe want to help \nteams to work more efficiently\n by creating a simple yet powerful platform for them to \nshare their knowledge\n.\nOur mission is to make a \nuser-friendly\n and \ncollaborative\n product for everyone to create, edit and share knowledge through documentation.\nPublish your documentation in 5 easy steps\nImport\n\nMove your existing content to GitBook with ease.\nGit Sync\n\nBenefit from our bi-directional synchronisation with GitHub and GitLab.\nOrganise your content\n\nCreate pages and spaces and organize them into collections\nCollaborate\n\nInvite other users and collaborate asynchronously with ease.\nPublish your docs\n\nShare your documentation with selected users or with everyone.\nNext\n - Getting started\nOverview\nLast modified \n3mo ago', lookup_str='', metadata={'source': 'https://docs.gitbook.com', 'title': 'Introduction to GitBook'}, lookup_index=0)] Load from all paths in a given GitBook# For this to work, the GitbookLoader needs to be initialized with the root path (https://docs.gitbook.com in this example) and have load_all_paths set to True. loader = GitbookLoader("https://docs.gitbook.com", load_all_paths=True) all_pages_data = loader.load()
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gitbook.html
29efb211805c-1
all_pages_data = loader.load() Fetching text from https://docs.gitbook.com/ Fetching text from https://docs.gitbook.com/getting-started/overview Fetching text from https://docs.gitbook.com/getting-started/import Fetching text from https://docs.gitbook.com/getting-started/git-sync Fetching text from https://docs.gitbook.com/getting-started/content-structure Fetching text from https://docs.gitbook.com/getting-started/collaboration Fetching text from https://docs.gitbook.com/getting-started/publishing Fetching text from https://docs.gitbook.com/tour/quick-find Fetching text from https://docs.gitbook.com/tour/editor Fetching text from https://docs.gitbook.com/tour/customization Fetching text from https://docs.gitbook.com/tour/member-management Fetching text from https://docs.gitbook.com/tour/pdf-export Fetching text from https://docs.gitbook.com/tour/activity-history Fetching text from https://docs.gitbook.com/tour/insights Fetching text from https://docs.gitbook.com/tour/notifications Fetching text from https://docs.gitbook.com/tour/internationalization Fetching text from https://docs.gitbook.com/tour/keyboard-shortcuts Fetching text from https://docs.gitbook.com/tour/seo Fetching text from https://docs.gitbook.com/advanced-guides/custom-domain Fetching text from https://docs.gitbook.com/advanced-guides/advanced-sharing-and-security Fetching text from https://docs.gitbook.com/advanced-guides/integrations Fetching text from https://docs.gitbook.com/billing-and-admin/account-settings Fetching text from https://docs.gitbook.com/billing-and-admin/plans Fetching text from https://docs.gitbook.com/troubleshooting/faqs Fetching text from https://docs.gitbook.com/troubleshooting/hard-refresh
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gitbook.html
29efb211805c-2
Fetching text from https://docs.gitbook.com/troubleshooting/hard-refresh Fetching text from https://docs.gitbook.com/troubleshooting/report-bugs Fetching text from https://docs.gitbook.com/troubleshooting/connectivity-issues Fetching text from https://docs.gitbook.com/troubleshooting/support print(f"fetched {len(all_pages_data)} documents.") # show second document all_pages_data[2] fetched 28 documents.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gitbook.html
29efb211805c-3
Document(page_content="Import\nFind out how to easily migrate your existing documentation and which formats are supported.\nThe import function allows you to migrate and unify existing documentation in GitBook. You can choose to import single or multiple pages although limits apply. \nPermissions\nAll members with editor permission or above can use the import feature.\nSupported formats\nGitBook supports imports from websites or files that are:\nMarkdown (.md or .markdown)\nHTML (.html)\nMicrosoft Word (.docx).\nWe also support import from:\nConfluence\nNotion\nGitHub Wiki\nQuip\nDropbox Paper\nGoogle Docs\nYou can also upload a ZIP\n \ncontaining HTML or Markdown files when \nimporting multiple pages.\nNote: this feature is in beta.\nFeel free to suggest import sources we don't support yet and \nlet us know\n if you have any issues.\nImport panel\nWhen you create a new space, you'll have the option to import content straight away:\nThe new page menu\nImport a page or subpage by selecting \nImport Page\n from the New Page menu, or \nImport Subpage\n in the page action menu, found in the table
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gitbook.html
29efb211805c-4
in the page action menu, found in the table of contents:\nImport from the page action menu\nWhen you choose your input source, instructions will explain how to proceed.\nAlthough GitBook supports importing content from different kinds of sources, the end result might be different from your source due to differences in product features and document format.\nLimits\nGitBook currently has the following limits for imported content:\nThe maximum number of pages that can be uploaded in a single import is \n20.\nThe maximum number of files (images etc.) that can be uploaded in a single import is \n20.\nGetting started - \nPrevious\nOverview\nNext\n - Getting started\nGit Sync\nLast modified \n4mo ago", lookup_str='', metadata={'source': 'https://docs.gitbook.com/getting-started/import', 'title': 'Import'}, lookup_index=0)
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gitbook.html
29efb211805c-5
previous GCS File Storage next Google Drive Contents Load from single GitBook page Load from all paths in a given GitBook By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gitbook.html
16ee037ee79c-0
.ipynb .pdf s3 Directory Contents Specifying a prefix s3 Directory# This covers how to load document objects from an s3 directory object. from langchain.document_loaders import S3DirectoryLoader #!pip install boto3 loader = S3DirectoryLoader("testing-hwc") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)] Specifying a prefix# You can also specify a prefix for more finegrained control over what files to load. loader = S3DirectoryLoader("testing-hwc", prefix="fake") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)] previous Roam next s3 File Contents Specifying a prefix By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/s3_directory.html
dbac8c1e9fa5-0
.ipynb .pdf Unstructured File Loader Contents Retain Elements Define a Partitioning Strategy PDF Example Unstructured File Loader# This notebook covers how to use Unstructured to load files of many types. Unstructured currently supports loading of text files, powerpoints, html, pdfs, images, and more. # # Install package !pip install "unstructured[local-inference]" !pip install "detectron2@git+https://github.com/facebookresearch/[email protected]#egg=detectron2" !pip install layoutparser[layoutmodels,tesseract] # # Install other dependencies # # https://github.com/Unstructured-IO/unstructured/blob/main/docs/source/installing.rst # !brew install libmagic # !brew install poppler # !brew install tesseract # # If parsing xml / html documents: # !brew install libxml2 # !brew install libxslt # import nltk # nltk.download('punkt') from langchain.document_loaders import UnstructuredFileLoader loader = UnstructuredFileLoader("../../state_of_the_union.txt") docs = loader.load() docs[0].page_content[:400] 'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.\n\nLast year COVID-19 kept us apart. This year we are finally together again.\n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.\n\nWith a duty to one another to the American people to the Constit' Retain Elements# Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/unstructured_file.html
dbac8c1e9fa5-1
loader = UnstructuredFileLoader("../../state_of_the_union.txt", mode="elements") docs = loader.load() docs[:5] [Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0), Document(page_content='Last year COVID-19 kept us apart. This year we are finally together again.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0), Document(page_content='Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0), Document(page_content='With a duty to one another to the American people to the Constitution.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0), Document(page_content='And with an unwavering resolve that freedom will always triumph over tyranny.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0)] Define a Partitioning Strategy# Unstructured document loader allow users to pass in a strategy parameter that lets unstructured know how to partitioning the document. Currently supported strategies are "hi_res" (the default) and "fast". Hi res partitioning strategies are more accurate, but take longer to process. Fast strategies partition the document more quickly, but trade-off accuracy. Not all document types have separate hi res and fast partitioning strategies. For those document types, the strategy kwarg is ignored. In some cases, the high res strategy will fallback to fast if there is a dependency missing (i.e. a model for document partitioning). You can see how to apply a strategy to an UnstructuredFileLoader below.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/unstructured_file.html
dbac8c1e9fa5-2
from langchain.document_loaders import UnstructuredFileLoader loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf", strategy="fast", mode="elements") docs = loader.load() docs[:5] [Document(page_content='1', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0), Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0), Document(page_content='0', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0), Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0), Document(page_content='n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'Title'}, lookup_index=0)] PDF Example# Processing PDF documents works exactly the same way. Unstructured detects the file type and extracts the same types of elements. !wget https://raw.githubusercontent.com/Unstructured-IO/unstructured/main/example-docs/layout-parser-paper.pdf -P "../../" loader = UnstructuredFileLoader("../../layout-parser-paper.pdf", mode="elements") docs = loader.load() docs[:5]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/unstructured_file.html
dbac8c1e9fa5-3
docs = loader.load() docs[:5] [Document(page_content='LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0), Document(page_content='Zejiang Shen 1 ( (ea)\n ), Ruochen Zhang 2 , Melissa Dell 3 , Benjamin Charles Germain Lee 4 , Jacob Carlson 3 , and Weining Li 5', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0), Document(page_content='Allen Institute for AI [email protected]', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0), Document(page_content='Brown University ruochen [email protected]', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0), Document(page_content='Harvard University { melissadell,jacob carlson } @fas.harvard.edu', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0)] previous Telegram next URL Contents Retain Elements Define a Partitioning Strategy PDF Example By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/unstructured_file.html
2a27f20ca66d-0
.ipynb .pdf College Confidential College Confidential# This covers how to load College Confidential webpages into a document format that we can use downstream. from langchain.document_loaders import CollegeConfidentialLoader loader = CollegeConfidentialLoader("https://www.collegeconfidential.com/colleges/brown-university/") data = loader.load() data
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-1
[Document(page_content='\n\n\n\n\n\n\n\nA68FEB02-9D19-447C-B8BC-818149FD6EAF\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Media (2)\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE45B8B13-33D4-450E-B7DB-F66EFE8F2097\n\n\n\n\n\n\n\n\n\nE45B8B13-33D4-450E-B7DB-F66EFE8F2097\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nAbout Brown\n\n\n\n\n\n\nBrown University Overview\nBrown University is a private, nonprofit school in the urban setting of Providence, Rhode Island. Brown was founded in 1764 and the school currently enrolls around 10,696 students a year, including 7,349 undergraduates. Brown provides on-campus housing for students. Most students live in off campus housing.\n📆 Mark your calendar! January 5, 2023 is the final deadline to submit an application for the Fall 2023 semester. \nThere are many ways for students to get involved at Brown! \nLove music or
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-2
students to get involved at Brown! \nLove music or performing? Join a campus band, sing in a chorus, or perform with one of the school\'s theater groups.\nInterested in journalism or communications? Brown students can write for the campus newspaper, host a radio show or be a producer for the student-run television channel.\nInterested in joining a fraternity or sorority? Brown has fraternities and sororities.\nPlanning to play sports? Brown has many options for athletes. See them all and learn more about life at Brown on the Student Life page.\n\n\n\n2022 Brown Facts At-A-Glance\n\n\n\n\n\nAcademic Calendar\nOther\n\n\nOverall Acceptance Rate\n6%\n\n\nEarly Decision Acceptance Rate\n16%\n\n\nEarly Action Acceptance Rate\nEA not offered\n\n\nApplicants Submitting SAT scores\n51%\n\n\nTuition\n$62,680\n\n\nPercent of Need Met\n100%\n\n\nAverage First-Year Financial Aid Package\n$59,749\n\n\n\n\nIs Brown a Good School?\n\nDifferent people have different ideas about what makes a "good" school. Some factors that can help you
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-3
"good" school. Some factors that can help you determine what a good school for you might be include admissions criteria, acceptance rate, tuition costs, and more.\nLet\'s take a look at these factors to get a clearer sense of what Brown offers and if it could be the right college for you.\nBrown Acceptance Rate 2022\nIt is extremely difficult to get into Brown. Around 6% of applicants get into Brown each year. In 2022, just 2,568 out of the 46,568 students who applied were accepted.\nRetention and Graduation Rates at Brown\nRetention refers to the number of students that stay enrolled at a school over time. This is a way to get a sense of how satisfied students are with their school experience, and if they have the support necessary to succeed in college. \nApproximately 98% of first-year, full-time undergrads who start at Browncome back their sophomore year. 95% of Brown undergrads graduate within six years. The average six-year graduation rate for U.S. colleges and
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-4
six-year graduation rate for U.S. colleges and universities is 61% for public schools, and 67% for private, non-profit schools.\nJob Outcomes for Brown Grads\nJob placement stats are a good resource for understanding the value of a degree from Brown by providing a look on how job placement has gone for other grads. \nCheck with Brown directly, for information on any information on starting salaries for recent grads.\nBrown\'s Endowment\nAn endowment is the total value of a school\'s investments, donations, and assets. Endowment is not necessarily an indicator of the quality of a school, but it can give you a sense of how much money a college can afford to invest in expanding programs, improving facilities, and support students. \nAs of 2022, the total market value of Brown University\'s endowment was $4.7 billion. The average college endowment was $905 million in 2021. The school spends $34,086 for each full-time student enrolled. \nTuition and Financial Aid at Brown\nTuition is another important factor
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-5
Financial Aid at Brown\nTuition is another important factor when choose a college. Some colleges may have high tuition, but do a better job at meeting students\' financial need.\nBrown meets 100% of the demonstrated financial need for undergraduates. The average financial aid package for a full-time, first-year student is around $59,749 a year. \nThe average student debt for graduates in the class of 2022 was around $24,102 per student, not including those with no debt. For context, compare this number with the average national debt, which is around $36,000 per borrower. \nThe 2023-2024 FAFSA Opened on October 1st, 2022\nSome financial aid is awarded on a first-come, first-served basis, so fill out the FAFSA as soon as you can. Visit the FAFSA website to apply for student aid. Remember, the first F in FAFSA stands for FREE! You should never have to pay to submit the Free Application for Federal Student Aid (FAFSA), so be very wary of anyone asking you
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-6
so be very wary of anyone asking you for money.\nLearn more about Tuition and Financial Aid at Brown.\nBased on this information, does Brown seem like a good fit? Remember, a school that is perfect for one person may be a terrible fit for someone else! So ask yourself: Is Brown a good school for you?\nIf Brown University seems like a school you want to apply to, click the heart button to save it to your college list.\n\nStill Exploring Schools?\nChoose one of the options below to learn more about Brown:\nAdmissions\nStudent Life\nAcademics\nTuition & Aid\nBrown Community Forums\nThen use the college admissions predictor to take a data science look at your chances of getting into some of the best colleges and universities in the U.S.\nWhere is Brown?\nBrown is located in the urban setting of Providence, Rhode Island, less than an hour from Boston. \nIf you would like to see Brown for yourself, plan a visit. The best way to reach campus is to take Interstate
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-7
best way to reach campus is to take Interstate 95 to Providence, or book a flight to the nearest airport, T.F. Green.\nYou can also take a virtual campus tour to get a sense of what Brown and Providence are like without leaving home.\nConsidering Going to School in Rhode Island?\nSee a full list of colleges in Rhode Island and save your favorites to your college list.\n\n\n\nCollege Info\n\n\n\n\n\n\n\n\n\n Providence, RI 02912\n \n\n\n\n Campus Setting: Urban\n \n\n\n\n\n\n\n\n (401) 863-2378\n \n\n Website\n \n\n
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-8
\n\n Virtual Tour\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nBrown Application Deadline\n\n\n\nFirst-Year Applications are Due\n\nJan 5\n\nTransfer Applications are Due\n\nMar 1\n\n\n\n \n The deadline for Fall first-year applications to Brown is \n Jan 5. \n \n \n \n\n \n The deadline for Fall transfer applications to Brown is \n Mar 1. \n \n \n \n\n \n Check the school website \n for more information about deadlines for specific programs
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-9
for more information about deadlines for specific programs or special admissions programs\n \n \n\n\n\n\n\n\nBrown ACT Scores\n\n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nACT Range\n\n\n \n 33 - 35\n \n \n\n\n\nEstimated Chance of Acceptance by ACT Score\n\n\nACT Score\nEstimated Chance\n\n\n35 and Above\nGood\n\n\n33 to 35\nAvg\n\n\n33 and Less\nLow\n\n\n\n\n\n\nStand out on your college application\n\n• Qualify for scholarships\n• Most students who retest improve their score\n\nSponsored by ACT\n\n\n Take the Next ACT Test\n \n\n\n\n\n\nBrown SAT Scores\n\n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nComposite SAT Range\n\n\n \n 720 -
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-10
720 - 770\n \n \n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nMath SAT Range\n\n\n \n Not available\n \n \n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nReading SAT Range\n\n\n \n 740 - 800\n \n \n\n\n\n\n\n\n Brown Tuition & Fees\n \n\n\n\nTuition & Fees\n\n\n\n $82,286\n \nIn State\n\n\n\n\n
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-11
$82,286\n \nOut-of-State\n\n\n\n\n\n\n\nCost Breakdown\n\n\nIn State\n\n\nOut-of-State\n\n\n\n\nState Tuition\n\n\n\n $62,680\n \n\n\n\n $62,680\n \n\n\n\n\nFees\n\n\n\n $2,466\n \n\n\n\n $2,466\n \n\n\n\n\nHousing\n\n\n\n $15,840\n
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-12
\n\n\n\n $15,840\n \n\n\n\n\nBooks\n\n\n\n $1,300\n \n\n\n\n $1,300\n \n\n\n\n\n\n Total (Before Financial Aid):\n \n\n\n\n $82,286\n \n\n\n\n $82,286\n
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-13
\n\n\n\n\n\n\n\n\n\n\n\nStudent Life\n\n Wondering what life at Brown is like? There are approximately \n 10,696 students enrolled at \n Brown, \n including 7,349 undergraduate students and \n 3,347 graduate students.\n 96% percent of students attend school \n full-time, \n 6% percent are from RI and \n 94% percent of students are from other states.\n \n\n\n\n\n\n None\n \n\n\n\n\nUndergraduate Enrollment\n\n\n\n 96%\n \nFull Time\n\n\n\n\n 4%\n
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-14
4%\n \nPart Time\n\n\n\n\n\n\n\n 94%\n \n\n\n\n\nResidency\n\n\n\n 6%\n \nIn State\n\n\n\n\n 94%\n \nOut-of-State\n\n\n\n\n\n\n\n Data Source: IPEDs and Peterson\'s Databases © 2022 Peterson\'s LLC All rights reserved\n \n', lookup_str='', metadata={'source': 'https://www.collegeconfidential.com/colleges/brown-university/'}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
2a27f20ca66d-15
previous Blackboard next Copy Paste By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/college_confidential.html
6d8bcad326a1-0
.ipynb .pdf CSV Loader Contents CSV Loader Customizing the csv parsing and loading Specify a column to be used identify the document source CSV Loader# Load csv files with a single row per document. from langchain.document_loaders.csv_loader import CSVLoader loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv') data = loader.load() print(data)
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-1
[Document(page_content='Team: Nationals\n"Payroll (millions)": 81.34\n"Wins": 98', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 0}, lookup_index=0), Document(page_content='Team: Reds\n"Payroll (millions)": 82.20\n"Wins": 97', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 1}, lookup_index=0), Document(page_content='Team: Yankees\n"Payroll (millions)": 197.96\n"Wins": 95', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 2}, lookup_index=0), Document(page_content='Team: Giants\n"Payroll (millions)": 117.62\n"Wins": 94', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 3}, lookup_index=0), Document(page_content='Team: Braves\n"Payroll (millions)": 83.31\n"Wins": 94', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 4}, lookup_index=0), Document(page_content='Team: Athletics\n"Payroll (millions)": 55.37\n"Wins": 94', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 5}, lookup_index=0), Document(page_content='Team: Rangers\n"Payroll
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-2
lookup_index=0), Document(page_content='Team: Rangers\n"Payroll (millions)": 120.51\n"Wins": 93', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 6}, lookup_index=0), Document(page_content='Team: Orioles\n"Payroll (millions)": 81.43\n"Wins": 93', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 7}, lookup_index=0), Document(page_content='Team: Rays\n"Payroll (millions)": 64.17\n"Wins": 90', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 8}, lookup_index=0), Document(page_content='Team: Angels\n"Payroll (millions)": 154.49\n"Wins": 89', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 9}, lookup_index=0), Document(page_content='Team: Tigers\n"Payroll (millions)": 132.30\n"Wins": 88', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 10}, lookup_index=0), Document(page_content='Team: Cardinals\n"Payroll (millions)": 110.30\n"Wins": 88', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 11}, lookup_index=0), Document(page_content='Team:
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-3
'row': 11}, lookup_index=0), Document(page_content='Team: Dodgers\n"Payroll (millions)": 95.14\n"Wins": 86', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 12}, lookup_index=0), Document(page_content='Team: White Sox\n"Payroll (millions)": 96.92\n"Wins": 85', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 13}, lookup_index=0), Document(page_content='Team: Brewers\n"Payroll (millions)": 97.65\n"Wins": 83', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 14}, lookup_index=0), Document(page_content='Team: Phillies\n"Payroll (millions)": 174.54\n"Wins": 81', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 15}, lookup_index=0), Document(page_content='Team: Diamondbacks\n"Payroll (millions)": 74.28\n"Wins": 81', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 16}, lookup_index=0), Document(page_content='Team: Pirates\n"Payroll (millions)": 63.43\n"Wins": 79', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 17}, lookup_index=0),
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-4
'row': 17}, lookup_index=0), Document(page_content='Team: Padres\n"Payroll (millions)": 55.24\n"Wins": 76', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 18}, lookup_index=0), Document(page_content='Team: Mariners\n"Payroll (millions)": 81.97\n"Wins": 75', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 19}, lookup_index=0), Document(page_content='Team: Mets\n"Payroll (millions)": 93.35\n"Wins": 74', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 20}, lookup_index=0), Document(page_content='Team: Blue Jays\n"Payroll (millions)": 75.48\n"Wins": 73', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 21}, lookup_index=0), Document(page_content='Team: Royals\n"Payroll (millions)": 60.91\n"Wins": 72', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 22}, lookup_index=0), Document(page_content='Team: Marlins\n"Payroll (millions)": 118.07\n"Wins": 69', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 23}, lookup_index=0),
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-5
'row': 23}, lookup_index=0), Document(page_content='Team: Red Sox\n"Payroll (millions)": 173.18\n"Wins": 69', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 24}, lookup_index=0), Document(page_content='Team: Indians\n"Payroll (millions)": 78.43\n"Wins": 68', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 25}, lookup_index=0), Document(page_content='Team: Twins\n"Payroll (millions)": 94.08\n"Wins": 66', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 26}, lookup_index=0), Document(page_content='Team: Rockies\n"Payroll (millions)": 78.06\n"Wins": 64', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 27}, lookup_index=0), Document(page_content='Team: Cubs\n"Payroll (millions)": 88.19\n"Wins": 61', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 28}, lookup_index=0), Document(page_content='Team: Astros\n"Payroll (millions)": 60.65\n"Wins": 55', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 29}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-6
Customizing the csv parsing and loading# See the csv module documentation for more information of what csv args are supported. loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv', csv_args={ 'delimiter': ',', 'quotechar': '"', 'fieldnames': ['MLB Team', 'Payroll in millions', 'Wins'] }) data = loader.load() print(data)
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-7
[Document(page_content='MLB Team: Team\nPayroll in millions: "Payroll (millions)"\nWins: "Wins"', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 0}, lookup_index=0), Document(page_content='MLB Team: Nationals\nPayroll in millions: 81.34\nWins: 98', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 1}, lookup_index=0), Document(page_content='MLB Team: Reds\nPayroll in millions: 82.20\nWins: 97', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 2}, lookup_index=0), Document(page_content='MLB Team: Yankees\nPayroll in millions: 197.96\nWins: 95', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 3}, lookup_index=0), Document(page_content='MLB Team: Giants\nPayroll in millions: 117.62\nWins: 94', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 4}, lookup_index=0), Document(page_content='MLB Team: Braves\nPayroll in millions: 83.31\nWins: 94', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row':
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-8
'./example_data/mlb_teams_2012.csv', 'row': 5}, lookup_index=0), Document(page_content='MLB Team: Athletics\nPayroll in millions: 55.37\nWins: 94', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 6}, lookup_index=0), Document(page_content='MLB Team: Rangers\nPayroll in millions: 120.51\nWins: 93', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 7}, lookup_index=0), Document(page_content='MLB Team: Orioles\nPayroll in millions: 81.43\nWins: 93', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 8}, lookup_index=0), Document(page_content='MLB Team: Rays\nPayroll in millions: 64.17\nWins: 90', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 9}, lookup_index=0), Document(page_content='MLB Team: Angels\nPayroll in millions: 154.49\nWins: 89', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 10}, lookup_index=0), Document(page_content='MLB Team: Tigers\nPayroll in millions: 132.30\nWins: 88', lookup_str='',
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-9
in millions: 132.30\nWins: 88', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 11}, lookup_index=0), Document(page_content='MLB Team: Cardinals\nPayroll in millions: 110.30\nWins: 88', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 12}, lookup_index=0), Document(page_content='MLB Team: Dodgers\nPayroll in millions: 95.14\nWins: 86', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 13}, lookup_index=0), Document(page_content='MLB Team: White Sox\nPayroll in millions: 96.92\nWins: 85', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 14}, lookup_index=0), Document(page_content='MLB Team: Brewers\nPayroll in millions: 97.65\nWins: 83', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 15}, lookup_index=0), Document(page_content='MLB Team: Phillies\nPayroll in millions: 174.54\nWins: 81', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 16}, lookup_index=0), Document(page_content='MLB Team:
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-10
16}, lookup_index=0), Document(page_content='MLB Team: Diamondbacks\nPayroll in millions: 74.28\nWins: 81', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 17}, lookup_index=0), Document(page_content='MLB Team: Pirates\nPayroll in millions: 63.43\nWins: 79', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 18}, lookup_index=0), Document(page_content='MLB Team: Padres\nPayroll in millions: 55.24\nWins: 76', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 19}, lookup_index=0), Document(page_content='MLB Team: Mariners\nPayroll in millions: 81.97\nWins: 75', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 20}, lookup_index=0), Document(page_content='MLB Team: Mets\nPayroll in millions: 93.35\nWins: 74', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 21}, lookup_index=0), Document(page_content='MLB Team: Blue Jays\nPayroll in millions: 75.48\nWins: 73', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv',
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-11
metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 22}, lookup_index=0), Document(page_content='MLB Team: Royals\nPayroll in millions: 60.91\nWins: 72', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 23}, lookup_index=0), Document(page_content='MLB Team: Marlins\nPayroll in millions: 118.07\nWins: 69', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 24}, lookup_index=0), Document(page_content='MLB Team: Red Sox\nPayroll in millions: 173.18\nWins: 69', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 25}, lookup_index=0), Document(page_content='MLB Team: Indians\nPayroll in millions: 78.43\nWins: 68', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 26}, lookup_index=0), Document(page_content='MLB Team: Twins\nPayroll in millions: 94.08\nWins: 66', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 27}, lookup_index=0), Document(page_content='MLB Team: Rockies\nPayroll in millions: 78.06\nWins: 64',
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-12
in millions: 78.06\nWins: 64', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 28}, lookup_index=0), Document(page_content='MLB Team: Cubs\nPayroll in millions: 88.19\nWins: 61', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 29}, lookup_index=0), Document(page_content='MLB Team: Astros\nPayroll in millions: 60.65\nWins: 55', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 30}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-13
Specify a column to be used identify the document source# Use the source_column argument to specify a column to be set as the source for the document created from each row. Otherwise file_path will be used as the source for all documents created from the csv file. This is useful when using documents loaded from CSV files for chains that answer questions using sources. loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv', source_column="Team") data = loader.load() print(data)
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-14
[Document(page_content='Team: Nationals\n"Payroll (millions)": 81.34\n"Wins": 98', lookup_str='', metadata={'source': 'Nationals', 'row': 0}, lookup_index=0), Document(page_content='Team: Reds\n"Payroll (millions)": 82.20\n"Wins": 97', lookup_str='', metadata={'source': 'Reds', 'row': 1}, lookup_index=0), Document(page_content='Team: Yankees\n"Payroll (millions)": 197.96\n"Wins": 95', lookup_str='', metadata={'source': 'Yankees', 'row': 2}, lookup_index=0), Document(page_content='Team: Giants\n"Payroll (millions)": 117.62\n"Wins": 94', lookup_str='', metadata={'source': 'Giants', 'row': 3}, lookup_index=0), Document(page_content='Team: Braves\n"Payroll (millions)": 83.31\n"Wins": 94', lookup_str='', metadata={'source': 'Braves', 'row': 4}, lookup_index=0), Document(page_content='Team: Athletics\n"Payroll (millions)": 55.37\n"Wins": 94', lookup_str='', metadata={'source': 'Athletics', 'row': 5}, lookup_index=0), Document(page_content='Team: Rangers\n"Payroll (millions)": 120.51\n"Wins": 93', lookup_str='', metadata={'source': 'Rangers', 'row': 6}, lookup_index=0), Document(page_content='Team:
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-15
'row': 6}, lookup_index=0), Document(page_content='Team: Orioles\n"Payroll (millions)": 81.43\n"Wins": 93', lookup_str='', metadata={'source': 'Orioles', 'row': 7}, lookup_index=0), Document(page_content='Team: Rays\n"Payroll (millions)": 64.17\n"Wins": 90', lookup_str='', metadata={'source': 'Rays', 'row': 8}, lookup_index=0), Document(page_content='Team: Angels\n"Payroll (millions)": 154.49\n"Wins": 89', lookup_str='', metadata={'source': 'Angels', 'row': 9}, lookup_index=0), Document(page_content='Team: Tigers\n"Payroll (millions)": 132.30\n"Wins": 88', lookup_str='', metadata={'source': 'Tigers', 'row': 10}, lookup_index=0), Document(page_content='Team: Cardinals\n"Payroll (millions)": 110.30\n"Wins": 88', lookup_str='', metadata={'source': 'Cardinals', 'row': 11}, lookup_index=0), Document(page_content='Team: Dodgers\n"Payroll (millions)": 95.14\n"Wins": 86', lookup_str='', metadata={'source': 'Dodgers', 'row': 12}, lookup_index=0), Document(page_content='Team: White Sox\n"Payroll (millions)": 96.92\n"Wins": 85', lookup_str='', metadata={'source': 'White Sox', 'row':
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-16
lookup_str='', metadata={'source': 'White Sox', 'row': 13}, lookup_index=0), Document(page_content='Team: Brewers\n"Payroll (millions)": 97.65\n"Wins": 83', lookup_str='', metadata={'source': 'Brewers', 'row': 14}, lookup_index=0), Document(page_content='Team: Phillies\n"Payroll (millions)": 174.54\n"Wins": 81', lookup_str='', metadata={'source': 'Phillies', 'row': 15}, lookup_index=0), Document(page_content='Team: Diamondbacks\n"Payroll (millions)": 74.28\n"Wins": 81', lookup_str='', metadata={'source': 'Diamondbacks', 'row': 16}, lookup_index=0), Document(page_content='Team: Pirates\n"Payroll (millions)": 63.43\n"Wins": 79', lookup_str='', metadata={'source': 'Pirates', 'row': 17}, lookup_index=0), Document(page_content='Team: Padres\n"Payroll (millions)": 55.24\n"Wins": 76', lookup_str='', metadata={'source': 'Padres', 'row': 18}, lookup_index=0), Document(page_content='Team: Mariners\n"Payroll (millions)": 81.97\n"Wins": 75', lookup_str='', metadata={'source': 'Mariners', 'row': 19}, lookup_index=0), Document(page_content='Team: Mets\n"Payroll (millions)": 93.35\n"Wins": 74', lookup_str='',
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-17
(millions)": 93.35\n"Wins": 74', lookup_str='', metadata={'source': 'Mets', 'row': 20}, lookup_index=0), Document(page_content='Team: Blue Jays\n"Payroll (millions)": 75.48\n"Wins": 73', lookup_str='', metadata={'source': 'Blue Jays', 'row': 21}, lookup_index=0), Document(page_content='Team: Royals\n"Payroll (millions)": 60.91\n"Wins": 72', lookup_str='', metadata={'source': 'Royals', 'row': 22}, lookup_index=0), Document(page_content='Team: Marlins\n"Payroll (millions)": 118.07\n"Wins": 69', lookup_str='', metadata={'source': 'Marlins', 'row': 23}, lookup_index=0), Document(page_content='Team: Red Sox\n"Payroll (millions)": 173.18\n"Wins": 69', lookup_str='', metadata={'source': 'Red Sox', 'row': 24}, lookup_index=0), Document(page_content='Team: Indians\n"Payroll (millions)": 78.43\n"Wins": 68', lookup_str='', metadata={'source': 'Indians', 'row': 25}, lookup_index=0), Document(page_content='Team: Twins\n"Payroll (millions)": 94.08\n"Wins": 66', lookup_str='', metadata={'source': 'Twins', 'row': 26}, lookup_index=0), Document(page_content='Team: Rockies\n"Payroll
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-18
lookup_index=0), Document(page_content='Team: Rockies\n"Payroll (millions)": 78.06\n"Wins": 64', lookup_str='', metadata={'source': 'Rockies', 'row': 27}, lookup_index=0), Document(page_content='Team: Cubs\n"Payroll (millions)": 88.19\n"Wins": 61', lookup_str='', metadata={'source': 'Cubs', 'row': 28}, lookup_index=0), Document(page_content='Team: Astros\n"Payroll (millions)": 60.65\n"Wins": 55', lookup_str='', metadata={'source': 'Astros', 'row': 29}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
6d8bcad326a1-19
previous Copy Paste next Directory Loader Contents CSV Loader Customizing the csv parsing and loading Specify a column to be used identify the document source By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html
ae95336fe2dc-0
.ipynb .pdf Roam Contents 🧑 Instructions for ingesting your own dataset Roam# This notebook covers how to load documents from a Roam database. This takes a lot of inspiration from the example repo here. 🧑 Instructions for ingesting your own dataset# Export your dataset from Roam Research. You can do this by clicking on the three dots in the upper right hand corner and then clicking Export. When exporting, make sure to select the Markdown & CSV format option. This will produce a .zip file in your Downloads folder. Move the .zip file into this repository. Run the following command to unzip the zip file (replace the Export... with your own file name as needed). unzip Roam-Export-1675782732639.zip -d Roam_DB from langchain.document_loaders import RoamLoader loader = ObsidianLoader("Roam_DB") docs = loader.load() previous ReadTheDocs Documentation next s3 Directory Contents 🧑 Instructions for ingesting your own dataset By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/roam.html
5dccdab83d7a-0
.ipynb .pdf GCS File Storage GCS File Storage# This covers how to load document objects from an Google Cloud Storage (GCS) file object. from langchain.document_loaders import GCSFileLoader # !pip install google-cloud-storage loader = GCSFileLoader(project_name="aist", bucket="testing-hwc", blob="fake.docx") loader.load() /Users/harrisonchase/workplace/langchain/.venv/lib/python3.10/site-packages/google/auth/_default.py:83: UserWarning: Your application has authenticated using end user credentials from Google Cloud SDK without a quota project. You might receive a "quota exceeded" or "API not enabled" error. We recommend you rerun `gcloud auth application-default login` and make sure a quota project is added. Or you can use service accounts instead. For more information about service accounts, see https://cloud.google.com/docs/authentication/ warnings.warn(_CLOUD_SDK_CREDENTIALS_WARNING) [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmp3srlf8n8/fake.docx'}, lookup_index=0)] previous GCS Directory next GitBook By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/gcs_file.html
dddc04df2864-0
.ipynb .pdf AZLyrics AZLyrics# This covers how to load AZLyrics webpages into a document format that we can use downstream. from langchain.document_loaders import AZLyricsLoader loader = AZLyricsLoader("https://www.azlyrics.com/lyrics/mileycyrus/flowers.html") data = loader.load() data
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/azlyrics.html
dddc04df2864-1
[Document(page_content="Miley Cyrus - Flowers Lyrics | AZLyrics.com\n\r\nWe were good, we were gold\nKinda dream that can't be sold\nWe were right till we weren't\nBuilt a home and watched it burn\n\nI didn't wanna leave you\nI didn't wanna lie\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than you can\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\n\nPaint my nails, cherry red\nMatch the roses that you left\nNo remorse, no regret\nI forgive every word you said\n\nI didn't wanna leave you, baby\nI didn't wanna fight\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours, yeah\nSay things you don't
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/azlyrics.html
dddc04df2864-2
to myself for hours, yeah\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than you can\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\nCan love me better\nI\n\nI didn't wanna wanna leave you\nI didn't wanna fight\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours (Yeah)\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than\nYeah, I can love me better than you can, uh\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby (Than you can)\nCan love me better\nI can love me better, baby\nCan love me better\nI\n", lookup_str='', metadata={'source':
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/azlyrics.html
dddc04df2864-3
love me better\nI\n", lookup_str='', metadata={'source': 'https://www.azlyrics.com/lyrics/mileycyrus/flowers.html'}, lookup_index=0)]
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/azlyrics.html
dddc04df2864-4
previous Airbyte JSON next Blackboard By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Mar 22, 2023.
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/azlyrics.html
e2ed6b9e33d4-0
.ipynb .pdf iFixit Contents Searching iFixit using /suggest iFixit# iFixit is the largest, open repair community on the web. The site contains nearly 100k repair manuals, 200k Questions & Answers on 42k devices, and all the data is licensed under CC-BY-NC-SA 3.0. This loader will allow you to download the text of a repair guide, text of Q&A’s and wikis from devices on iFixit using their open APIs. It’s incredibly useful for context related to technical documents and answers to questions about devices in the corpus of data on iFixit. from langchain.document_loaders import IFixitLoader loader = IFixitLoader("https://www.ifixit.com/Teardown/Banana+Teardown/811") data = loader.load() data
https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/ifixit.html