id
stringlengths 14
16
| text
stringlengths 45
2.05k
| source
stringlengths 53
111
|
---|---|---|
425acceea52e-16 | cannot use it.\nYou should only add one key at a time to the path. You cannot add multiple keys at once.\nIf you encounter a "KeyError", go back to the previous key, look at the available keys, and try again.\n\nIf the question does not seem to be related to the JSON, just return "I don\'t know" as the answer.\nAlways begin your interaction with the `json_spec_list_keys` tool with input "data" to see what keys exist in the JSON.\n\nNote that sometimes the value at a given path is large. In this case, you will get an error "Value is a large dictionary, should explore its keys directly".\nIn this case, you should ALWAYS follow up by using the `json_spec_list_keys` tool to see what keys exist at that path.\nDo not simply refer the user to the JSON or a section of the JSON, as this is not a valid answer. Keep digging until you find the answer and explicitly return it.\n', suffix: str = 'Begin!"\n\nQuestion: {input}\nThought: I | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-17 | = 'Begin!"\n\nQuestion: {input}\nThought: I should look at the keys that exist in data to see what I have access to\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]# | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-18 | Construct a json agent from an LLM and tools. | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-19 | langchain.agents.create_openapi_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = "You are an agent designed to answer questions by making web requests to an API given the openapi spec.\n\nIf the question does not seem related to the API, return I don't know. Do not make up an answer.\nOnly use information provided by the tools to construct your response.\n\nFirst, find the base URL needed to make the request.\n\nSecond, find the relevant paths needed to answer the question. Take note that, sometimes, you might need to make more than one request to more than one path to answer the question.\n\nThird, find the required parameters needed to make the request. For GET requests, these are usually URL parameters and for POST requests, these are request body parameters.\n\nFourth, make the requests needed to answer the question. Ensure that you are sending the correct parameters to the request by checking which parameters are required. For parameters with a fixed set | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-20 | which parameters are required. For parameters with a fixed set of values, please use the spec to look at which values are allowed.\n\nUse the exact parameter names as listed in the spec, do not make up any names or abbreviate the names of parameters.\nIf you get a not found error, ensure that you are using a path that actually exists in the spec.\n", suffix: str = 'Begin!"\n\nQuestion: {input}\nThought: I should explore the spec to find the base url for the API.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any) β | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-21 | verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]# | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-22 | Construct a json agent from an LLM and tools.
langchain.agents.create_pandas_dataframe_agent(llm: langchain.llms.base.BaseLLM, df: Any, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = '\nYou are working with a pandas dataframe in Python. The name of the dataframe is `df`.\nYou should use the tools below to answer the question posed of you:', suffix: str = '\nThis is the result of `print(df.head())`:\n{df}\n\nBegin!\nQuestion: {input}\n{agent_scratchpad}', input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Construct a pandas agent from an LLM and dataframe. | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-23 | langchain.agents.create_sql_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-24 | a query, rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]# | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-25 | Construct a sql agent from an LLM and tools.
langchain.agents.create_vectorstore_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions about sets of documents.\nYou have access to tools for interacting with the documents, and the inputs to the tools are questions.\nSometimes, you will be asked to provide sources for your questions, in which case you should use the appropriate tool to do so.\nIf the question does not seem relevant to any of the tools provided, just return "I don\'t know" as the answer.\n', verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Construct a vectorstore agent from an LLM and tools.
langchain.agents.create_vectorstore_router_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions.\nYou have access to tools for interacting with different sources, and the inputs to the tools are questions.\nYour main task is to decide which of the tools is relevant for answering question at hand.\nFor complex questions, you can break the question down into sub questions and use tools to answers the sub questions.\n', verbose: bool = False, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Construct a vectorstore router agent from an LLM and tools.
langchain.agents.get_all_tool_names() β List[str][source]#
Get a list of all possible tool names. | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-26 | Get a list of all possible tool names.
langchain.agents.initialize_agent(tools: Sequence[langchain.tools.base.BaseTool], llm: langchain.llms.base.BaseLLM, agent: Optional[str] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any) β langchain.agents.agent.AgentExecutor[source]#
Load an agent executor given tools and LLM.
Parameters
tools β List of tools this agent has access to.
llm β Language model to use as the agent.
agent β
A string that specified the agent type to use. Valid options are:zero-shot-react-description
react-docstore
self-ask-with-search
conversational-react-description
chat-zero-shot-react-description,
chat-conversational-react-description,
If None and agent_path is also None, will default tozero-shot-react-description.
callback_manager β CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path β Path to serialized agent to use.
agent_kwargs β Additional key word arguments to pass to the underlying agent
**kwargs β Additional key word arguments passed to the agent executor
Returns
An agent executor
langchain.agents.load_agent(path: Union[str, pathlib.Path], **kwargs: Any) β langchain.agents.agent.Agent[source]#
Unified method for loading a agent from LangChainHub or local fs.
langchain.agents.load_tools(tool_names: List[str], llm: Optional[langchain.llms.base.BaseLLM] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) β List[langchain.tools.base.BaseTool][source]#
Load tools based on their name.
Parameters | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
425acceea52e-27 | Load tools based on their name.
Parameters
tool_names β name of tools to load.
llm β Optional language model, may be needed to initialize certain tools.
callback_manager β Optional callback manager. If not provided, default global callback manager will be used.
Returns
List of tools.
langchain.agents.tool(*args: Union[str, Callable], return_direct: bool = False) β Callable[source]#
Make tools out of functions, can be used with or without arguments.
Requires:
Function must be of type (str) -> str
Function must have a docstring
Examples
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
previous
Self Ask With Search
next
Memory
By Harrison Chase
Β© Copyright 2023, Harrison Chase.
Last updated on Mar 22, 2023. | https://langchain.readthedocs.io/en/latest/reference/modules/agents.html |
8106e59279c5-0 | .rst
.pdf
PromptTemplates
PromptTemplates#
Prompt template classes.
pydantic model langchain.prompts.BasePromptTemplate[source]#
Base class for all prompt templates, returning a prompt.
field input_variables: List[str] [Required]#
A list of the names of the variables the prompt template expects.
field output_parser: Optional[langchain.schema.BaseOutputParser] = None#
How to parse the output of calling an LLM on this formatted prompt.
dict(**kwargs: Any) β Dict[source]#
Return dictionary representation of prompt.
abstract format(**kwargs: Any) β str[source]#
Format the prompt with the inputs.
Parameters
kwargs β Any arguments to be passed to the prompt template.
Returns
A formatted string.
Example:
prompt.format(variable1="foo")
abstract format_prompt(**kwargs: Any) β langchain.schema.PromptValue[source]#
Create Chat Messages.
partial(**kwargs: Union[str, Callable[[], str]]) β langchain.prompts.base.BasePromptTemplate[source]#
Return a partial of the prompt template.
save(file_path: Union[pathlib.Path, str]) β None[source]#
Save the prompt.
Parameters
file_path β Path to directory to save prompt to.
Example:
.. code-block:: python
prompt.save(file_path=βpath/prompt.yamlβ)
pydantic model langchain.prompts.ChatPromptTemplate[source]#
format(**kwargs: Any) β str[source]#
Format the prompt with the inputs.
Parameters
kwargs β Any arguments to be passed to the prompt template.
Returns
A formatted string.
Example:
prompt.format(variable1="foo")
format_prompt(**kwargs: Any) β langchain.schema.PromptValue[source]#
Create Chat Messages. | https://langchain.readthedocs.io/en/latest/reference/modules/prompt.html |
8106e59279c5-1 | Create Chat Messages.
partial(**kwargs: Union[str, Callable[[], str]]) β langchain.prompts.base.BasePromptTemplate[source]#
Return a partial of the prompt template.
save(file_path: Union[pathlib.Path, str]) β None[source]#
Save the prompt.
Parameters
file_path β Path to directory to save prompt to.
Example:
.. code-block:: python
prompt.save(file_path=βpath/prompt.yamlβ)
pydantic model langchain.prompts.FewShotPromptTemplate[source]#
Prompt template that contains few shot examples.
field example_prompt: langchain.prompts.prompt.PromptTemplate [Required]#
PromptTemplate used to format an individual example.
field example_selector: Optional[langchain.prompts.example_selector.base.BaseExampleSelector] = None#
ExampleSelector to choose the examples to format into the prompt.
Either this or examples should be provided.
field example_separator: str = '\n\n'#
String separator used to join the prefix, the examples, and suffix.
field examples: Optional[List[dict]] = None#
Examples to format into the prompt.
Either this or example_selector should be provided.
field input_variables: List[str] [Required]#
A list of the names of the variables the prompt template expects.
field prefix: str = ''#
A prompt template string to put before the examples.
field suffix: str [Required]#
A prompt template string to put after the examples.
field template_format: str = 'f-string'#
The format of the prompt template. Options are: βf-stringβ, βjinja2β.
field validate_template: bool = True#
Whether or not to try validating the template.
dict(**kwargs: Any) β Dict[source]#
Return a dictionary of the prompt.
format(**kwargs: Any) β str[source]# | https://langchain.readthedocs.io/en/latest/reference/modules/prompt.html |
8106e59279c5-2 | Return a dictionary of the prompt.
format(**kwargs: Any) β str[source]#
Format the prompt with the inputs.
Parameters
kwargs β Any arguments to be passed to the prompt template.
Returns
A formatted string.
Example:
prompt.format(variable1="foo")
pydantic model langchain.prompts.FewShotPromptWithTemplates[source]#
Prompt template that contains few shot examples.
field example_prompt: langchain.prompts.prompt.PromptTemplate [Required]#
PromptTemplate used to format an individual example.
field example_selector: Optional[langchain.prompts.example_selector.base.BaseExampleSelector] = None#
ExampleSelector to choose the examples to format into the prompt.
Either this or examples should be provided.
field example_separator: str = '\n\n'#
String separator used to join the prefix, the examples, and suffix.
field examples: Optional[List[dict]] = None#
Examples to format into the prompt.
Either this or example_selector should be provided.
field input_variables: List[str] [Required]#
A list of the names of the variables the prompt template expects.
field prefix: Optional[langchain.prompts.base.StringPromptTemplate] = None#
A PromptTemplate to put before the examples.
field suffix: langchain.prompts.base.StringPromptTemplate [Required]#
A PromptTemplate to put after the examples.
field template_format: str = 'f-string'#
The format of the prompt template. Options are: βf-stringβ, βjinja2β.
field validate_template: bool = True#
Whether or not to try validating the template.
dict(**kwargs: Any) β Dict[source]#
Return a dictionary of the prompt.
format(**kwargs: Any) β str[source]#
Format the prompt with the inputs.
Parameters
kwargs β Any arguments to be passed to the prompt template.
Returns | https://langchain.readthedocs.io/en/latest/reference/modules/prompt.html |
8106e59279c5-3 | Parameters
kwargs β Any arguments to be passed to the prompt template.
Returns
A formatted string.
Example:
prompt.format(variable1="foo")
pydantic model langchain.prompts.MessagesPlaceholder[source]#
Prompt template that assumes variable is already list of messages.
format_messages(**kwargs: Any) β List[langchain.schema.BaseMessage][source]#
To a BaseMessage.
property input_variables: List[str]#
Input variables for this prompt template.
langchain.prompts.Prompt#
alias of langchain.prompts.prompt.PromptTemplate
pydantic model langchain.prompts.PromptTemplate[source]#
Schema to represent a prompt for an LLM.
Example
from langchain import PromptTemplate
prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}")
field input_variables: List[str] [Required]#
A list of the names of the variables the prompt template expects.
field template: str [Required]#
The prompt template.
field template_format: str = 'f-string'#
The format of the prompt template. Options are: βf-stringβ, βjinja2β.
field validate_template: bool = True#
Whether or not to try validating the template.
format(**kwargs: Any) β str[source]#
Format the prompt with the inputs.
Parameters
kwargs β Any arguments to be passed to the prompt template.
Returns
A formatted string.
Example:
prompt.format(variable1="foo")
classmethod from_examples(examples: List[str], suffix: str, input_variables: List[str], example_separator: str = '\n\n', prefix: str = '') β langchain.prompts.prompt.PromptTemplate[source]#
Take examples in list format with prefix and suffix to create a prompt.
Intended be used as a way to dynamically create a prompt from examples.
Parameters | https://langchain.readthedocs.io/en/latest/reference/modules/prompt.html |
8106e59279c5-4 | Intended be used as a way to dynamically create a prompt from examples.
Parameters
examples β List of examples to use in the prompt.
suffix β String to go after the list of examples. Should generally
set up the userβs input.
input_variables β A list of variable names the final prompt template
will expect.
example_separator β The separator to use in between examples. Defaults
to two new line characters.
prefix β String that should go before any examples. Generally includes
examples. Default to an empty string.
Returns
The final prompt generated.
classmethod from_file(template_file: Union[str, pathlib.Path], input_variables: List[str]) β langchain.prompts.prompt.PromptTemplate[source]#
Load a prompt from a file.
Parameters
template_file β The path to the file containing the prompt template.
input_variables β A list of variable names the final prompt template
will expect.
Returns
The prompt loaded from the file.
classmethod from_template(template: str) β langchain.prompts.prompt.PromptTemplate[source]#
Load a prompt template from a template.
pydantic model langchain.prompts.StringPromptTemplate[source]#
String prompt should expose the format method, returning a prompt.
format_prompt(**kwargs: Any) β langchain.schema.PromptValue[source]#
Create Chat Messages.
langchain.prompts.load_prompt(path: Union[str, pathlib.Path]) β langchain.prompts.base.BasePromptTemplate[source]#
Unified method for loading a prompt from LangChainHub or local fs.
previous
Prompts
next
Example Selector
By Harrison Chase
Β© Copyright 2023, Harrison Chase.
Last updated on Mar 22, 2023. | https://langchain.readthedocs.io/en/latest/reference/modules/prompt.html |
1f7e94e337b7-0 | .rst
.pdf
SerpAPI
SerpAPI#
For backwards compatiblity.
pydantic model langchain.serpapi.SerpAPIWrapper[source]#
Wrapper around SerpAPI.
To use, you should have the google-search-results python package installed,
and the environment variable SERPAPI_API_KEY set with your API key, or pass
serpapi_api_key as a named parameter to the constructor.
Example
from langchain import SerpAPIWrapper
serpapi = SerpAPIWrapper()
field aiosession: Optional[aiohttp.client.ClientSession] = None#
field params: dict = {'engine': 'google', 'gl': 'us', 'google_domain': 'google.com', 'hl': 'en'}#
field serpapi_api_key: Optional[str] = None#
async arun(query: str) β str[source]#
Use aiohttp to run query through SerpAPI and parse result.
get_params(query: str) β Dict[str, str][source]#
Get parameters for SerpAPI.
results(query: str) β dict[source]#
Run query through SerpAPI and return the raw result.
run(query: str) β str[source]#
Run query through SerpAPI and parse result.
previous
Python REPL
next
SearxNG Search
By Harrison Chase
Β© Copyright 2023, Harrison Chase.
Last updated on Mar 22, 2023. | https://langchain.readthedocs.io/en/latest/reference/modules/serpapi.html |
7a3977c6b700-0 | .rst
.pdf
LLMs
LLMs#
Wrappers on top of large language models APIs.
pydantic model langchain.llms.AI21[source]#
Wrapper around AI21 large language models.
To use, you should have the environment variable AI21_API_KEY
set with your API key.
Example
from langchain.llms import AI21
ai21 = AI21(model="j1-jumbo")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field base_url: Optional[str] = None#
Base url to use, if None decides based on model name.
field countPenalty: langchain.llms.ai21.AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True)#
Penalizes repeated tokens according to count.
field frequencyPenalty: langchain.llms.ai21.AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True)#
Penalizes repeated tokens according to frequency.
field logitBias: Optional[Dict[str, float]] = None#
Adjust the probability of specific tokens being generated.
field maxTokens: int = 256#
The maximum number of tokens to generate in the completion.
field minTokens: int = 0#
The minimum number of tokens to generate in the completion.
field model: str = 'j1-jumbo'#
Model name to use.
field numResults: int = 1#
How many completions to generate for each prompt. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-1 | field numResults: int = 1#
How many completions to generate for each prompt.
field presencePenalty: langchain.llms.ai21.AI21PenaltyData = AI21PenaltyData(scale=0, applyToWhitespaces=True, applyToPunctuations=True, applyToNumbers=True, applyToStopwords=True, applyToEmojis=True)#
Penalizes repeated tokens.
field temperature: float = 0.7#
What sampling temperature to use.
field topP: float = 1.0#
Total probability mass of tokens to consider at each step.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-2 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-3 | encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.AlephAlpha[source]#
Wrapper around Aleph Alpha large language models.
To use, you should have the aleph_alpha_client python package installed, and the
environment variable ALEPH_ALPHA_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Parameters are explained more in depth here:
Aleph-Alpha/aleph-alpha-client
Example
from langchain.llms import AlephAlpha
alpeh_alpha = AlephAlpha(aleph_alpha_api_key="my-api-key")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field aleph_alpha_api_key: Optional[str] = None#
API key for Aleph Alpha API.
field best_of: Optional[int] = None#
returns the one with the βbest ofβ results
(highest log probability per token)
field completion_bias_exclusion_first_token_only: bool = False#
Only consider the first token for the completion_bias_exclusion.
field contextual_control_threshold: Optional[float] = None#
If set to None, attention control parameters only apply to those tokens that have
explicitly been set in the request.
If set to a non-None value, control parameters are also applied to similar tokens. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-4 | If set to a non-None value, control parameters are also applied to similar tokens.
field control_log_additive: Optional[bool] = True#
True: apply control by adding the log(control_factor) to attention scores.
False: (attention_scores - - attention_scores.min(-1)) * control_factor
field echo: bool = False#
Echo the prompt in the completion.
field frequency_penalty: float = 0.0#
Penalizes repeated tokens according to frequency.
field log_probs: Optional[int] = None#
Number of top log probabilities to be returned for each generated token.
field logit_bias: Optional[Dict[int, float]] = None#
The logit bias allows to influence the likelihood of generating tokens.
field maximum_tokens: int = 64#
The maximum number of tokens to be generated.
field minimum_tokens: Optional[int] = 0#
Generate at least this number of tokens.
field model: Optional[str] = 'luminous-base'#
Model name to use.
field n: int = 1#
How many completions to generate for each prompt.
field penalty_bias: Optional[str] = None#
Penalty bias for the completion.
field penalty_exceptions: Optional[List[str]] = None#
List of strings that may be generated without penalty,
regardless of other penalty settings
field penalty_exceptions_include_stop_sequences: Optional[bool] = None#
Should stop_sequences be included in penalty_exceptions.
field presence_penalty: float = 0.0#
Penalizes repeated tokens.
field raw_completion: bool = False#
Force the raw completion of the model to be returned.
field repetition_penalties_include_completion: bool = True#
Flag deciding whether presence penalty or frequency penalty
are updated from the completion.
field repetition_penalties_include_prompt: Optional[bool] = False# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-5 | field repetition_penalties_include_prompt: Optional[bool] = False#
Flag deciding whether presence penalty or frequency penalty are
updated from the prompt.
field stop_sequences: Optional[List[str]] = None#
Stop sequences to use.
field temperature: float = 0.0#
A non-negative float that tunes the degree of randomness in generation.
field tokens: Optional[bool] = False#
return tokens of completion.
field top_k: int = 0#
Number of most likely tokens to consider at each step.
field top_p: float = 0.0#
Total probability mass of tokens to consider at each step.
field use_multiplicative_presence_penalty: Optional[bool] = False#
Flag deciding whether presence penalty is applied
multiplicatively (True) or additively (False).
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-6 | Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-7 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.Anthropic[source]#
Wrapper around Anthropic large language models.
To use, you should have the anthropic python package installed, and the
environment variable ANTHROPIC_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Example
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field max_tokens_to_sample: int = 256#
Denotes the number of tokens to predict per generation.
field model: str = 'claude-v1'#
Model name to use.
field temperature: float = 1.0# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-8 | Model name to use.
field temperature: float = 1.0#
A non-negative float that tunes the degree of randomness in generation.
field top_k: int = 0#
Number of most likely tokens to consider at each step.
field top_p: float = 1#
Total probability mass of tokens to consider at each step.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-9 | exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-10 | Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
stream(prompt: str, stop: Optional[List[str]] = None) β Generator[source]#
Call Anthropic completion_stream and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt β The prompt to pass into the model.
stop β Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from Anthropic.
Example
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.AzureOpenAI[source]#
Azure specific OpenAI class that uses deployment name.
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field batch_size: int = 20#
Batch size to use when passing multiple documents to generate.
field best_of: int = 1#
Generates best_of completions server-side and returns the βbestβ.
field deployment_name: str = ''#
Deployment name to use.
field frequency_penalty: float = 0#
Penalizes repeated tokens according to frequency.
field logit_bias: Optional[Dict[str, float]] [Optional]#
Adjust the probability of specific tokens being generated.
field max_retries: int = 6# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-11 | Adjust the probability of specific tokens being generated.
field max_retries: int = 6#
Maximum number of retries to make when generating.
field max_tokens: int = 256#
The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'text-davinci-003'#
Model name to use.
field n: int = 1#
How many completions to generate for each prompt.
field presence_penalty: float = 0#
Penalizes repeated tokens.
field request_timeout: Optional[Union[float, Tuple[float, float]]] = None#
Timeout for requests to OpenAI completion API. Default is 600 seconds.
field streaming: bool = False#
Whether to stream the results or not.
field temperature: float = 0.7#
What sampling temperature to use.
field top_p: float = 1#
Total probability mass of tokens to consider at each step.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-12 | Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) β langchain.schema.LLMResult#
Create the LLMResult from the choices and prompts.
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-13 | Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Calculate num tokens with tiktoken package.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) β List[List[str]]#
Get the sub prompts for llm call.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
max_tokens_for_prompt(prompt: str) β int#
Calculate the maximum number of tokens possible to generate for a prompt.
Parameters
prompt β The prompt to pass into the model.
Returns
The maximum number of tokens to generate for a prompt.
Example
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
modelname_to_contextsize(modelname: str) β int#
Calculate the maximum number of tokens possible to generate for a model.
text-davinci-003: 4,097 tokens
text-curie-001: 2,048 tokens
text-babbage-001: 2,048 tokens | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-14 | text-babbage-001: 2,048 tokens
text-ada-001: 2,048 tokens
code-davinci-002: 8,000 tokens
code-cushman-001: 2,048 tokens
Parameters
modelname β The modelname we want to know the context size for.
Returns
The maximum context size
Example
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
prep_streaming_params(stop: Optional[List[str]] = None) β Dict[str, Any]#
Prepare the params for streaming.
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
stream(prompt: str, stop: Optional[List[str]] = None) β Generator#
Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt β The prompts to pass into the model.
stop β Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from OpenAI.
Example
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.Banana[source]#
Wrapper around Banana large language models.
To use, you should have the banana-dev python package installed,
and the environment variable BANANA_API_KEY set with your API key. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-15 | and the environment variable BANANA_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field model_key: str = ''#
model endpoint to use
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not
explicitly specified.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-16 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-17 | encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.CerebriumAI[source]#
Wrapper around CerebriumAI large language models.
To use, you should have the cerebrium python package installed, and the
environment variable CEREBRIUMAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field endpoint_url: str = ''#
model endpoint to use
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not
explicitly specified.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-18 | Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-19 | get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.Cohere[source]#
Wrapper around Cohere large language models.
To use, you should have the cohere python package installed, and the
environment variable COHERE_API_KEY set with your API key, or pass
it as a named parameter to the constructor.
Example
from langchain.llms import Cohere
cohere = Cohere(model="gptd-instruct-tft", cohere_api_key="my-api-key")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-20 | Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field frequency_penalty: float = 0.0#
Penalizes repeated tokens according to frequency. Between 0 and 1.
field k: int = 0#
Number of most likely tokens to consider at each step.
field max_tokens: int = 256#
Denotes the number of tokens to predict per generation.
field model: Optional[str] = None#
Model name to use.
field p: int = 1#
Total probability mass of tokens to consider at each step.
field presence_penalty: float = 0.0#
Penalizes repeated tokens. Between 0 and 1.
field temperature: float = 0.75#
A non-negative float that tunes the degree of randomness in generation.
field truncate: Optional[str] = None#
Specify how the client handles inputs longer than the maximum token
length: Truncate from START, END or NONE
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-21 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-22 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.DeepInfra[source]#
Wrapper around DeepInfra deployed models.
To use, you should have the requests python package installed, and the
environment variable DEEPINFRA_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation and text2text-generation for now.
Example
from langchain.llms import DeepInfra
di = DeepInfra(model_id="google/flan-t5-xl",
deepinfra_api_token="my-api-key")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-23 | Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-24 | dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-25 | Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.ForefrontAI[source]#
Wrapper around ForefrontAI large language models.
To use, you should have the environment variable FOREFRONTAI_API_KEY
set with your API key.
Example
from langchain.llms import ForefrontAI
forefrontai = ForefrontAI(endpoint_url="")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field base_url: Optional[str] = None#
Base url to use, if None decides based on model name.
field endpoint_url: str = ''#
Model name to use.
field length: int = 256#
The maximum number of tokens to generate in the completion.
field repetition_penalty: int = 1#
Penalizes repeated tokens according to frequency.
field temperature: float = 0.7#
What sampling temperature to use.
field top_k: int = 40#
The number of highest probability vocabulary tokens to
keep for top-k-filtering.
field top_p: float = 1.0#
Total probability mass of tokens to consider at each step.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-26 | Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-27 | get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.GooseAI[source]#
Wrapper around OpenAI large language models.
To use, you should have the openai python package installed, and the
environment variable GOOSEAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field frequency_penalty: float = 0# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-28 | set_verbose Β» verbose
validate_environment Β» all fields
field frequency_penalty: float = 0#
Penalizes repeated tokens according to frequency.
field logit_bias: Optional[Dict[str, float]] [Optional]#
Adjust the probability of specific tokens being generated.
field max_tokens: int = 256#
The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size.
field min_tokens: int = 1#
The minimum number of tokens to generate in the completion.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'gpt-neo-20b'#
Model name to use
field n: int = 1#
How many completions to generate for each prompt.
field presence_penalty: float = 0#
Penalizes repeated tokens.
field temperature: float = 0.7#
What sampling temperature to use
field top_p: float = 1#
Total probability mass of tokens to consider at each step.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-29 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-30 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.HuggingFaceEndpoint[source]#
Wrapper around HuggingFaceHub Inference Endpoints.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation and text2text-generation for now.
Example
from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url, | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-31 | )
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field endpoint_url: str = ''#
Endpoint URL to use.
field model_kwargs: Optional[dict] = None#
Key word arguments to pass to the model.
field task: Optional[str] = None#
Task to call the model with. Should be a task that returns generated_text.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-32 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-33 | encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.HuggingFaceHub[source]#
Wrapper around HuggingFaceHub models.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation and text2text-generation for now.
Example
from langchain.llms import HuggingFaceHub
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field model_kwargs: Optional[dict] = None#
Key word arguments to pass to the model.
field repo_id: str = 'gpt2'#
Model name to use.
field task: Optional[str] = None#
Task to call the model with. Should be a task that returns generated_text.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-34 | Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-35 | Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.HuggingFacePipeline[source]#
Wrapper around HuggingFace Pipeline API.
To use, you should have the transformers python package installed.
Only supports text-generation and text2text-generation for now.
Example using from_model_id:from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2", task="text-generation" | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-36 | model_id="gpt2", task="text-generation"
)
Example passing pipeline in directly:from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field model_id: str = 'gpt2'#
Model name to use.
field model_kwargs: Optional[dict] = None#
Key word arguments to pass to the model.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-37 | Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
classmethod from_model_id(model_id: str, task: str, device: int = - 1, model_kwargs: Optional[dict] = None, **kwargs: Any) β langchain.llms.base.LLM[source]#
Construct the pipeline object from model_id and task.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-38 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.Modal[source]#
Wrapper around Modal large language models.
To use, you should have the modal-client python package installed.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field endpoint_url: str = ''#
model endpoint to use
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not
explicitly specified.
__call__(prompt: str, stop: Optional[List[str]] = None) β str# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-39 | __call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-40 | dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-41 | Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.NLPCloud[source]#
Wrapper around NLPCloud large language models.
To use, you should have the nlpcloud python package installed, and the
environment variable NLPCLOUD_API_KEY set with your API key.
Example
from langchain.llms import NLPCloud
nlpcloud = NLPCloud(model="gpt-neox-20b")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field bad_words: List[str] = []#
List of tokens not allowed to be generated.
field do_sample: bool = True#
Whether to use sampling (True) or greedy decoding.
field early_stopping: bool = False#
Whether to stop beam search at num_beams sentences.
field length_no_input: bool = True#
Whether min_length and max_length should include the length of the input.
field length_penalty: float = 1.0#
Exponential penalty to the length.
field max_length: int = 256#
The maximum number of tokens to generate in the completion.
field min_length: int = 1#
The minimum number of tokens to generate in the completion.
field model_name: str = 'finetuned-gpt-neox-20b'#
Model name to use.
field num_beams: int = 1#
Number of beams for beam search.
field num_return_sequences: int = 1#
How many completions to generate for each prompt.
field remove_end_sequence: bool = True#
Whether or not to remove the end sequence token.
field remove_input: bool = True#
Remove input text from API response
field repetition_penalty: float = 1.0# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-42 | Remove input text from API response
field repetition_penalty: float = 1.0#
Penalizes repeated tokens. 1.0 means no penalty.
field temperature: float = 0.7#
What sampling temperature to use.
field top_k: int = 50#
The number of highest probability tokens to keep for top-k filtering.
field top_p: int = 1#
Total probability mass of tokens to consider at each step.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-43 | Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-44 | save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.OpenAI[source]#
Generic OpenAI class that uses model name.
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-45 | Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) β langchain.schema.LLMResult#
Create the LLMResult from the choices and prompts.
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Calculate num tokens with tiktoken package.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-46 | Get the number of tokens in the message.
get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) β List[List[str]]#
Get the sub prompts for llm call.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
max_tokens_for_prompt(prompt: str) β int#
Calculate the maximum number of tokens possible to generate for a prompt.
Parameters
prompt β The prompt to pass into the model.
Returns
The maximum number of tokens to generate for a prompt.
Example
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
modelname_to_contextsize(modelname: str) β int#
Calculate the maximum number of tokens possible to generate for a model.
text-davinci-003: 4,097 tokens
text-curie-001: 2,048 tokens
text-babbage-001: 2,048 tokens
text-ada-001: 2,048 tokens
code-davinci-002: 8,000 tokens
code-cushman-001: 2,048 tokens
Parameters
modelname β The modelname we want to know the context size for.
Returns
The maximum context size
Example | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-47 | Returns
The maximum context size
Example
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
prep_streaming_params(stop: Optional[List[str]] = None) β Dict[str, Any]#
Prepare the params for streaming.
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
stream(prompt: str, stop: Optional[List[str]] = None) β Generator#
Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt β The prompts to pass into the model.
stop β Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from OpenAI.
Example
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.OpenAIChat[source]#
Wrapper around OpenAI Chat large language models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import OpenAIChat
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
Validators
build_extra Β» all fields | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-48 | Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field max_retries: int = 6#
Maximum number of retries to make when generating.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'gpt-3.5-turbo'#
Model name to use.
field prefix_messages: List [Optional]#
Series of messages for Chat input.
field streaming: bool = False#
Whether to stream the results or not.
field verbose: bool [Optional]#
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-49 | Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int[source]#
Calculate num tokens with tiktoken package.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-50 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.Petals[source]#
Wrapper around Petals Bloom models.
To use, you should have the petals python package installed, and the
environment variable HUGGINGFACE_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field client: Any = None#
The client to use for the API calls.
field do_sample: bool = True#
Whether or not to use sampling; use greedy decoding otherwise. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-51 | Whether or not to use sampling; use greedy decoding otherwise.
field max_length: Optional[int] = None#
The maximum length of the sequence to be generated.
field max_new_tokens: int = 256#
The maximum number of new tokens to generate in the completion.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call
not explicitly specified.
field model_name: str = 'bigscience/bloom-petals'#
The model to use.
field temperature: float = 0.7#
What sampling temperature to use
field tokenizer: Any = None#
The tokenizer to use for the API calls.
field top_k: Optional[int] = None#
The number of highest probability vocabulary tokens
to keep for top-k-filtering.
field top_p: float = 0.9#
The cumulative probability for top-p sampling.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-52 | Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-53 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.PromptLayerOpenAI[source]#
Wrapper around OpenAI large language models.
To use, you should have the openai and promptlayer python
package installed, and the environment variable OPENAI_API_KEY
and PROMPTLAYER_API_KEY set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAI LLM can also
be passed here. The PromptLayerOpenAI LLM adds two optional
:param pl_tags: List of strings to tag the request with.
:param return_pl_id: If True, the PromptLayer request ID will be
returned in the generation_info field of the
Generation object.
Example | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-54 | returned in the generation_info field of the
Generation object.
Example
from langchain.llms import PromptLayerOpenAI
openai = PromptLayerOpenAI(model_name="text-davinci-003")
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-55 | update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
create_llm_result(choices: Any, prompts: List[str], token_usage: Dict[str, int]) β langchain.schema.LLMResult#
Create the LLMResult from the choices and prompts.
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Calculate num tokens with tiktoken package.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
get_sub_prompts(params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) β List[List[str]]#
Get the sub prompts for llm call.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-56 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
max_tokens_for_prompt(prompt: str) β int#
Calculate the maximum number of tokens possible to generate for a prompt.
Parameters
prompt β The prompt to pass into the model.
Returns
The maximum number of tokens to generate for a prompt.
Example
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
modelname_to_contextsize(modelname: str) β int#
Calculate the maximum number of tokens possible to generate for a model.
text-davinci-003: 4,097 tokens
text-curie-001: 2,048 tokens
text-babbage-001: 2,048 tokens
text-ada-001: 2,048 tokens
code-davinci-002: 8,000 tokens
code-cushman-001: 2,048 tokens
Parameters
modelname β The modelname we want to know the context size for.
Returns
The maximum context size
Example
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
prep_streaming_params(stop: Optional[List[str]] = None) β Dict[str, Any]#
Prepare the params for streaming.
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
stream(prompt: str, stop: Optional[List[str]] = None) β Generator#
Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-57 | BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Parameters
prompt β The prompts to pass into the model.
stop β Optional list of stop words to use when generating.
Returns
A generator representing the stream of tokens from OpenAI.
Example
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.PromptLayerOpenAIChat[source]#
Wrapper around OpenAI large language models.
To use, you should have the openai and promptlayer python
package installed, and the environment variable OPENAI_API_KEY
and PROMPTLAYER_API_KEY set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAIChat LLM can also
be passed here. The PromptLayerOpenAIChat adds two optional
:param pl_tags: List of strings to tag the request with.
:param return_pl_id: If True, the PromptLayer request ID will be
returned in the generation_info field of the
Generation object.
Example
from langchain.llms import PromptLayerOpenAIChat
openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo")
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field max_retries: int = 6#
Maximum number of retries to make when generating.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not explicitly specified. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-58 | Holds any model parameters valid for create call not explicitly specified.
field model_name: str = 'gpt-3.5-turbo'#
Model name to use.
field prefix_messages: List [Optional]#
Series of messages for Chat input.
field streaming: bool = False#
Whether to stream the results or not.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-59 | update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Calculate num tokens with tiktoken package.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-60 | Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.SagemakerEndpoint[source]#
Wrapper around custom Sagemaker Inference Endpoints.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field content_handler: langchain.llms.sagemaker_endpoint.ContentHandlerBase [Required]#
The content handler class that provides an input and
output transform functions to handle formats between LLM
and the endpoint.
field credentials_profile_name: Optional[str] = None#
The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
field endpoint_kwargs: Optional[Dict] = None#
Optional attributes passed to the invoke_endpoint | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-61 | field endpoint_kwargs: Optional[Dict] = None#
Optional attributes passed to the invoke_endpoint
function. See `boto3`_. docs for more info.
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
field endpoint_name: str = ''#
The name of the endpoint from the deployed Sagemaker model.
Must be unique within an AWS Region.
field model_kwargs: Optional[Dict] = None#
Key word arguments to pass to the model.
field region_name: str = ''#
The aws region where the Sagemaker model is deployed, eg. us-west-2.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-62 | Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-63 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.SelfHostedHuggingFaceLLM[source]#
Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another cloud
like Paperspace, Coreweave, etc.).
To use, you should have the runhouse python package installed.
Only supports text-generation and text2text-generation for now.
Example using from_model_id:from langchain.llms import SelfHostedHuggingFaceLLM
import runhouse as rh | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-64 | import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
hf = SelfHostedHuggingFaceLLM(
model_id="google/flan-t5-large", task="text2text-generation",
hardware=gpu
)
Example passing fn that generates a pipeline (bc the pipeline is not serializable):from langchain.llms import SelfHostedHuggingFaceLLM
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
def get_pipeline():
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer
)
return pipe
hf = SelfHostedHuggingFaceLLM(
model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field device: int = 0#
Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.
field hardware: Any = None#
Remote hardware to send the inference function to.
field inference_fn: Callable = <function _generate_text>#
Inference function to send to the remote hardware.
field load_fn_kwargs: Optional[dict] = None#
Key word arguments to pass to the model load function.
field model_id: str = 'gpt2'#
Hugging Face model_id to load the model.
field model_kwargs: Optional[dict] = None#
Key word arguments to pass to the model.
field model_load_fn: Callable = <function _load_transformer>#
Function to load the model remotely on the server. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-65 | Function to load the model remotely on the server.
field model_reqs: List[str] = ['./', 'transformers', 'torch']#
Requirements to install on hardware to inference the model.
field task: str = 'text-generation'#
Hugging Face task (either βtext-generationβ or βtext2text-generationβ).
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-66 | update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) β langchain.llms.base.LLM#
Init the SelfHostedPipeline from a pipeline object or string.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict(). | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-67 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.SelfHostedPipeline[source]#
Run model inference on self-hosted remote hardware.
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
and Lambda, as well as servers specified
by IP address and SSH credentials (such as on-prem, or another
cloud like Paperspace, Coreweave, etc.).
To use, you should have the runhouse python package installed.
Example for custom pipeline and inference functions:from langchain.llms import SelfHostedPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import runhouse as rh
def load_pipeline():
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
return pipeline(
"text-generation", model=model, tokenizer=tokenizer,
max_new_tokens=10
)
def inference_fn(pipeline, prompt, stop = None):
return pipeline(prompt)[0]["generated_text"]
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
llm = SelfHostedPipeline(
model_load_fn=load_pipeline,
hardware=gpu, | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-68 | model_load_fn=load_pipeline,
hardware=gpu,
model_reqs=model_reqs, inference_fn=inference_fn
)
Example for <2GB model (can be serialized and sent directly to the server):from langchain.llms import SelfHostedPipeline
import runhouse as rh
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
my_model = ...
llm = SelfHostedPipeline.from_pipeline(
pipeline=my_model,
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
Example passing model path for larger models:from langchain.llms import SelfHostedPipeline
import runhouse as rh
import pickle
from transformers import pipeline
generator = pipeline(model="gpt2")
rh.blob(pickle.dumps(generator), path="models/pipeline.pkl"
).save().to(gpu, path="models")
llm = SelfHostedPipeline.from_pipeline(
pipeline="models/pipeline.pkl",
hardware=gpu,
model_reqs=["./", "torch", "transformers"],
)
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
field hardware: Any = None#
Remote hardware to send the inference function to.
field inference_fn: Callable = <function _generate_text>#
Inference function to send to the remote hardware.
field load_fn_kwargs: Optional[dict] = None#
Key word arguments to pass to the model load function.
field model_load_fn: Callable [Required]#
Function to load the model remotely on the server.
field model_reqs: List[str] = ['./', 'torch']#
Requirements to install on hardware to inference the model.
__call__(prompt: str, stop: Optional[List[str]] = None) β str# | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-69 | __call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-70 | dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
classmethod from_pipeline(pipeline: Any, hardware: Any, model_reqs: Optional[List[str]] = None, device: int = 0, **kwargs: Any) β langchain.llms.base.LLM[source]#
Init the SelfHostedPipeline from a pipeline object or string.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-71 | Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.StochasticAI[source]#
Wrapper around StochasticAI large language models.
To use, you should have the environment variable STOCHASTICAI_API_KEY
set with your API key.
Example
from langchain.llms import StochasticAI
stochasticai = StochasticAI(api_url="")
Validators
build_extra Β» all fields
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field api_url: str = ''#
Model name to use.
field model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for create call not
explicitly specified.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-72 | Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-73 | Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
pydantic model langchain.llms.Writer[source]#
Wrapper around Writer large language models.
To use, you should have the environment variable WRITER_API_KEY
set with your API key.
Example
from langchain import Writer
writer = Writer(model_id="palmyra-base")
Validators
set_callback_manager Β» callback_manager
set_verbose Β» verbose
validate_environment Β» all fields
field base_url: Optional[str] = None#
Base url to use, if None decides based on model name.
field beam_search_diversity_rate: float = 1.0#
Only applies to beam search, i.e. when the beam width is >1. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-74 | Only applies to beam search, i.e. when the beam width is >1.
A higher value encourages beam search to return a more diverse
set of candidates
field beam_width: Optional[int] = None#
The number of concurrent candidates to keep track of during
beam search
field length: int = 256#
The maximum number of tokens to generate in the completion.
field length_pentaly: float = 1.0#
Only applies to beam search, i.e. when the beam width is >1.
Larger values penalize long candidates more heavily, thus preferring
shorter candidates
field logprobs: bool = False#
Whether to return log probabilities.
field model_id: str = 'palmyra-base'#
Model name to use.
field random_seed: int = 0#
The model generates random results.
Changing the random seed alone will produce a different response
with similar characteristics. It is possible to reproduce results
by fixing the random seed (assuming all other hyperparameters
are also fixed)
field repetition_penalty: float = 1.0#
Penalizes repeated tokens according to frequency.
field stop: Optional[List[str]] = None#
Sequences when completion generation will stop
field temperature: float = 1.0#
What sampling temperature to use.
field tokens_to_generate: int = 24#
Max number of tokens to generate.
field top_k: int = 1#
The number of highest probability vocabulary tokens to
keep for top-k-filtering.
field top_p: float = 1.0#
Total probability mass of tokens to consider at each step.
__call__(prompt: str, stop: Optional[List[str]] = None) β str#
Check Cache and run the LLM on the given prompt and input. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-75 | Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) β Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = βallowβ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) β Model#
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include β fields to include in new model
exclude β fields to exclude from new model, as with values this takes precedence over include
update β values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep β set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) β Dict#
Return a dictionary of the LLM.
generate(prompts: List[str], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Run the LLM on the given prompt and input. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
7a3977c6b700-76 | Run the LLM on the given prompt and input.
generate_prompt(prompts: List[langchain.schema.PromptValue], stop: Optional[List[str]] = None) β langchain.schema.LLMResult#
Take in a list of prompt values and return an LLMResult.
get_num_tokens(text: str) β int#
Get the number of tokens present in the text.
get_num_tokens_from_messages(messages: List[langchain.schema.BaseMessage]) β int#
Get the number of tokens in the message.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) β unicode#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
save(file_path: Union[pathlib.Path, str]) β None#
Save the LLM.
Parameters
file_path β Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=βpath/llm.yamlβ)
classmethod update_forward_refs(**localns: Any) β None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
previous
Streaming with LLMs
next
Document Loaders
By Harrison Chase
Β© Copyright 2023, Harrison Chase.
Last updated on Mar 22, 2023. | https://langchain.readthedocs.io/en/latest/reference/modules/llms.html |
5211de1b2b1f-0 | .rst
.pdf
Embeddings
Embeddings#
Wrappers around embedding modules.
pydantic model langchain.embeddings.CohereEmbeddings[source]#
Wrapper around Cohere embedding models.
To use, you should have the cohere python package installed, and the
environment variable COHERE_API_KEY set with your API key or pass it
as a named parameter to the constructor.
Example
from langchain.embeddings import CohereEmbeddings
cohere = CohereEmbeddings(model="medium", cohere_api_key="my-api-key")
field model: str = 'large'#
Model name to use.
field truncate: Optional[str] = None#
Truncate embeddings that are too long from start or end (βNONEβ|βSTARTβ|βENDβ)
embed_documents(texts: List[str]) β List[List[float]][source]#
Call out to Cohereβs embedding endpoint.
Parameters
texts β The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) β List[float][source]#
Call out to Cohereβs embedding endpoint.
Parameters
text β The text to embed.
Returns
Embeddings for the text.
pydantic model langchain.embeddings.FakeEmbeddings[source]#
embed_documents(texts: List[str]) β List[List[float]][source]#
Embed search docs.
embed_query(text: str) β List[float][source]#
Embed query text.
pydantic model langchain.embeddings.HuggingFaceEmbeddings[source]#
Wrapper around sentence_transformers embedding models.
To use, you should have the sentence_transformers python package installed.
Example
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceEmbeddings(model_name=model_name) | https://langchain.readthedocs.io/en/latest/reference/modules/embeddings.html |
5211de1b2b1f-1 | hf = HuggingFaceEmbeddings(model_name=model_name)
field model_name: str = 'sentence-transformers/all-mpnet-base-v2'#
Model name to use.
embed_documents(texts: List[str]) β List[List[float]][source]#
Compute doc embeddings using a HuggingFace transformer model.
Parameters
texts β The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) β List[float][source]#
Compute query embeddings using a HuggingFace transformer model.
Parameters
text β The text to embed.
Returns
Embeddings for the text.
pydantic model langchain.embeddings.HuggingFaceHubEmbeddings[source]#
Wrapper around HuggingFaceHub embedding models.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Example
from langchain.embeddings import HuggingFaceHubEmbeddings
repo_id = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceHubEmbeddings(
repo_id=repo_id,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
field model_kwargs: Optional[dict] = None#
Key word arguments to pass to the model.
field repo_id: str = 'sentence-transformers/all-mpnet-base-v2'#
Model name to use.
field task: Optional[str] = 'feature-extraction'#
Task to call the model with.
embed_documents(texts: List[str]) β List[List[float]][source]#
Call out to HuggingFaceHubβs embedding endpoint for embedding search docs.
Parameters
texts β The list of texts to embed.
Returns | https://langchain.readthedocs.io/en/latest/reference/modules/embeddings.html |
5211de1b2b1f-2 | Parameters
texts β The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) β List[float][source]#
Call out to HuggingFaceHubβs embedding endpoint for embedding query text.
Parameters
text β The text to embed.
Returns
Embeddings for the text.
pydantic model langchain.embeddings.HuggingFaceInstructEmbeddings[source]#
Wrapper around sentence_transformers embedding models.
To use, you should have the sentence_transformers
and InstructorEmbedding python package installed.
Example
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
hf = HuggingFaceInstructEmbeddings(model_name=model_name)
field embed_instruction: str = 'Represent the document for retrieval: '#
Instruction to use for embedding documents.
field model_name: str = 'hkunlp/instructor-large'#
Model name to use.
field query_instruction: str = 'Represent the question for retrieving supporting documents: '#
Instruction to use for embedding query.
embed_documents(texts: List[str]) β List[List[float]][source]#
Compute doc embeddings using a HuggingFace instruct model.
Parameters
texts β The list of texts to embed.
Returns
List of embeddings, one for each text.
embed_query(text: str) β List[float][source]#
Compute query embeddings using a HuggingFace instruct model.
Parameters
text β The text to embed.
Returns
Embeddings for the text.
pydantic model langchain.embeddings.OpenAIEmbeddings[source]#
Wrapper around OpenAI embedding models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key or pass it
as a named parameter to the constructor.
Example | https://langchain.readthedocs.io/en/latest/reference/modules/embeddings.html |
5211de1b2b1f-3 | as a named parameter to the constructor.
Example
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and optionally and
API_VERSION.
The OPENAI_API_TYPE must be set to βazureβ and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="your-embeddings-deployment-name")
text = "This is a test query."
query_result = embeddings.embed_query(text)
field chunk_size: int = 1000#
Maximum number of texts to embed in each batch
field max_retries: int = 6#
Maximum number of retries to make when generating.
embed_documents(texts: List[str], chunk_size: Optional[int] = 0) β List[List[float]][source]#
Call out to OpenAIβs embedding endpoint for embedding search docs.
Parameters
texts β The list of texts to embed.
chunk_size β The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns
List of embeddings, one for each text.
embed_query(text: str) β List[float][source]#
Call out to OpenAIβs embedding endpoint for embedding query text.
Parameters
text β The text to embed.
Returns | https://langchain.readthedocs.io/en/latest/reference/modules/embeddings.html |
5211de1b2b1f-4 | Parameters
text β The text to embed.
Returns
Embeddings for the text.
pydantic model langchain.embeddings.SagemakerEndpointEmbeddings[source]#
Wrapper around custom Sagemaker Inference Endpoints.
To use, you must supply the endpoint name from your deployed
Sagemaker model & the region where it is deployed.
To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to
access the Sagemaker endpoint.
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
field content_handler: langchain.llms.sagemaker_endpoint.ContentHandlerBase [Required]#
The content handler class that provides an input and
output transform functions to handle formats between LLM
and the endpoint.
field credentials_profile_name: Optional[str] = None#
The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
field endpoint_kwargs: Optional[Dict] = None#
Optional attributes passed to the invoke_endpoint
function. See `boto3`_. docs for more info.
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
field endpoint_name: str = ''#
The name of the endpoint from the deployed Sagemaker model. | https://langchain.readthedocs.io/en/latest/reference/modules/embeddings.html |