|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- en |
|
tags: |
|
- shadow |
|
- controllable |
|
- synthetic |
|
pretty_name: Controllable shadow generation benchmark |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# Overview |
|
|
|
This is the public synthetic test set for controllable shadow generation created by Jasper Research Team. The project page for the research introduced this dataset is available at [this link](https://gojasper.github.io/controllable-shadow-generation-project/). |
|
We created this dataset using [Blender](https://www.blender.org/). It has 3 tracks: softness control, horizontal direction control and vertical direction control. |
|
|
|
Example renders from the dataset below: |
|
|
|
## Softness control: |
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6368c710e68400b192fffb9d/Hl0qJ3onj2Ip8az0GGJgb.jpeg) |
|
|
|
## Horizontal direction control: |
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6368c710e68400b192fffb9d/G9t0BQ1AwQF_xcawPZSgO.jpeg) |
|
|
|
## Vertical direction control: |
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6368c710e68400b192fffb9d/UnkTWbftwMlTdoECQRWsW.jpeg) |
|
|
|
# Usage |
|
The dataset is formatted to be used with [WebDataset](https://huggingface.co/docs/hub/datasets-webdataset). |
|
|
|
```python |
|
import matplotlib.pyplot as plt |
|
import webdataset as wds |
|
|
|
# Create a data iterator |
|
url = f"pipe:curl -s -L https://huggingface.co/datasets/jasperai/controllable-shadow-generation-benchmark/blob/main/controllable-shadow-generation-benchmark.tar" |
|
data_iter = iter(wds.WebDataset(url)) |
|
|
|
# Sample from the dataset |
|
data = next(data_iter) |
|
|
|
# Visualize the image, object mask, and object shadow |
|
_, axs = plt.subplots(1, 3, figsize=(15, 5)) |
|
axs[0].imshow(data['image.png']) |
|
axs[0].set_title('Image') |
|
axs[1].imshow(data['mask.png']) |
|
axs[1].set_title('Mask') |
|
axs[2].imshow(data['shadow.png']) |
|
axs[2].set_title('Shadow') |
|
|
|
# Print the metadata |
|
print(data['metadata.json']) |
|
|
|
``` |
|
Example output: |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6368c710e68400b192fffb9d/2pnmXOlBpHVjFXiw5vhIz.png) |
|
|
|
Example metadata: |
|
```python |
|
{ |
|
'track': 'softness_control', # Which track the image belongs to |
|
'light_energy': 1000, # Energy of the area light |
|
'size': 2, # Size of the area light |
|
'theta': 30.0, # Polar coodinate of the area light |
|
'phi': 0.0, # Azimuthal coodinate of the area light |
|
'r': 8.0, # Radius of the sphere |
|
'light_location': '4.0,0.0,6.928203105926514', # Cartesian coordinate of the area light |
|
'samples': 512, # We use Cycle rendering engine in Blender when creating the dataset. |
|
# This parameter shows # of samples used by Cycle when rendering the image. |
|
'resolution_x': 1024, # Width of the image. |
|
'resolution_y': 1024 # Height of the image. |
|
} |
|
``` |
|
|
|
# Bibtex |
|
If you use this dataset, please consider citing our paper: |
|
``` |
|
@misc{ |
|
title={Controllable Shadow Generation with Single-Step Diffusion Models from Synthetic Data}, |
|
author={Tasar, Onur and Chadebec, Clement and Aubin, Benjamin}, |
|
year={2024}, |
|
eprint={2412.11972}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |