text
stringlengths 0
93.6k
|
---|
parser.add_argument('--local_rank', type=int, default=-1)
|
parser.add_argument('--config', type=str)
|
parser = deepspeed.add_config_arguments(parser)
|
args = parser.parse_args()
|
device = torch.device('cuda', args.local_rank)
|
torch.cuda.set_device(args.local_rank)
|
ws = int(os.environ['WORLD_SIZE'])
|
rk = int(os.environ['RANK'])
|
deepspeed.init_distributed(dist_backend='nccl')
|
with open(args.config, 'r') as fr:
|
ds_cfg = yaml.load(fr, Loader=yaml.FullLoader)
|
model_name = ds_cfg['model_path']
|
if ds_cfg['from_scratch']:
|
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
|
else:
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
if ds_cfg['use_grad_ckpt']: model.gradient_checkpointing_enable()
|
model.train()
|
model.to(device)
|
training_data = TextDataSet(ds_cfg['data_path'],
|
ds_cfg['model_path'],
|
ds_cfg['max_seq_len'])
|
n_iters = ds_cfg['n_epoches'] * len(training_data) // ds_cfg['train_batch_size']
|
ds_cfg['scheduler']['params']['total_num_steps'] = n_iters
|
model_engine, optimizer, train_loader, lr_schdlr = deepspeed.initialize(
|
args=args, model=model,
|
# model_parameters=model.parameters(),
|
training_data=training_data,
|
config=ds_cfg,
|
)
|
print('num of samples: ', len(training_data))
|
print('num of iters: ', n_iters)
|
save_path = ds_cfg['save_path']
|
for e in range(ds_cfg['n_epoches']):
|
train_loader.data_sampler.set_epoch(e)
|
for i, batch in enumerate(train_loader):
|
batch = [el.cuda() for el in batch]
|
outputs = model_engine(input_ids=batch[0][..., 0],
|
attention_mask=batch[0][..., 1], labels=batch[1])
|
model_engine.backward(outputs.loss)
|
model_engine.step()
|
model_engine.save_checkpoint(save_path, client_state={'epoch': e})
|
# <FILESEP>
|
#!/usr/bin/python
|
# -*- coding: UTF-8 -*-
|
import os
|
import shutil
|
import sys
|
import subprocess
|
import string
|
import random
|
import json
|
import re
|
import time
|
import argparse
|
import zipfile
|
from io import BytesIO
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
from utils.decorators import MessageDecorator
|
from utils.provider import APIProvider
|
try:
|
import requests
|
from colorama import Fore, Style
|
except ImportError:
|
print("\tSome dependencies could not be imported (possibly not installed)")
|
print(
|
"Type `pip3 install -r requirements.txt` to "
|
" install all required packages")
|
sys.exit(1)
|
def readisdc():
|
with open("isdcodes.json") as file:
|
isdcodes = json.load(file)
|
return isdcodes
|
def get_version():
|
try:
|
return open(".version", "r").read().strip()
|
except Exception:
|
return '1.0'
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.