text
stringlengths 0
93.6k
|
---|
logger.info("final best loss test performance (at epoch %d)" % best_epoch_loss)
|
print 'test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
|
best_loss_test_err / test_inst, best_loss_test_corr, test_total, best_loss_test_corr * 100 / test_total)
|
logger.info("final best acc test performance (at epoch %d)" % best_epoch_acc)
|
print 'test loss: %.4f, corr: %d, total: %d, acc: %.2f%%' % (
|
best_acc_test_err / test_inst, best_acc_test_corr, test_total, best_acc_test_corr * 100 / test_total)
|
def test():
|
energies_var = T.tensor4('energies', dtype=theano.config.floatX)
|
targets_var = T.imatrix('targets')
|
masks_var = T.matrix('masks', dtype=theano.config.floatX)
|
layer_input = lasagne.layers.InputLayer([2, 2, 3, 3], input_var=energies_var)
|
out = lasagne.layers.get_output(layer_input)
|
loss = crf_loss(out, targets_var, masks_var)
|
prediction, acc = crf_accuracy(energies_var, targets_var)
|
fn = theano.function([energies_var, targets_var, masks_var], [loss, prediction, acc])
|
energies = np.array([[[[10, 15, 20], [5, 10, 15], [3, 2, 0]], [[5, 10, 1], [5, 10, 1], [5, 10, 1]]],
|
[[[5, 6, 7], [2, 3, 4], [2, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]], dtype=np.float32)
|
targets = np.array([[0, 1], [0, 2]], dtype=np.int32)
|
masks = np.array([[1, 1], [1, 0]], dtype=np.float32)
|
l, p, a = fn(energies, targets, masks)
|
print l
|
print p
|
print a
|
if __name__ == '__main__':
|
main()
|
# <FILESEP>
|
import warnings
|
warnings.filterwarnings("ignore")
|
# from apex import amp
|
import numpy as np
|
import torch.utils.data as data
|
from torchvision import transforms
|
import os
|
import torch
|
import argparse
|
from data_preprocessing.dataset_raf import RafDataSet
|
from data_preprocessing.dataset_affectnet import Affectdataset
|
from data_preprocessing.dataset_affectnet_8class import Affectdataset_8class
|
from sklearn.metrics import f1_score, confusion_matrix
|
from time import time
|
from utils import *
|
from data_preprocessing.sam import SAM
|
from models.emotion_hyp import pyramid_trans_expr
|
def parse_args():
|
parser = argparse.ArgumentParser()
|
parser.add_argument('--dataset', type=str, default='rafdb', help='dataset')
|
parser.add_argument('-c', '--checkpoint', type=str, default=None, help='Pytorch checkpoint file path')
|
parser.add_argument('--batch_size', type=int, default=200, help='Batch size.')
|
parser.add_argument('--val_batch_size', type=int, default=32, help='Batch size for validation.')
|
parser.add_argument('--modeltype', type=str, default='large', help='small or base or large')
|
parser.add_argument('--optimizer', type=str, default="adam", help='Optimizer, adam or sgd.')
|
parser.add_argument('--lr', type=float, default=0.00004, help='Initial learning rate for sgd.')
|
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum for sgd')
|
parser.add_argument('--workers', default=2, type=int, help='Number of data loading workers (default: 4)')
|
parser.add_argument('--epochs', type=int, default=300, help='Total training epochs.')
|
parser.add_argument('--gpu', type=str, default='0,1', help='assign multi-gpus by comma concat')
|
return parser.parse_args()
|
def run_training():
|
args = parse_args()
|
torch.manual_seed(123)
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
print("Work on GPU: ", os.environ['CUDA_VISIBLE_DEVICES'])
|
data_transforms = transforms.Compose([
|
transforms.ToPILImage(),
|
transforms.RandomHorizontalFlip(),
|
transforms.Resize((224, 224)),
|
transforms.ToTensor(),
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
transforms.RandomErasing(scale=(0.02, 0.1)),
|
])
|
data_transforms_val = transforms.Compose([
|
transforms.ToPILImage(),
|
transforms.Resize((224, 224)),
|
transforms.ToTensor(),
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
|
num_classes = 7
|
if args.dataset == "rafdb":
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.