binding_affinity / pdbbind.py
jglaser's picture
parse contact matrices from PDBbind and store in chunks
11e49b7
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor
import warnings
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder
from Bio.PDB.NeighborSearch import NeighborSearch
from Bio.PDB.Selection import unfold_entities
import numpy as np
import dask.array as da
from rdkit import Chem
import os
import re
# all punctuation
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
# tokenization regex (Schwaller)
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
cutoff = 5
max_seq = 2048
max_smiles = 512
chunk_size = '1G'
def parse_complex(fn):
try:
name = os.path.basename(fn)
# parse protein sequence and coordinates
parser = PDBParser()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb')
# ppb = PPBuilder()
ppb = CaPPBuilder()
seq = []
for pp in ppb.build_peptides(structure):
seq.append(str(pp.get_sequence()))
seq = ''.join(seq)
# parse ligand, convert to SMILES and map atoms
suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf')
mol = next(suppl)
smi = Chem.MolToSmiles(mol)
# position of atoms in SMILES (not counting punctuation)
atom_order = mol.GetProp("_smilesAtomOutputOrder")
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]
# tokenize the SMILES
tokens = list(filter(None, re.split(molecule_regex, smi)))
# remove punctuation
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]
k = 0
token_pos = []
token_id = []
for i,token in enumerate(masked_tokens):
if token != '':
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
token_id.append(i)
k += 1
# query protein for ligand contacts
atoms = unfold_entities(structure, 'A')
neighbor_search = NeighborSearch(atoms)
close_residues = [neighbor_search.search(center=t, level='R', radius=cutoff) for t in token_pos]
residue_id = [[c.get_id()[1]-1 for c in query] for query in close_residues] # zero-based
# contact map
contact_map = np.zeros((max_seq, max_smiles),dtype=np.float32)
for query,t in zip(residue_id,token_id):
for r in query:
contact_map[r,t] = 1
return name, seq, smi, contact_map
except Exception as e:
print(e)
return None
if __name__ == '__main__':
import glob
filenames = glob.glob('data/pdbbind/v2020-other-PL/*')
filenames.extend(glob.glob('data/pdbbind/refined-set/*'))
comm = MPI.COMM_WORLD
with MPICommExecutor(comm, root=0) as executor:
if executor is not None:
result = executor.map(parse_complex, filenames)
result = list(result)
names = [r[0] for r in result if r is not None]
seqs = [r[1] for r in result if r is not None]
all_smiles = [r[2] for r in result if r is not None]
all_contacts = [r[3] for r in result if r is not None]
import pandas as pd
df = pd.DataFrame({'name': names, 'seq': seqs, 'smiles': all_smiles})
all_contacts = da.from_array(all_contacts, chunks=chunk_size)
da.to_npy_stack('data/pdbbind_contacts/', all_contacts)
df.to_parquet('data/pdbbind_complex.parquet')