lextreme / README.md
Joelito's picture
Update README.md (#4)
5f180ea
|
raw
history blame
6.98 kB
metadata
annotations_creators:
  - other
language_creators:
  - found
language:
  - bg
  - cs
  - da
  - de
  - el
  - en
  - es
  - et
  - fi
  - fr
  - ga
  - hr
  - hu
  - it
  - lt
  - lv
  - mt
  - nl
  - pl
  - pt
  - ro
  - sk
  - sl
  - sv
license:
  - cc-by-4.0
multilinguality:
  - multilingual
paperswithcode_id: null
pretty_name: 'LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding'
size_categories:
  - 10K<n<100K
source_datasets:
  - extended
task_categories:
  - text-classification
  - token-classification
task_ids:
  - multi-class-classification
  - multi-label-classification
  - topic-classification
  - text-classification-other-judgement-prediction
  - named-entity-recognition
  - named entity recognition and classification (NERC)

Dataset Card for LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding

Table of Contents

Dataset Description

  • Homepage:
  • Repository:
  • Paper:
  • Leaderboard:
  • Point of Contact: Joel Niklaus

Dataset Summary

The dataset consists of 11 diverse multilingual legal NLU datasets. 6 datasets have one single configuration and 5 datasets have two or three configurations. This leads to a total of 18 tasks (8 single-label text classification tasks, 5 multi-label text classification tasks and 5 token-classification tasks).

Use the dataset like this:

from datasets import load_dataset
dataset = load_dataset("joelito/lextreme", "swiss_judgment_prediction")

Supported Tasks and Leaderboards

The dataset supports the tasks of text classification and token classification. In detail, we support the folliwing tasks and configurations:

task task type configurations link
Brazilian Court Decisions Judgment Prediction (judgment, unanimity) joelito/brazilian_court_decisions
Swiss Judgment Prediction Judgment Prediction default joelito/swiss_judgment_prediction
German Argument Mining Argument Mining default joelito/german_argument_mining
Greek Legal Code Topic Classification (volume, chapter, subject) greek_legal_code
Online Terms of Service Unfairness Classification (unfairness level, claus topic) online_terms_of_service
Covid 19 Emergency Event Event Classification default covid19_emergency_event
MultiEURLEX Topic Classification (level 1, level 2, level 3) multi_eurlex
LeNER BR Named Entity Recognition default lener_br
LegalNERo Named Entity Recognition default legalnero
Greek Legal NER Named Entity Recognition default greek_legal_ner
MAPA Named Entity Recognition (coarse, fine) mapa

Languages

The following languages are supported: bg , cs , da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv

Dataset Structure

Data Instances

The file format is jsonl and three data splits are present for each configuration (train, validation and test).

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@misc{niklaus2023lextreme,
    title={LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain},
    author={Joel Niklaus and Veton Matoshi and Pooja Rani and Andrea Galassi and Matthias Stürmer and Ilias Chalkidis},
    year={2023},
    eprint={2301.13126},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Contributions

Thanks to @JoelNiklaus for adding this dataset.