|
--- |
|
annotations_creators: |
|
- other |
|
language_creators: |
|
- found |
|
language: |
|
- bg |
|
- cs |
|
- da |
|
- de |
|
- el |
|
- en |
|
- es |
|
- et |
|
- fi |
|
- fr |
|
- ga |
|
- hr |
|
- hu |
|
- it |
|
- lt |
|
- lv |
|
- mt |
|
- nl |
|
- pl |
|
- pt |
|
- ro |
|
- sk |
|
- sl |
|
- sv |
|
license: |
|
- cc-by-4.0 |
|
multilinguality: |
|
- multilingual |
|
paperswithcode_id: null |
|
pretty_name: "LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding" |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- extended |
|
task_categories: |
|
- text-classification |
|
- token-classification |
|
task_ids: |
|
- multi-class-classification |
|
- multi-label-classification |
|
- topic-classification |
|
- named-entity-recognition |
|
|
|
--- |
|
|
|
# Dataset Card for LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding |
|
|
|
## Table of Contents |
|
|
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** |
|
- **Repository:** |
|
- **Paper:** |
|
- **Leaderboard:** |
|
- **Point of Contact:** [Joel Niklaus](mailto:[email protected]) |
|
|
|
### Dataset Summary |
|
|
|
The dataset consists of 11 diverse multilingual legal NLU datasets. 6 datasets have one single configuration and 5 datasets have two or three configurations. This leads to a total of 18 tasks (8 single-label text classification tasks, 5 multi-label text classification tasks and 5 token-classification tasks). |
|
|
|
Use the dataset like this: |
|
```python |
|
from datasets import load_dataset |
|
dataset = load_dataset("joelito/lextreme", "swiss_judgment_prediction") |
|
``` |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
The dataset supports the tasks of text classification and token classification. |
|
In detail, we support the folliwing tasks and configurations: |
|
|
|
|
|
| task | task type | configurations | link | |
|
|:---------------------------|--------------------------:|---------------------------------:|-------------------------------------------------------------------------------------------------------:| |
|
| Brazilian Court Decisions | Judgment Prediction | (judgment, unanimity) | [joelito/brazilian_court_decisions](https://huggingface.co/datasets/joelito/brazilian_court_decisions) | |
|
| Swiss Judgment Prediction | Judgment Prediction | default | [joelito/swiss_judgment_prediction](https://huggingface.co/datasets/swiss_judgment_prediction) | |
|
| German Argument Mining | Argument Mining | default | [joelito/german_argument_mining](https://huggingface.co/datasets/joelito/german_argument_mining) | |
|
| Greek Legal Code | Topic Classification | (volume, chapter, subject) | [greek_legal_code](https://huggingface.co/datasets/greek_legal_code) | |
|
| Online Terms of Service | Unfairness Classification | (unfairness level, clause topic) | [online_terms_of_service](https://huggingface.co/datasets/joelito/online_terms_of_service) | |
|
| Covid 19 Emergency Event | Event Classification | default | [covid19_emergency_event](https://huggingface.co/datasets/joelito/covid19_emergency_event) | |
|
| MultiEURLEX | Topic Classification | (level 1, level 2, level 3) | [multi_eurlex](https://huggingface.co/datasets/multi_eurlex) | |
|
| LeNER BR | Named Entity Recognition | default | [lener_br](https://huggingface.co/datasets/lener_br) | |
|
| LegalNERo | Named Entity Recognition | default | [legalnero](https://huggingface.co/datasets/joelito/legalnero) | |
|
| Greek Legal NER | Named Entity Recognition | default | [greek_legal_ner](https://huggingface.co/datasets/joelito/greek_legal_ner) | |
|
| MAPA | Named Entity Recognition | (coarse, fine) | [mapa](https://huggingface.co/datasets/joelito/mapa) | |
|
|
|
|
|
### Languages |
|
|
|
The following languages are supported: bg , cs , da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
The file format is jsonl and three data splits are present for each configuration (train, validation and test). |
|
|
|
### Data Fields |
|
|
|
[More Information Needed] |
|
|
|
### Data Splits |
|
|
|
[More Information Needed] |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
How can I contribute a dataset to lextreme? |
|
Please follow the following steps: |
|
1. Make sure your dataset is available on the huggingface hub and has a train, validation and test split. |
|
2. Create a pull request to the lextreme repository by adding the following to the lextreme.py file: |
|
- Create a dict _{YOUR_DATASET_NAME} (similar to _BRAZILIAN_COURT_DECISIONS_JUDGMENT) containing all the necessary information about your dataset (task_type, input_col, label_col, etc.) |
|
- Add your dataset to the BUILDER_CONFIGS list: `LextremeConfig(name="{your_dataset_name}", **_{YOUR_DATASET_NAME})` |
|
- Test that it works correctly by loading your subset with `load_dataset("lextreme", "{your_dataset_name}")` and inspecting a few examples. |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Licensing Information |
|
|
|
[More Information Needed] |
|
|
|
### Citation Information |
|
|
|
``` |
|
@misc{niklaus2023lextreme, |
|
title={LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain}, |
|
author={Joel Niklaus and Veton Matoshi and Pooja Rani and Andrea Galassi and Matthias Stürmer and Ilias Chalkidis}, |
|
year={2023}, |
|
eprint={2301.13126}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to [@JoelNiklaus](https://github.com/joelniklaus) for adding this dataset. |
|
|