Merge branch 'main' of https://huggingface.co/datasets/joelito/lextreme into main
65f6046
annotations_creators: | |
- other | |
language_creators: | |
- found | |
language: | |
- bg | |
- cs | |
- da | |
- de | |
- el | |
- en | |
- es | |
- et | |
- fi | |
- fr | |
- ga | |
- hr | |
- hu | |
- it | |
- lt | |
- lv | |
- mt | |
- nl | |
- pl | |
- pt | |
- ro | |
- sk | |
- sl | |
- sv | |
license: | |
- cc-by-4.0 | |
multilinguality: | |
- multilingual | |
paperswithcode_id: null | |
pretty_name: "LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding" | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- extended | |
task_categories: | |
- text-classification | |
- token-classification | |
task_ids: | |
- multi-class-classification | |
- multi-label-classification | |
- topic-classification | |
- text-classification-other-judgement-prediction | |
- named-entity-recognition | |
- named entity recognition and classification (NERC) | |
# Dataset Card for LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding | |
## Table of Contents | |
- [Table of Contents](#table-of-contents) | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** | |
- **Repository:** | |
- **Paper:** | |
- **Leaderboard:** | |
- **Point of Contact:** [Joel Niklaus](mailto:[email protected]) | |
### Dataset Summary | |
The dataset consists of 11 diverse multilingual legal NLU datasets. 6 datasets have one single configuration and 5 datasets have two or three configurations. This leads to a total of 18 tasks (8 single-label text classification tasks, 5 multi-label text classification tasks and 5 token-classification tasks). | |
Use the dataset like this: | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("joelito/lextreme", "swiss_judgment_prediction") | |
``` | |
### Supported Tasks and Leaderboards | |
The dataset supports the tasks of text classification and token classification. | |
In detail, we support the folliwing tasks and configurations: | |
| task | task type | configurations | link | | |
|:---------------------------|--------------------------:|--------------------------------:|-------------------------------------------------------------------------------------------------------:| | |
| Brazilian Court Decisions | Judgment Prediction | (judgment, unanimity) | [joelito/brazilian_court_decisions](https://huggingface.co/datasets/joelito/brazilian_court_decisions) | | |
| Swiss Judgment Prediction | Judgment Prediction | default | [joelito/swiss_judgment_prediction](https://huggingface.co/datasets/swiss_judgment_prediction) | | |
| German Argument Mining | Argument Mining | default | [joelito/german_argument_mining](https://huggingface.co/datasets/joelito/german_argument_mining) | | |
| Greek Legal Code | Topic Classification | (volume, chapter, subject) | [greek_legal_code](https://huggingface.co/datasets/greek_legal_code) | | |
| Online Terms of Service | Unfairness Classification | (unfairness level, claus topic) | [online_terms_of_service](https://huggingface.co/datasets/joelito/online_terms_of_service) | | |
| Covid 19 Emergency Event | Event Classification | default | [covid19_emergency_event](https://huggingface.co/datasets/joelito/covid19_emergency_event) | | |
| MultiEURLEX | Topic Classification | (level 1, level 2, level 3) | [multi_eurlex](https://huggingface.co/datasets/multi_eurlex) | | |
| LeNER BR | Named Entity Recognition | default | [lener_br](https://huggingface.co/datasets/lener_br) | | |
| LegalNERo | Named Entity Recognition | default | [legalnero](https://huggingface.co/datasets/joelito/legalnero) | | |
| Greek Legal NER | Named Entity Recognition | default | [greek_legal_ner](https://huggingface.co/datasets/joelito/greek_legal_ner) | | |
| MAPA | Named Entity Recognition | (coarse, fine) | [mapa](https://huggingface.co/datasets/joelito/mapa) | | |
### Languages | |
The following languages are supported: bg , cs , da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv | |
## Dataset Structure | |
### Data Instances | |
The file format is jsonl and three data splits are present for each configuration (train, validation and test). | |
### Data Fields | |
[More Information Needed] | |
### Data Splits | |
[More Information Needed] | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
How can I contribute a dataset to lextreme? | |
Please follow the following steps: | |
1. Make sure your dataset is available on the huggingface hub and has a train, validation and test split. | |
2. Create a pull request to the lextreme repository by adding the following to the lextreme.py file: | |
- Create a dict _{YOUR_DATASET_NAME} (similar to _BRAZILIAN_COURT_DECISIONS_JUDGMENT) containing all the necessary information about your dataset (task_type, input_col, label_col, etc.) | |
- Add your dataset to the BUILDER_CONFIGS list: `LextremeConfig(name="{your_dataset_name}", **_{YOUR_DATASET_NAME})` | |
- Test that it works correctly by loading your subset with `load_dataset("lextreme", "{your_dataset_name}")` and inspecting a few examples. | |
### Dataset Curators | |
[More Information Needed] | |
### Licensing Information | |
[More Information Needed] | |
### Citation Information | |
``` | |
@misc{niklaus2023lextreme, | |
title={LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain}, | |
author={Joel Niklaus and Veton Matoshi and Pooja Rani and Andrea Galassi and Matthias Stürmer and Ilias Chalkidis}, | |
year={2023}, | |
eprint={2301.13126}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |
### Contributions | |
Thanks to [@JoelNiklaus](https://github.com/joelniklaus) for adding this dataset. | |