add four swiss_criticality configurations

#6
by Stern5497 - opened
Files changed (1) hide show
  1. lextreme.py +116 -0
lextreme.py CHANGED
@@ -4039,6 +4039,118 @@ _TURKISH_CONSTITUTIONAL_COURT_DECISIONS_JUDGMENT = {
4039
  "label_classes": ["Violation", "No violation"],
4040
  }
4041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4042
 
4043
  class LEXTREME(datasets.GeneratorBasedBuilder):
4044
  """LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding. Version 1.0"""
@@ -4053,6 +4165,10 @@ class LEXTREME(datasets.GeneratorBasedBuilder):
4053
  LextremeConfig(name="greek_legal_code_subject", **_GREEK_LEGAL_CODE_SUBJECT),
4054
  LextremeConfig(name="online_terms_of_service_unfairness_levels", **_ONLINE_TERMS_OF_SERVICE_UNFAIRNESS_LEVELS),
4055
  LextremeConfig(name="turkish_constitutional_court_decisions_judgment", **_TURKISH_CONSTITUTIONAL_COURT_DECISIONS_JUDGMENT),
 
 
 
 
4056
  # MLTC tasks
4057
  LextremeConfig(name="online_terms_of_service_clause_topics", **_ONLINE_TERMS_OF_SERVICE_CLAUSE_TOPICS),
4058
  LextremeConfig(name="covid19_emergency_event", **_COVID19_EMERGENCY_EVENT),
 
4039
  "label_classes": ["Violation", "No violation"],
4040
  }
4041
 
4042
+ _SWISS_CRITICLALITY_PREDICTION_BGE_FACTS = {
4043
+ "task_type": TaskType.SLTC,
4044
+ "hf_hub_name": "legal_criticaliy_prediction",
4045
+ "config_name": "full",
4046
+ "input_col": "facts",
4047
+ "label_col": "bge_label",
4048
+ "url": "https://huggingface.co/datasets/rcds/legal_criticality_prediction",
4049
+ "description":
4050
+ """
4051
+ Legal Criticality Prediction (LCP) is a multilingual, diachronic dataset of 130K Swiss Federal Supreme Court (FSCS) cases annotated with two criticality labels. The bge_label i a binary label (critical, non-critical), while the citation label has 5 classes (critical-1, critical-2, critical-3, critical-4, non-critical). Critical classes of the citation_label are distinct subsets of the critical class of the bge_label. This dataset creates a challenging text classification task. We also provide additional metadata as the publication year, the law area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
4052
+ """
4053
+ ,
4054
+ "citation":
4055
+ """
4056
+ @InProceedings{niklaus-etal-2023,
4057
+ author = {Stern, Ronja
4058
+ and Niklaus, Joel
4059
+ and Stürmer, Matthias},
4060
+ title = {Title: Subtitle},
4061
+ booktitle = {booktitle},
4062
+ year = {2023},
4063
+ location = {Bern, Switzerland},
4064
+ }
4065
+ """
4066
+ ,
4067
+ "label_classes": ["critical", "non-critical"],
4068
+ }
4069
+
4070
+ _SWISS_CRITICLALITY_PREDICTION_BGE_CONSIDERATIONS = {
4071
+ "task_type": TaskType.SLTC,
4072
+ "hf_hub_name": "legal_criticaliy_prediction",
4073
+ "config_name": "full",
4074
+ "input_col": "considerations",
4075
+ "label_col": "bge_label",
4076
+ "url": "https://huggingface.co/datasets/rcds/legal_criticality_prediction",
4077
+ "description":
4078
+ """
4079
+ Legal Criticality Prediction (LCP) is a multilingual, diachronic dataset of 130K Swiss Federal Supreme Court (FSCS) cases annotated with two criticality labels. The bge_label i a binary label (critical, non-critical), while the citation label has 5 classes (critical-1, critical-2, critical-3, critical-4, non-critical). Critical classes of the citation_label are distinct subsets of the critical class of the bge_label. This dataset creates a challenging text classification task. We also provide additional metadata as the publication year, the law area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
4080
+ """
4081
+ ,
4082
+ "citation":
4083
+ """
4084
+ @InProceedings{niklaus-etal-2023,
4085
+ author = {Stern, Ronja
4086
+ and Niklaus, Joel
4087
+ and Stürmer, Matthias},
4088
+ title = {Title: Subtitle},
4089
+ booktitle = {booktitle},
4090
+ year = {2023},
4091
+ location = {Bern, Switzerland},
4092
+ }
4093
+ """
4094
+ ,
4095
+ "label_classes": ["critical", "non-critical"],
4096
+ }
4097
+
4098
+ _SWISS_CRITICLALITY_PREDICTION_CITATION_FACTS = {
4099
+ "task_type": TaskType.SLTC,
4100
+ "hf_hub_name": "legal_criticaliy_prediction",
4101
+ "config_name": "full",
4102
+ "input_col": "facts",
4103
+ "label_col": "citation_label",
4104
+ "url": "https://huggingface.co/datasets/rcds/legal_criticality_prediction",
4105
+ "description":
4106
+ """
4107
+ Legal Criticality Prediction (LCP) is a multilingual, diachronic dataset of 130K Swiss Federal Supreme Court (FSCS) cases annotated with two criticality labels. The bge_label i a binary label (critical, non-critical), while the citation label has 5 classes (critical-1, critical-2, critical-3, critical-4, non-critical). Critical classes of the citation_label are distinct subsets of the critical class of the bge_label. This dataset creates a challenging text classification task. We also provide additional metadata as the publication year, the law area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
4108
+ """
4109
+ ,
4110
+ "citation":
4111
+ """
4112
+ @InProceedings{niklaus-etal-2023,
4113
+ author = {Stern, Ronja
4114
+ and Niklaus, Joel
4115
+ and Stürmer, Matthias},
4116
+ title = {Title: Subtitle},
4117
+ booktitle = {booktitle},
4118
+ year = {2023},
4119
+ location = {Bern, Switzerland},
4120
+ }
4121
+ """
4122
+ ,
4123
+ "label_classes": ["critical-1", "critical-2", "critical-3", "critical-4", "non-critical"],
4124
+ }
4125
+
4126
+ _SWISS_CRITICLALITY_PREDICTION_CITATION_CONSIDERATIONS = {
4127
+ "task_type": TaskType.SLTC,
4128
+ "hf_hub_name": "legal_criticaliy_prediction",
4129
+ "config_name": "full",
4130
+ "input_col": "considerations",
4131
+ "label_col": "citation_label",
4132
+ "url": "https://huggingface.co/datasets/rcds/legal_criticality_prediction",
4133
+ "description":
4134
+ """
4135
+ Legal Criticality Prediction (LCP) is a multilingual, diachronic dataset of 130K Swiss Federal Supreme Court (FSCS) cases annotated with two criticality labels. The bge_label i a binary label (critical, non-critical), while the citation label has 5 classes (critical-1, critical-2, critical-3, critical-4, non-critical). Critical classes of the citation_label are distinct subsets of the critical class of the bge_label. This dataset creates a challenging text classification task. We also provide additional metadata as the publication year, the law area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
4136
+ """
4137
+ ,
4138
+ "citation":
4139
+ """
4140
+ @InProceedings{niklaus-etal-2023,
4141
+ author = {Stern, Ronja
4142
+ and Niklaus, Joel
4143
+ and Stürmer, Matthias},
4144
+ title = {Title: Subtitle},
4145
+ booktitle = {booktitle},
4146
+ year = {2023},
4147
+ location = {Bern, Switzerland},
4148
+ }
4149
+ """
4150
+ ,
4151
+ "label_classes": ["critical-1", "critical-2", "critical-3", "critical-4", "non-critical"],
4152
+ }
4153
+
4154
 
4155
  class LEXTREME(datasets.GeneratorBasedBuilder):
4156
  """LEXTREME: A Multilingual Legal Benchmark for Natural Language Understanding. Version 1.0"""
 
4165
  LextremeConfig(name="greek_legal_code_subject", **_GREEK_LEGAL_CODE_SUBJECT),
4166
  LextremeConfig(name="online_terms_of_service_unfairness_levels", **_ONLINE_TERMS_OF_SERVICE_UNFAIRNESS_LEVELS),
4167
  LextremeConfig(name="turkish_constitutional_court_decisions_judgment", **_TURKISH_CONSTITUTIONAL_COURT_DECISIONS_JUDGMENT),
4168
+ LextremeConfig(name="swiss_criticality_prediction_bge_facts", **_SWISS_CRITICLALITY_PREDICTION_BGE_FACTS),
4169
+ LextremeConfig(name="swiss_criticality_prediction_bge_considerations", **_SWISS_CRITICLALITY_PREDICTION_BGE_CONSIDERATIONS),
4170
+ LextremeConfig(name="swiss_criticality_prediction_citation_facts", **_SWISS_CRITICLALITY_PREDICTION_CITATION_FACTS),
4171
+ LextremeConfig(name="swiss_criticality_prediction_citation_considerations", **_SWISS_CRITICLALITY_PREDICTION_CITATION_CONSIDERATIONS),
4172
  # MLTC tasks
4173
  LextremeConfig(name="online_terms_of_service_clause_topics", **_ONLINE_TERMS_OF_SERVICE_CLAUSE_TOPICS),
4174
  LextremeConfig(name="covid19_emergency_event", **_COVID19_EMERGENCY_EVENT),